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Abstract

We show that there is a set X C N with density O(logn) such that every sufficiently
large natural number can be represented as sum of two elements from X and a prime.
The density is a log!/?n factor off being best possible.

1. Introduction

A central notion in additive number theory is that of bases. A subset X of N is a basis
of order k if every sufficiently large number n € N can be represented as a sum of k
elements of X. Here and later N denotes the set of natural numbers.

In this note, we are working with a related notion of complementary bases. Given a
set A C N, aset X C N is a complementary basis of order k of A if every sufficiently
large natural number can be written as a sum of an element in A and k elements in X.
All asymptotic notations are used under the assumption that n — oco. The logarithms
have natural base.

Consider the set P of primes. Since P has density n/logn, it is clear by the pigeon
hole principle that a complementary basis of order k of P should have density Q(logl/ k n).
As far as we know, it is still an open question to determine, even for the case k = 1,
that whether there is a complementary basis of P with density O(log"*n). In [1], Erdés
shown that for k = 1, there is a complementary base of density O(log?n). In a recent
paper, Ruzsa [5], improving a result of Kolountzakis [4], showed that there exists a set
X of density w(n)logn, where w(n) is a function tending to infinity arbitrarily slow in
n, such that the set X + P has density one (i.e., almost all natural numbers can be
represented as a sum of an element from X and a prime).

1Research supported in part by grant RB091G-VU from UCSD, by NSF grant DMS-0200357, and by
a Sloan fellowship.

AMS Subject Classificiation Numbers: 05, 11.
Key words: Complementary bases, the probabilistic method, primes.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 2 (2002), #A12 2

In this note, we focus on the case k£ = 2. Our main theorem is
Theorem 1.1 P has a complementary basis of order 2 and density O(logn).

Corollary 1.2 For all k > 2, P has a complementary basis of order k and density
O(logn).

We conjecture that

Conjecture. For any fixred k, P has a complementary basis of order k and density
O(log! oMk ).

The probabilistic method is the only effective approach so far to this type of problems.
It seems that to prove even the density O(log2/ F n) for k > 3 requires a new tool from
probability theory. Such a tool should surely be of independent interest. The first step
towards the conjecture might be to prove a bound with the exponent decreasing in k.

2. Proof of Theorem 1.1

We construct the claimed complementary basis X by the random method. For each
x € N, choose x to be in X with probability p, = ¢/x, where c is a positive constant to
be determined. Let ¢, be the binary random variable representing the choice of x (thus
t, = 1 with probability p, and 0 with probability 1—p,). We skip the fairly easy proof of
the fact that almost surely, X (m) = O(logm) for every m, i.e, X has the right density;
the interested readers might want to consider this as a warm-up exercise. Now let us
consider the number representations of n as sum of a prime and two elements from X.
This number is a random variable depending on the ¢;’s, 7 < n and can be expressed as
follows

Yo=> >t

p<n j+j=n—p

where in the second sum we do not count permutations. Here and later in a sum over
p we understand that p is a prime. We next show that there is a constant ny such that
with probability at least 1/2, Y,, > 1 for all n > ng. To achieve this goal, it suffices to
prove that for all sufficiently large n, Pr(Y, = 0) < n™? (notice that the sum 52 n~2

goes to 0 as ng tends to infinity). It has turned out that it is much more convenient to
work with the following truncation of Y,

Vo= Y > tit;.

p<n—2n2/3 itj=n—p; i,j>n?/3
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In the following, we shall prove

Central to the proof of (1) is the following

Lemma 2.3 For all sufficient large n

1
s L e,
pgn_n2/3 p
and
1
> e
p<n—2n2/3 n—r

Proof of Lemma 2.3. To verify the first equality, let us set ny = n — n?? and n; =
ni_1 — nfﬁ for all [ = 2,3,4,...,s where s is the first place where ny < n/2. It is a
routine to show by induction that

2/3
In > > n—In?3. (2)

Let P, denote the set of primes in the interval [n;,n;_1). It is clear, by (2), that for
all p € P,

2 1 1
> > .
In?/3 =~ n—p = In?/3

(3)

On the other hand, it is a well-known fact in number theory that the number of
primes in the interval [m —m?/3 m) is ©(m??/logm) for every sufficiently large m (see,
for instance, [2]). Thus

Bl =0}’ /logni_1) = ©(n*?/log n)
for all [. This and (3) yield

Syt

=2 pep, VTP

= O(log™* n_i 1/1) = ©(log ' n x log s) = O(1). (4)
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To complete the proof of the first equality, notice that 325, 0 1/(n—p) < 37, »1/j =
O(+%-1) = o(1). The second equality follows easily. Q.E£D

lognn

The second main ingredient of our proof is a large deviation bound, due to Janson
[3]. Let z1,...,2, be independent indicator random variables and consider a random
variable Y = >~ I, where each I, is the product of few z;’s. We write v ~ 3 if there is
some z; which occurs in both I, and Ig. Furthermore, set A = >, 3 E(I,I3). To this
end, E(A) denotes the expectation of the random variable A.

Theorem 2.4 (Janson) For any Y as above and any positive number e

(eE(Y))?

Pr(Y <(1—-¢)E(Y)) < e 2®M+A.

From Theorem 2.4, one can routinely derive the following lemma. For a pair 1 <
i,7 < m, we write ¢ ~ j if there is some a such that I, contains both z; and z;.

Lemma 2.5 There is a positive constant r such that the following holds. If each term
I, in'Y is the product of exactly 2 random wvariables and for allm > i > 1, E(Y) >

rlogn(E(ZjNi t;) + 1), then

We now apply Lemma 2.5 to Y,!. Let us notice that in our setting, ¢ ~ j if and only
if there is a prime number p such that i + 7 + p = n. Therefore,

ENt)= Y ——< ¥ —

: )
Jrvi p<n—i—n?2/3 n—1=p p<m—m?2/3 m=p

where m = n — 4. By Lemma 2.3, there is a constant a such that E(};.;t;) < ac.
Moreover, a simple calculation yields that

E( > titj) = Q(CQW)-

it+j=n—p,i,j>n?/3

This and Lemma 2.3 together imply

EY)=Q( > w)z@(czbgn > !

p<n—2n?2/3 n=r p<n—2n2/3 n—p

) =Q(c*logn). ()
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(5) guarantees that there is a positive constant b such that E(Y”’) > bc? logn. Thus,
by increasing c, we can guarantee that the condition of Lemma 2.5 is met and this
completes the proof. 0.ED
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