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Abstract 
 

     A new selection procedure has been developed for use with the Hurvits-
Thompson estimator. Some results have been verified for first and second 
order inclusion probabilities.     
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1  Introduction 
 
The concept of sampling with unequal probability without replacement was first 
introduced by Meadow (2). Horvitz and Thompson (1) were the first to give 
theoretical frame work of unequal probability sampling without replacement. The 
estimation proposed by H.T (1) was: 
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Where iπ is probability of inclusion of  ith unit in the sample. 
The variance of Horvitz-Thompson estimator was: 
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with an unbiased variance estimator 



 
 
109                                                                                               Naser .A. Alodat 
  

 
^ 2

2
1 1 1

1n n
ij i j i ji

HT i
i i i j ij i ji

y y
v y y π π ππ

π π ππ= = ≠ =

⎛ ⎞⎛ ⎞−−⎛ ⎞ = + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ .               (1.3) 

The expression for variance of Hurvits-Tompson given by Yates Grundy (4) is: 
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With an unbiased variance estimator:    
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Shahbaz and Hanif (3) suggested a new procedure where selecting a sample of 

size two where first unit selected by probability proportional to 
( )1 2

i
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second with probability proportional to ip . 
 

2   New Selection Procedure 
  
In this section, we have given a new selection procedure for use with the Hurvits-
Thompson (1) estimator with sample size 2. 

a) Select first unit with probability proportional to 
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and without replacement. 

b) Select second unit with probability 
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The first inclusion probability is 
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Some results for new selection procedure. 
 

    Results (1): 
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    Proof: summing both side of (2.1) 
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Since n=2, therefore equation (2.3) can be written as 
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Proof: 
    Summing both sides of (2.2), we get: 
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Comparing (2.4) with (2.1), it can be seen that 
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also 
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Substituting (2.5) in (2.6) we get: 
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Since n=two therefore equation (2.7) can be written as: ( )
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The value of iπ and ijπ reduces to the standard results of simple random sampling. 
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From (2.8) and (2.9) we get 2
i N

π = . 

This is for simple random sampling without replacement for a sample of size 
equal two. 

For ijπ substituting 1
i jp p

N
= = and the value of B, in (2.2) we get: 
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Which is the joint inclusion probability for a sample of size two in case of simple 
random sampling without replacement.  
 
3  Open Problems  
 
In this paper, we suggest the use of new procedure for selection a sample of size 
two by unequal probability without replacement. The problem considered in this 
paper can be extend for a sample of size greater than two. Moreover, there is 
needed to compare between proposed estimator and the extended on. 
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