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Abstract  

 

     In this article, L ranked-set sampling (LRSS) is used to estimate a simple 
linear regression model. We show that the estimated regression model based 
on LRSS is highly efficient compared to the estimators based on simple 
random sampling, Extreme ranked set sampling and ranked set sampling. 
Monte Carlo experiments are performed to assess the accuracy and the 
robustness of the LRSS estimates. The results are illustrated by an example. 
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1     Introduction 

Regression analysis is a conceptually simple method for investigating functional 
relationships among variables. The relationship is expressed in the form of an 
equation or model connecting the response variable (Y) and one (X) or more 
explanatory variables. The simple true relationship can be approximated by the 
regression model  

εβα ++= XY  
     Where ε  is assumed to be random error, βα ,  are unknown regression parameters 
to be estimated from the data.  
     Often in practice, data are collected on each of a number of units or cases using a 
simple random sample (SRS) technique. As an alternative to SRS, McIntyre [6] 
suggest using the ranked set sampling (RSS) for data collection by drawing m SRS 
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each of size m, then only selecting one measurement from each SRS. This can be 
done by selecting the smallest observation from the first SRS, the second smallest 
from the second SRS, the process repeated till the largest observation is selected from 
the last SRS. Many authors used RSS technique in regression analysis. Patil et al. [8] 
compared the RSS sample and SRS sample in relation to the concomitant variable 
and the regression estimate. Yu and Lam [12] proposed a regression-type estimator 
based on RSS. They demonstrated that this estimator is always more efficient than the 
regression estimator using SRS and is also more  efficient than the estimator proposed 
by Patil et al. [8] unless the correlation coefficient is low ( 0.4ρ < ). Muttlak [7] 
used RSS to estimate the parameters of the simple linear regression model treating 
the regressor X as a constant. Chen [2] did an extensive study on the properties of 
regression type estimates. Chen and Wang [4] studied the optimal RSS for the 
regression analysis. Samawi and Ababneh [10] and earlier Samawi et al [11], showed 
that the extreme ranked set sampling (ERSS) performed better than RSS at estimating 
model parameters. 
     The current study uses generalized ranked data procedure (LRSS) (Al-Nasser [1]). 
Specifically, a modified bivariate LRSS is proposed and used to improve parameter 
estimation in the simple linear regression model.  
     The article is organized as follows: the LRSS and the modified bivariate LRSS 
schemes are introduced in section 2. The definition of the modified estimator and 
their properties are then discussed in section 3. A Monte Carol experiment to assess 
the performance of the proposed scheme in estimating the regression model is given 
in section 4. An illustration of the proposed technique based on real data is presented 
in section 5. We conclude this paper by stating the need for further work. 
 

2.1     L Ranked Set Sampling (LRSS) 

In order to plan a LRSS design, m random samples should be selected each of size m. 
The LRSS procedure as proposed by Al-Nasser [1] is: 
Step1: Select m random samples each of size m. 
Step2: Rank the units within each sample with respect to the variable of interest by a 

visual inspection or by any other cost effective method. 
Step3: Select the LRSS coefficient [ ]k mp=  such that 0 0.5p≤ < , where [ ]x  is the 

largest integer value less than or equal to x. 
Step4: For each of the first k ranked samples; select the unit with rank k+1 for actual 

measurement. 
Step5: For the last k ranked samples, select the unit with rank m k−  for actual 

measurement. 
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Step6: For 1,...,2,1 −−++= kmkkj , the thj  ranked unit in the thj  ranked sample 
is selected for actual measurements. 

     The cycle may be repeated r  times to obtain a sample size n mr= . 

     Based on the LRSS scheme, the estimator of the population mean when r=1 is 
defined as: 

( ) ( ) ( )1
1 1 1

1ˆ
k m k m

LRSS i k i i i m k
i i k i m k

X X X
m

µ
−

+ −
= = + = − +

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

and its variance is given by: 

( ) ( )( ) ( )( ) ( )( )12
1 1 1

1ˆvar var var var
k m k m

LRSS i k i i i m k
i i k i m k

X X X
m

µ
−

+ −
= = + = − +

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

     Al-Nasser [1] proved that ˆLRSSµ  is unbiased estimator of the population meanµ , 
and has smaller variance than ˆSRSµ  if the underlying distribution is symmetric.  

 
2.2      Bivariate L Ranked Set Sampling (LRSS) 

In order to have a bivariate L ranked set sample, the following steps should be 
performed: 
Step1 Randomly draw m independent sets each containing m bivariate sample units. 
Step2 Rank the units within each sample with respect to the 'X s by visual inspection 

or any other cost effective method. 
Step3 Select LRSS coefficient, [ ]K mp= such that 0 0.5p≤ < , and [ ]X  the 

largest integer value less than or equal to X . 
Step4 For each of the first ( 1k + ) ranked samples; select the unit with rank 1k +  

and measure the Y  value that corresponding to ( 1)k ix +  and denote it 

by [ ]1k iy + . 

Step5 For 2,....., 1j k m k= + − − , the unit with rank j  in the thj  ranked sample 
is selected and measures the y  value that corresponds. 
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Step6 The procedure continued until ( )thm k−  unit selected from the each of the 

last ( )thm k−  ranked samples, with respect to the first characteristic and 
measure the correspond y  value. 

For example, if 1k =  and 5m =  then the selected ranked sample will be as 
given in Table.1.  

Table 1: Selected Bivariate LRSS when m = 5 and k = 1. 

( ) [ ]1 1, 1 1x y  ( ) [ ]1 2, 1 2x y  ( ) [ ]1 3, 1 3x y  ( ) [ ]1 4, 1 4x y  ( ) [ ]1 5, 1 5x y  

( ) [ ]2 1, 2 1x y  ( ) [ ]2 2, 2 2x y ( ) [ ]2 3, 2 3x y ( ) [ ]2 4, 2 4x y ( ) [ ]2 5, 2 5x y  

( ) [ ]3 1, 3 1x y  ( ) [ ]3 2, 3 2x y ( ) [ ]3 3, 3 3x y ( ) [ ]3 4, 3 4x y ( ) [ ]3 5, 3 5x y  

( ) [ ]4 1, 4 1x y  ( ) [ ]4 2, 4 2x y ( ) [ ]4 3, 4 3x y ( ) [ ]4 4, 4 4x y ( ) [ ]4 5, 4 5x y  

( ) [ ]5 1, 5 1x y  ( ) [ ]5 2, 5 2x y ( ) [ ]5 3, 5 3x y ( ) [ ]5 4, 5 4x y ( ) [ ]5 5, 5 5x y  

 
3    Estimating Simple Linear Regression Parameters 

In completion of the sampling, let ( )
x
i jd and [ ]

y
jid  be, respectively, X with rank 

k and the corresponding value of Y obtained from the thi set in the thj cycle. Then, 
the regression equation based on bivariate LRSS can be modeled as: 
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i j

y x
j i jid d d i m j rεα β= + + = =
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where [ ]i jd ε  is the random error.  

    Under the regular assumptions of simple linear regression model Draper and Smith 
[5], the least square estimates of the regression parameters in (1) are given by: 

  

( ) [ ]
1 1

2
( )

1 1

( )( )
ˆ

( )

r m
x x y y
i j i j

j i
LRSS r m

x x
i j

j i

d d d d

d d
β = =
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⎣ ⎦
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∑ ∑
                                     (2) 

and 

x
LRSS

y
LRSS dd βα ˆ−=          (3) 

where 
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1 1

1 r m
yy
i j

j i
d d

rm = =
= ∑ ∑  and     ( )

1 1

1 r m
x x

i j
j i

d d
rm = =

= ∑ ∑  

     Hereafter, the fitted model will be:  

 [ ] ( )
ˆ ˆˆy x

LRSS LRSS i ji jd dα β= +                      (4) 

note that, the estimated residuals are given by 

[ ] [ ] [ ]
ˆy y

i j i j i jd d dε = −                       (5) 

     Theorem    1  Assume that (1) is satisfied then: 

1-  ˆ( )LRSSE β β=   

 2- ˆ( )LRSSE α α=     
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     Proof:  Without loss of generality suppose that r=1 then β̂  given (2) can be 
rewritten as  
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     Note that; 
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and   ( )( ) ( )( ) ( )
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     Therefore; ( )ˆ
LRSSE β β=         

2- Now for the intercept estimator we have   
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     Following Yu and Lam [12] the LRSS regression estimator is given by 

)(ˆˆ Re.
xy

gLRSS dXd −+= βµ  

     Moreover, under model (1) and the above assumptions, then for fixed value of r 
we have 

( )
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− masN
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ββ  
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L ),1,0(
)ˆ(

ˆ
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αα  

    The proof of these results are concluded directly using the ideas of RSS (Chen et al 
[3]). 

4      Simulation Study 

To illustrate the performance of the LRSS estimator’s Monte Carlo simulation studies 
were conducted considering two cases inliers and outlier cases. The simulation plan 
has the following assumptions: 

- Generate 10000 random samples using SRS, RSS, ERSS and LRSS (with 
k=1, 2). 

- Set the number of cycles r = 5, 10, 20, and set size m = 5, 6, 7, 8.  
- Initiate the strength of the association between the two variables by ρ = 0.1, 

0.5 and 0.9. 
- The intercept and the slope are initialled as 0 andα β ρ= = . 
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     - The error term is generated from )1,0( 2ρ−N and the regressor from N (0, 1). 
     - Also, we consider an outlier case, by generating an outlier (one observation). For 

this observation we generate the error term from N(0,52). 
  -The relative efficiency (RE) for the estimated model based on LRSS is computed 

according to the following expression:     

                    
)ˆ(
)ˆ(

Re.

Re.

gLRSS

gSRS

MSE
MSE

RE
µ
µ

=                                                           (6) 

     The results of the MSE for the SLR model for inliers case is given in Table.2 – 
Table.4; and the results for outlier cases are given in Table 5 – Table 7. 

Table 2: RE for Regression model with  ρ  = 0.1 

Table 3: RE for Regression model with  ρ  = 0.5 

5 5 .659 .978 1.723 2.869 

 
6 .601 .973 1.560 2.831 
7 .580 .983 1.470 2.536 
8 .550 .984 1.397 2.246 

10 5 .672 .989 1.732 2.874 

 
6 .612 .988 1.581 2.854 
7 .588 .993 1.483 2.549 
8 .557 .992 1.409 2.266 

20 5 .675 .996 1.738 2.861 

 
6 .618 .994 1.591 2.860 
7 .591 .995 1.487 2.547 
8 .559 .993 1.409 2.262 

r m ERSS RSS LRSS1 LRSS2 
5 5 .562 .984 1.964 3.467 

 
6 .486 .978 1.759 3.446 
7 .452 .974 1.612 3.001 
8 .413 .982 1.526 2.651 

10 5 .567 .981 1.959 3.438 

 
6 .493 .988 1.772 3.441 
7 .458 .991 1.638 3.042 
8 .418 .990 1.538 2.659 

20 5 .573 .997 1.972 3.462 

 
6 .497 .995 1.783 3.463 
7 .460 .994 1.642 3.042 
8 .421 .998 1.550 2.680 

r m ERSS RSS LRSS1 LRSS2 
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Table 4: RE for Regression model with  ρ  = 0.9 

5 5 .907 .990 1.179 1.465 

 
6 .898 .989 1.137 1.464 
7 .893 .996 1.116 1.385 
8 .887 .995 1.097 1.317 

10 5 .913 .991 1.182 1.476 

 
6 .903 .996 1.148 1.471 
7 .890 .995 1.117 1.389 
8 .885 .996 1.101 1.320 

20 5 .918 .998 1.188 1.471 

 
6 .902 .999 1.149 1.470 
7 .895 .996 1.120 1.390 
8 .886 .997 1.102 1.319 

Table 5: RE for Regression model with  ρ  = 0.1: outlier case 
r m ERSS RSS LRSS1 LRSS2 
5 5  0.474  0.980 3.537 6.668 

 

6  0.404  0.987 2.992 6.205 
7  0.368  0.988 2.635 5.184 
8  0.330  0.979 2.361 4.286 

10 5  0.477  0.986 3.576 6.681 

 

6  0.406  0.989 3.019 6.238 
7  0.372  0.996 2.663 5.210 
8  0.335  0.990 2.404 4.361 

20 5  0.483  0.996 3.594 6.709 

 

6  0.411  0.996 3.056 6.297 
7  0.372  0.998 2.669 5.219 
8  0.335  0.996 2.404 4.359 

Table 6: RE for Regression model with  ρ  = 0.5: outlier case 
r m ERSS RSS LRSS1 LRSS2 
5 5  0.491  0.976 3.240 5.689 

 

6  0.423  0.975 2.758 5.276 
7  0.389  0.977 2.431 4.396 
8  0.363  0.989 2.226 3.753 

10 5  0.498  0.989 3.263 5.694 

 

6  0.434  0.995 2.794 5.300 
7  0.397  0.993 2.484 4.468 
8  0.365  0.996 2.250 3.760 

20 5  0.503 1.000 3.286 5.723 

 

6  0.435  0.995 2.803 5.297 
7  0.398  0.992 2.475 4.440 
8  0.366  0.998 2.259 3.784 

r m ERSS RSS LRSS1 LRSS2 
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Table 7: RE for Regression model with  ρ  = 0.9: outlier case 
r m ERSS RSS LRSS1 LRSS2 
5 5  0.612  0.984 1.922 2.727 

 

6  0.554  0.975 1.718 2.544 
7  0.542  0.993 1.616 2.270 
8  0.506  0.983 1.508 2.014 

10 5  0.618  0.998 1.928 2.724 

 

6  0.565  0.993 1.748 2.567 
7  0.536  0.991 1.620 2.268 
8  0.513  0.997 1.537 2.050 

20 5  0.621 1.000 1.941 2.724 

 

6  0.571  0.998 1.745 2.554 
7  0.538  0.995 1.614 2.267 
8  0.513 1.002 1.538 2.039 

 
    The simulation results indicate that estimation of the simple linear regression 
model using LRSS is more efficient than using the traditional sampling techniques; 
SRS, ERSS or RSS. Moreover, when the data contains outliers the LRSS is shown to 
be a robust technique, and as the value of K increases the RE increases. Moreover, 
the RE of regression estimators decreases as the set size or the cycle size increases. 
Also, for fixed r and m, the RE decreases whenever ρ increases. It seems that, for a 
moderate or large sample size, the RE is slightly different when using either RSS or 
ERSS. However, using LRSS is generally more efficient than using SRS, ERSS or 
RSS for regression analysis. 
 
5     Illustration Using Real Data  

In this section, an illustration of the LRSS procedure in estimation using simple linear 
regression is discussed based on a real data set from Platt et al [9].  

5.1     Real Data Set 

The original data were collected on seven variables about tree characteristics of 
which we have used only two: X, the diameter in centimeters at breast height and Y, 
the entire height in feet. The regression model is analyzed assuming that the 
population is consists of 375 trees. The summary statistics of the data are reported in 
Table.8.  
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Table 8: Summary Statistics for the Tree Data 
 Diameter(x) in cm Entire Height (y) in feet 

N 375 375 
Mean 21.8971 54.83 

Std. Deviation 17.63671 57.656 
Range 73.2 242 

  
Table 9: Summary Statistics for the selected samples of size 75 

  Range Minimum Maximum Mean 
Std. 

Deviation 

SRS x 66.90 2.30 69.20 20.1227 17.79634 
y 219.00 4.00 223.00 48.8933 58.30896 

RSS x 66.90 2.30 69.20 21.4427 18.96384 
y 219.00 4.00 223.00 55.8400 64.10023 

LRSS1 
x 48.70 4.20 52.90 18.5333 13.57199 
y 205.00 6.00 211.00 42.7600 44.77718 

LRSS2 
x 41.40 5.10 46.50 17.3213 11.50245 
y 203.00 8.00 211.00 43.3467 48.53516 

ERSS x 66.90 2.30 69.20 28.4773 23.89840 
y 219.00 4.00 223.00 79.3200 79.59614 

 
     Based on the entire measurements a random sample of size 75 is drawn by using 
different sampling schemes, SRS, RSS, ERSS, and LRSS (k=1, 2). In RSS, ERSS 
and LRSS procedure we use m sets each of size m, where m=5, and repeat this cycle 
fifteen times “i.e., r = 15” to achieve a sample of size 75. The summary statistics of 
the selected random samples is presented in Table.9. 
     It can be noted that, the average of regressor varied from 17.3-28.5 and 
response from 42.7-79.3 depends on which sampling scheme is used.  

 
5.2      Data Analysis  
 
In order to form the regression model based on different sampling scheme, a 
visual inspection using scatter plot is used (Figure.1).   
     The scatter plots in Figure.1 suggested that the relationship between both variables 
is not linear. Therefore, both variables are re-expressed by a natural logarithmic 
transformation. After here, the least square method is used for model fitting; the 
estimates of the regression parameters are given in Table. 10.  
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Figure 1: Scatter Plot of Tree Data by Using Different Sampling Schemes 
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Table 10: Regression Analysis of Tree data 
Method Constant Log(Diameter) Adj(R2) MSE 

SRS 0.556* (0.130) 1.066* (0.047) 0.875 0.134 
RSS 0.468* (0.099) 1.120* (0.035) 0.932 0.080 

ERSS 0.525* (0.116) 1.112* (0.38) 0.920 0.138 
LRSS1 0.531* (0.124) 1.073* (0.045) 0.885 0.080 
LRSS2 0.614* (0.154) 1.063* (0.057) 0.826 0.090 

Note: Standard Errors in parentheses; * Statistically Significant at 1%. 
 



 
 
  
Al-Nasser and Radaideh                                                                                              31 
 

     The results suggest that the RSS, LRSS1 and LRSS2 perform well compared to 
the SRS and ERSS in regards MSE point of view. Also, it can be noted that using 
RSS the intercept and slope have the minimum standard error and the highest fitting 
measure (i.e., 93.2%). Moreover, the residual plot and the normality p-p plot Figure.2 
suggest that the model reasonably fits the data using these methods. In conclusion, 
from the data analysis and simulation results; the LRSS produced a satisfactory 
estimation for simple linear regression compared to the SRS and the other ranked 
data sampling schemes.  
 
6     Future Works 
 
In this paper, we suggest the use of LRSS to estimate the simple linear regression 
parameters. However, a modification of a ranked set sampling technique is still 
needed to improve estimation of the regression parameters.  Also, the problem 
considered in this article can be extended to fit a multiple linear regression equation.  
     Moreover, there is a need to explore the usefulness of ranked sampling techniques 
for higher dimensional regression models such as semi parametric or non-linear 
models. This will be considered in future work.  
 

Figure. 2 Residual Analysis using Different Sampling Scheme: “Response is 
Ln(Height)” 

Normal P-P plot of the standardized residuals Scatter plot of Residual vs. Predicted values 

Observed Cum Prob
1.00.80.60.40.20.0

Ex
pe

cte
d C

um
 P

ro
b

1.0

0.8

0.6

0.4

0.2

0.0

 

SRS

 
Regression Standardized Predicted Value

210-1-2

Re
gr

es
sio

n 
St

an
da

rd
ize

d R
es

id
ua

l

2

0

-2

-4

-6

SRS

Observed Cum Prob
1.00.80.60.40.20.0

Ex
pe

cte
d C

um
 Pr

ob

1.0

0.8

0.6

0.4

0.2

0.0

RSS

 
Regression Standardized Predicted Value

210-1-2

Re
gr

es
sio

n S
tan

da
rd

ize
d R

es
idu

al

3

2

1

0

-1

-2

-3

RSS



  
 
 
L Ranked Set Sampling                                                                                               32

Observed Cum Prob
1.00.80.60.40.20.0

Ex
pe

cte
d C

um
 Pr

ob

1.0

0.8

0.6

0.4

0.2

0.0

ERSS

 
Regression Standardized Predicted Value

210-1-2

Re
gr

es
sio

n 
St

an
da

rd
ize

d 
Re

sid
ua

l

2

0

-2

-4

-6

ERSS

Observed Cum Prob
1.00.80.60.40.20.0

Ex
pe

cte
d C

um
 Pr

ob

1.0

0.8

0.6

0.4

0.2

0.0

LRSS1

 

Regression Standardized Predicted Value
210-1-2

Re
gr

es
sio

n S
tan

da
rd

ize
d R

es
idu

al

3

2

1

0

-1

-2

LRSS1

Observed Cum Prob
1.00.80.60.40.20.0

Ex
pe

cte
d C

um
 Pr

ob

1.0

0.8

0.6

0.4

0.2

0.0

LRSS2

Regression Standardized Predicted Value
210-1-2

Re
gre

ss
ion

 St
an

da
rdi

ze
d R

es
idu

al

3

2

1

0

-1

-2

-3

LRSS2

 
References 
 
[1] D. A. Al-Nasser. L Ranked set sampling: A generalization procedure for robust 

visual sampling. Communications in Statistics: Simulation and Computation. 
36(1). 2007, 33 – 43. 

[2] Z. Chen. Ranked-set sampling with regression-type estimators. Journal of 
Statistical Planning and Inference. 92(2001), 181-192. 

[3] Z. Chen. Bai, Z., and Sinha, B. K. Ranked Set Sampling: Theory and 
Applications. Springer: New York. 2004. 

[4] Z. Chen and Wang. Y. Efficient Regression Analysis with Ranked-Set Sampling. 
Biometrics 60(2004), 997–1004. 

 [5] N. Draper, and Smith, H. Applied Regression Analysis. 2nd edition. USA: John 
Wiley & sons, Inc. 1981. 



 
 
  
Al-Nasser and Radaideh                                                                                              33 
 

[6] G. A. McIntyre. A method of unbiased selective sampling, using ranked sets. 
Australian J. Agricultural Research. 3(1952), 385–390. 

[7] H. A. Muttlak. Parameters Estimation in a simple linear regression using rank set 
sampling, Biometrical. J., 37(7) (1995), 799–810. 

[8] G. P. Patil, Sinha, A.K., and Taillie, C. Observational economy of ranked set 
sampling: comparison with the regression estimator. Environmetrics 4(1993), 
399-412. 

[9] W. J. Platt, Evans, G. W, and Rathbun, S. L. The population dynamics of a long-
lived conifer, The Amer. Naturalist. 131(1988), 391–525. 

[10] H. M. Samawi, and Ababneh, F. On regression analysis using ranked set sample, 
Journal of Statistical Research (JSR), 35 (2) (2001), 93–105. 

[11] H. M. Samawi, Ahmed, M. S., and Abu-Dayyeh, W. Estimating the population 
mean using extreme ranked set sampling, Biometrical. J., 38 (5) (1996), 577–
586. 

[12] P. L. H. Yu., Lam, K., Regression estimator in ranked set sampling. Biometrics 
53(1997), 1070-1080. 

 


