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Abstract

For two given graphs G and H, the Ramsey number R(G, H) is the smallest positive
integer N such that for every graph F' of order N the following holds: either F' contains
G as a subgraph or the complement of F' contains H as a subgraph. In this paper,
we determine the Ramsey number R(C,,W,,) for m = 4 and m = 5. We show that
R(C,,W,) =2n—1 and R(C,,Ws) = 3n — 2 for n > 5. For larger wheels it remains an
open problem to determine R(C,,, W,,).

1. Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write
V(G) or V for the vertex set of G and E(G) or E for the edge set of G. The graph G is
the complement of the graph G| i.e., the graph obtained from the complete graph Ky ()|
on |V(G)| vertices by deleting the edges of G.

The graph H = (V' E’) is a subgraph of G = (V, E) if V' CV and E' C E. For any
nonempty subset S C V, the induced subgraph by S is the maximal subgraph of G with
vertex set S; it is denoted by G[S].

IPart of the work was done while the first author was visiting the University of Twente.
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If e = {u,v} € E (in short, e = uv), then w is called adjacent to v, and u and v are
called neighbors. For x € V and a subgraph B of G, define Ng(z) = {y € V(B) : xy € £}
and Np[z] = Np(z) U {z}. The degree d(z) of a vertex = is |Ng(z)|; 6(G) denotes the
minimum degree in G.

A cycle C,, of length n > 3 is a connected graph on n vertices in which every vertex
has degree two. A wheel W, is a graph on n + 1 vertices obtained from a C), by adding
one vertex x, called the hub of the wheel, and making x adjacent to all vertices of the
C,, called the rim of the wheel.

Given two graphs G and H, the Ramsey number R(G, H) is defined as the smallest
natural number N such that every graph F' on N vertices satisfies the following condition:
F contains G as a subgraph or F contains H as a subgraph.

We will also use the short notations H C F, F D H, H € F, and F' 2 H to denote
that H is (not) a subgraph of F', with the obvious meanings.

Several results have been obtained for wheels. For instance, Burr and Erdés [1] showed
that R(Cs, W,,) = 2m + 1 for each m > 5.

Ten years later Radziszowski and Xia [9] gave a simple and unified method to establish
the Ramsey number R(G, Cs), where G is either a path, a cycle or a wheel.

Hendry [5] showed R(C5, W) = 9. Jayawardane and Rousseau [6] showed R(C5, W5) =
11. Surahmat et al. [13] showed R(Cy,W,,) = 9,10 and 9 for m = 4,5 and 6 respec-
tively. Independently, Tse [14] showed R(Cy, W,,) = 9,10,9,11,12,13,14,15 and 17 for
m=4,5,6,7,8,9,10,11 and 12, respectively.

Recently, in [11], it was shown that the Ramsey number R(S,, Wy) =2n—11ifn >3
and n is odd, R(S,,Wy) = 2n + 1 if n > 4 and n is even, and R(S,, W5) = 3n — 2 for
cach n > 3. Here S,, denotes a star on n vertices (i.e., S, = Ky ,-1).

In [12] several Ramsey numbers of star-like trees versus large odd wheels were es-
tablished, e.g., it was shown that R(S,,W,,) = 3n —2 forn > 2m — 4, m > 5 and m
odd.

More information about the Ramsey numbers of other graph combinations can be
found in [8].

2. Main Results

The aim of this paper is to determine the Ramsey number of a cycle C), versus W, or

Ws. We will show that R(C,,, W,) =2n — 1 and R(C,,, W5) = 3n — 2 for n > 5.

For given graphs G and H, Chvéatal and Harary [3] established the lower bound



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A10 3

R(G,H) > (¢(G) —1)(x(H) — 1) + 1, where ¢(G) is the number of vertices of the largest
component of G and x(H) is the chromatic number of H. In particular, if n > 5,
G = C, and H = Wy or Wj, then we have R(C,,, W,) > 2n—1 and R(C,,, W5) > 3n — 2,
respectively.

For the upper bounds we will present proofs by induction. In order to prove the main
results of this paper, we need the following known results and lemmas.

Theorem 1 (Ore [7]).
If G is a graph of order n > 3 such that for all distinct nonadjacent vertices u and v,
d(u) +d(v) > n, then G is hamiltonian.

Theorem 2 (Faudree and Schelp [4]; Rosta [10]).

2n —1 for 3<m <mn, m odd, (n,m) # (3,3).
R(Cy,Cp) = n+ % —1 for4 <m <n, meven and n even, (n,m) # (4,4).
max{n + % —1,2m — 1} for 4 <m < n, m even and n odd.

Lemma 1 (Chvatal and Erdds [2]; Zhou [15]).
If H=C, CF for a graph F, while F 2 Cyy1 and F 2 K,, then |Ny(z)| < r —2 for
each x € V(F)\V(H).

Lemma 2 Let F' be a graph with |V(F)| > R(C,,,Cy,)+ 1. If there is a vertex x € V(F)
such that |Ng[z]| < |V(F)| — R(C,,,Cp) and F 2 C,,, then F O W,,.

Proof. Let A = V(F)\Np[z] and so |[A| > R(C,, Cy,). If the subgraph F[A] of F' induced

by A contains no C,, then by the definition of R(C,,C,,) we get that F[A] contains a
C,, and hence F contains a W, (with hub z). O

Lemma 3 Let F' and G be graphs with 2n — 1 and 3n — 2 vertices without a C,,, respec-
tively. If F and G contain no W,,, then §(F) > n — % foreven m >4 andn > 37’”, and
0(G) >n—1 forodd m >5 and n > m.

Proof. By contraposition. Suppose 6(F') < n — % for m > 4 even and n > 37’” Then,
there exists a vertex # € V(F) such that |[Nplz]| = dp(z) +1 =0(F)+1<n—- 5 =
(2n —1) — (n+ % — 1). Using Theorem 2 we get that Np[z] < |V(F)| — R(Cy, Cy). By
Lemma 2, we conclude that F' contains a W,, with hub .

Now, suppose 6(G) < n — 1 for m odd and n > m. Then, similarly, using Theorem 2
there exists a vertex y € V(G) such that |[Ngly]| <n—-1=Bn—-2)—(2n—-1) =
V(G)| — R(C,,,C,,). By Lemma 2, we conclude that F' contains a W,, with hub y. O

Before we deal with the general case of a cycle and Wy, we will first separately prove

that R(C@', W4) =11 and R(O7, W4) = 13.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A10 4
Theorem 3 R(Cy, W,) = 11.

Proof. Let F be a graph on 11 vertices containing no Cg. We will show that F contains
Wy. To the contrary, assume F contains no W;. It is known from [5] that R(Cs, W) = 9,
implying that F' contains C5. Let A = {xq, 1, 2, x3, 24} be the set of vertices of C5 C F'
in a cyclic ordering, and let B = V(F)\A. Then |B| = 6. By Theorem 1, there exists
a vertex b € B such that |[Np(b)| < 2, since otherwise F[B], and hence F, contains
Cs. By Lemma 3, §(F) > 6 — 5 = 4, implying that [N4(b)| > 2. If b is adjacent to z;
and z;41 (indices modulo 5), then clearly Cs C F. So we may assume without loss of
generality that Na(b) = {1, x3}. Let {b1, bs, b3} denote the three vertices of B\ Np(b).
Our next observation is that zoxy ¢ E(F); otherwise we obtain a Cg with edge set
(E(C5) \ {[L’lflfg, $3I’4}) U {$1b, b!lfg, 2721}4}. Similarly, oo Q E(F)

Since F' contains no Cg, we have [Ny, p,1(2;) N Ngp, po3(25)] = 0 for ¢ = 0,2,4 and
i # j. This implies that there exists an x; (i € {0,2,4}) with no neighbor in {by, b2}, say
z4. Since F contains no Wy, zo must be adjacent to both b; and by. This implies that
x5 has no neighbor in {by, by }; otherwise F contains a Cs. Thus F contains a W, with
hub b and rim byx4byxobq, our final contradiction. O

Theorem 4 R(C;, W,) = 13.

Proof. Let F be a graph on 13 vertices containing no C;. We will show that F' contains
Wy. To the contrary, assume F contains no Wy. By the previous result, we know that F
contains Cs. Let A = {xg, x1, %2, T3, 74,25} be the set of vertices of Cg C F in a cyclic
ordering, and let B = V(F)\A. Then |B| = 7. By Theorem 1, there exists a vertex b € B
such that |[Np(b)| < 3, since otherwise F[B] and hence F' contains C7. By Lemma 3,
6(F) > 7— 3 =5, implying that [Na(b)] > 2. If b is adjacent to z; and x;;1 (indices
modulo 5), then clearly C7 C F'. Now we distinguish three cases.

Case 1: b has two neighbors in A at distance 3 along the Cy.

We may assume without loss of generality that Na(b) = {x1,z4}. Let by, bs, by denote
three vertices of B\ Ng(b). As in the proof of Theorem 3, we observe that xoxs ¢ E(F);
otherwise we obtain a C7. Similarly, xexs ¢ E(F). Now one of zoxs, 375 is an edge
of F; otherwise we obtain a Wy in F with hub b and rim zgzs3x52270. We next observe
that precisely one of these edges exists in F'; otherwise zoxoxszrsrsbri20 is @ C7 in F.
We may assume without loss of generality that zgzy € E(F) and zszs ¢ E(F). Since
xors, x3xs & E(F), at least one of zg and x5 is a neighbor of b; in F' (i = 1,2, 3). Suppose
xoby, xoby € E(F'). Since there is no C7 in F| we easily get that x50y, 2502 ¢ E(F). Now
at least one of zoby, 2oby is an edge of F; otherwise we obtain a W, in F as in the proof
of Theorem 3. But then x¢b;xox3x4bx120 is @ C7 in F for i = 1 or ¢ = 2, a contradiction.
Since we do not use the edge zozs in the last arguments, the case that x5by, x5by € E(F)
is symmetric. This completes Case 1.
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Case 2: b has three neighbors in A.

We may assume without loss of generality that Na(b) = {x1, x5, x5}. Let by, by, by denote
three vertices of B\ Np(b). As in the proof of Theorem 3, we observe that xgzy & E(F);
otherwise we obtain a Cr. Similarly, xexy,x4x0 € E(F). Since xgra, xexy ¢ E(F),
at least one of zy and z4 is a neighbor of b; in F' (i = 1,2,3). Suppose by symme-
try that zoby,zoby € E(F). Similarly, at least one of x9by,z4b; € E(F). By sym-
metry and possibly reversing the orientation of the Cs, we may assume 230, € E(F).
Clearly, byxy,bixs, bixs, bazy, bows, x123, 11205 & FE(F). Also z3xs ¢ E(F); otherwise
T573b7 1 Tob 2075 is a Cr in F. Now b1by € E(F); otherwise we obtain a W, in F' with hub
by and rim byxx37509. We conclude that xgbobizexsxsrsz is a C7 in F. This completes
Case 2.

Case 3: b has exactly two neighbors in A at distance 2 along the Cg.

We may assume without loss of generality that Na(b) = {x1,x3}. Let by, by, by denote
vertices of B\ Np(b). As in the proof of Theorem 3, we observe that xgzy ¢ E(F);
otherwise we obtain a C7. Similarly, zoz4 & E(F'). Since xgxq, xox4 ¢ E(F), at least one
of zg and x4 is a neighbor of b; in F. Suppose by symmetry that zob; € E(F).

Since 2¢Zq, Tox4 ¢ E(F) and F contains no Wy, by the Pigeonhole Principle, there
exists an x € {xg, x4} such that x is adjacent to at least two vertices in {by, by, b3}. Let
xo be adjacent to by and by. If xyx5 € E(F), then x5 and z4 are not adjacent to b; and
b, since otherwise F' contains a C7, so F contains a Wy with hub b and rim by z4by29b;.
In case 7175 € E(F), we get that x50 € E(F), since otherwise we have a W, in F with
hub z5 and rim b;x1b2bb;. The case is now similar to Case 2. This completes Case 3 and
the proof of Theorem 4. O

Lemma 4 Let F be a graph on 2n — 1 vertices with n > 8, and suppose F contains
no Wy. If Cooy € F and F 2 C,, then |[Na(z)| < 2 for each x € V(F)\A, where
A — V(On—l)

Proof. Let A = {x1,%3,...,x,_1} be the set of vertices of a cycle C,,_; in F in a cyclic
ordering, and let B = V(F')\\A. Suppose there exists a vertex by € B with [N 4(by)| > 3.
Clearly, byx;v1 ¢ E(F) whenever bjx; € E(F) (indices modulo n — 1). Since n > 8,
|A] > 7, and hence we can choose two neighbors x; and x; of by in A such that z;;1 # ;4
and z;_1 # x4, (indices modulo n —1). Let A = {;_1, %i41,%j-1,%j+1}. Then |[A| =4
and zb, ¢ E(F) for each x € A. Moreover, since F' contains no C,,, by standard long
cycle arguments z;_17;_1, ;412541 € E(F), If [Na(z)| <1 for all z € A, then in F all
vertices of A have at least 2 = £|A| neighbors, implying that F' contains a W, with hub
bi. Hence |Na(x)| > 2 for some = € A. By symmetry, considering the two possible ori-
entations of C),_1, we may assume without loss of generality that |N4(z;11)| > 2, hence
Tis1%it1, TipTj—1 € E(F). Then z;x;_1 ¢ E(F'); otherwise we can obtain a C,, from
E(On—l) \ {l’j_llfj, LiTi41, Ii—lxi} U {Ijbl, b1$i7 ZL’Z'ZEj_l}. Slmllarly, Tilj41 g E(F) Since
0(F) > n —2 by Lemma 3 and |N4(b)| <5 —2 = 3 for each b € B by Lemma 1, there
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exist distinct vertices bo, bs € B such that byby, bibs € E(F'). This implies that x;_; and
xj41 are not adjacent to any vertex in {by, b3} since otherwise F' contains a C,, (extending
the C,_; by including b; and by or bs, while skipping z;). Now, we will distinguish the
following two cases.

Case 1: Tj-1Tj+1 g E(F)

Since I contains no Wy, @by, b3 € E(F) for each t € {i — 1,i + 1}. Suppose to
the contrary, e.g., that x;_1by ¢ E(F). Then F contains a W, with hub x;_; and rim
{zi_1,b2, %;41,01}. The other cases are symmetric. See Figure 1.

& h

Figure 1: The proof of Lemma 4 for Case 1.

Clearly then x;by, z;b5 ¢ E(F) since F' 2 C,,. Thus, we have a Wy in F with hub z; and
rim {x;_1,bs, 2,41, b3}, a contradiction.

Case 2: zj_17,41 € E(F).

If box; 1 € E(F), then we obtain a C,, in F' with edge set

E(Cnfl) \ {:I:j,lxj, Tjj41, Q:iflxi} U {.ﬁl]iflbg, bgbl, blxi, xjfleJrl}.

Hence bQIi_l g E(F) Slmllarly, b2$i+1,b3$i_1,b3l’i+1 g E(F) If TjTi-1 € E(F), we
obtain a C,, with edge set

E(Cpo1) \ {zjzj, xj_1xj, xi12} U{x;b1, by, xj,lzjﬂ}.

Hence, by symmetry, z;z;_1,z;z,41 ¢ E(F). Since F' contains no W, (with hub z; and
rim {41, b, 7;_1,b3}), x; is adjacent to a vertex in {be,b3}. Without loss of generality,
let z;b5 € E(F). Since 6(F) > n — 2 by Lemma 3, z;,1 must be adjacent to two vertices
in B\ {b1,b2,b3}. Let x;11by, ;115 € E(F) for by, bs € B. By similar arguments as
before, C,, € F implies bib, bob ¢ E(F) for each b € {by,bs}. Suppose byz; 1 & E(F).

Then we have a W, in F with hub z;_; and rim {b4, b1, x;_1,b2}. Similar case analyses
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show that byx,bsx € E(F) for each x € {z;_1,2;_1}. Since F contains no C,,, we clearly
have bybs ¢ E(F'), and also z;x; ¢ E(F) (otherwise consider E(C,—1) \{z;-12;, x;—12; } U
{z;xj, x;1bs,byx;_1}). Since 6(F) > n — 2 by Lemma 3, there exists a vertex bg €
B\ {b1,...,bs} such that bybg € E(F'). This clearly implies bgx;, b, bsbs & E(F'). See
Figure 2.
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Figure 2: The proof of Lemma 4 for Case 2.

Thus, F contains a Wy with hub bs and rim {x;, bg, xj, by}, a contradiction. This completes
the proof. O

Theorem 5 R(C,,W,)=2n—1 forn >5.

Proof. We use induction on n > 5. We already know that R(C,,, W) > 2n — 1 for n > 5.
For n = 5, 6, and 7, we respectively know from [5], Theorem 3, and Theorem 4 that
R(C,,W,) = 2n — 1. Now assume that R(C,,,W,) = 2n — 1 for n < k with k£ > 8 and
let F' be a graph on 2k — 1 vertices containing no Cj. We shall show that I contains
W,. To the contrary, assume F contains no W,. By the induction hypothesis, we have
F D Cyq. Let A = V(Cy1), B = V(F)\V(Cy-1) and so |B] = k. By Lemma 4,
we have |Na(x)|] < 2 for each x € B. Since by Lemma 3, §(F) > k — 2, we obtain
INg(z)| > k—2—-2=k—4> 1k = |B| for all z € B. Now F[B] and hence F contains
a Cj by Theorem 1, a contradiction. This completes the proof. O
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Theorem 6 R(C,,W5) =3n—2 forn >5.

Proof. We use induction on n. We already know that R(C,,, Ws) > 3n—2 for n > 5. For
n =5, we know from [6] that R(C5, W5) = 3.5 — 2. Assume the theorem holds for n < k
with £ > 6 and let F' be a graph on 3k — 2 vertices containing no C}. We shall show that
F contains W5. To the contrary, assume that F' contains no Ws. Consequently, F' must
contain a Cy_1, and we let A = {aq, aa, ..., ax_1} denote the set of vertices of a cycle Cy_1
in F, in a cyclic ordering. Let B = V(F)\A, so |B| = 2k — 1. Then, by Theorem 5, the
complement of the subgraph F[B] of F' induced by B must contain a Wj. Let x¢ be the
hub and X = {z, 2, 73,74} be the rim of a W, in F[B]. We distinguish the following

cases.

Case 1: k is even.

Since F contains no Cy, within F: [Na(z)| < |52] for each z € B. This implies that
there exist vertices a;,a;41 € A for some j € {1,2,...,k — 1} such that a;zo, a;1120 &
E(F). No Cj in F also implies Nx(a;) N Nx(a;j11) = 0. No Ws in F implies in
F: |Nx(a;)] > 2 and |Nx(aj4+1)| > 2, and without loss of generality we may as-
sume a; is adjacent to x; and x3, and a;y; is adjacent to z, and x4. This implies
T1T3, ToTy, ToGjia, Toaj_1 € E(F) since otherwise ' D Wy (Note that I 2 Cj, implies
neither of a;_; and a;;- is adjacent to a vertex in X). Since F' contains no Cy, it is not
difficult to check xoa;_2, aj_ox1, aj110;—2 ¢ E(F). This implies F D Ws with hub z, and
rim {x3,a;41,a;_2, 21,22}, a contradiction.

Case 2: k is odd.

We may assume a;z9 € E(F') for each odd i € {1,2, ...,k — 1}, since otherwise we can use
the same arguments as in the first case. Since F' contains no Cy, a;ja;, ¢ E(F) for all even
j,h€{1,2,...k—1}. If k > 11, we have Kg in F which implies F' O Wi, a contradiction.
Now assume 7 < k < 11. In F we have |[Nx(a;)| > 2 for all even j € {1,2,....,k — 1},
since otherwise F' O Ws. By the same token, we may assume without loss of generality
that a; is adjacent to x; and z3 for some even j € {1,2,...,k — 1}. We distinguish two
subcases.

Subcase 2.1: z; is adjacent to x3.

Then x; and z3 are not adjacent to any vertex in {a;_1,a;_2,a;41,aj42}, since otherwise
F clearly contains a C. Thus, we get F O Wj with hub x and rim {3, Qjto,@j—2,T1, T},
a contradiction.

Subcase 2.2: x; is not adjacent to xs.

This implies x5 and x4 are adjacent to all vertices in {a;_1, a1}, since otherwise F 2 Ws.
Suppose, e.g., zoa;_1 € E(F). Then F O W5 with hub z; and rim {a;_1, ¥2, %o, ¥3, aj41};
the other cases are similar. Thus, we get x2a;, x4aj10 ¢ E(F); otherwise a Cj, in F' is
immediate. Thus, we get F O W; with hub z, and rim {24, aj12,a;, 2,23}, our final
contradiction.

This completes the proof. O
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3. Problem

We conclude the paper with the following open problem:

Find the Ramsey number R(C,,, W,,) for n > m > 6.
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