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SETS OF LENGTHS DO NOT CHARACTERIZE NUMERICAL MONOIDS
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Abstract

We study the sets of lengths and unions of sets of lengths of numerical monoids. Our paper
focuses on a numerical monoid S generated by an arithmetic progression of positive integers.
First, we determine exact solutions for the length sets of S and then use these formulas to
enumerate the Vn(S) sets. Next, we determine necessary and sufficient conditions for two
such numerical monoids to have identical sequences of Vn(S) sets. Finally, we determine
necessary and sufficient conditions for two such numerical monoids to have equal length sets.

1. Introduction

Let M be a commutative cancellative monoid with set A(M) of irreducible elements and
M∗ of nonunits. We call M atomic if each element of M∗ has a factorization into elements
from A(M). The behavior of such irreducible factorizations has earned much attention in
the recent mathematical literature (see the monograph [11] and the references therein). The
set of lengths of x ∈ M∗ is defined as

L(x) = {n | x = x1 · · ·xn with each xi ∈ A(M)}
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and the set of lengths of M as

L(M) = {L(x) | x ∈ M∗}.

The study of the sets L(x) and L(M) is a fundamental topic in the theory of non-unique
factorizations. An indepth study of these sets when M = B(G) is a block monoid can
be found in [11, Section 7.3]. Let G be an abelian group and F(G) be the free abelian

monoid on G. The block monoid B(G) consists of all
∏

gi∈G

gni
i ∈ F(G) with the property that

∑

gi∈G

nigi = 0. If G1 and G2 are finite abelian groups, then L(B(G1)) = L(B(G2)) does not

imply that G1
∼= G2, but only two counterexamples are known (L(B({0})) = L(B(Z2)) [11,

Theorem 3.4.11.5], and L(B(Z3)) = L(B(Z2⊕Z2)) [11, Theorem 7.3.2]). In fact, L(B(G1)) =
L(B(G2)) implies G1

∼= G2, provided that | G1 |≥ 4 and G1 is either cyclic or an elementary
2-group. The same is true if G1

∼= Z2 ⊕ Zn with n ≥ 3 [10].

The notion of a set of lengths was generalized in [6] as follows. With M as above, for
each n ∈ N set

Wn(M) = {m ∈ M | n ∈ L(m)}
and

Vn(M) =
⋃

m∈Wn(M)

L(m).

We refer to the set Vn(M) as a union of sets of lengths. In [6], the basic properties of
these sets are determined. Since, for atomic monoids M1 and M2, L(M1) = L(M2) implies
Vn(M1) = Vn(M2) for all n [6, Proposition 1.1], we cannot conclude that Vn(B(G1)) =
Vn(B(G2)) for each n implies G1

∼= G2. Moreover, the results of [6] indicate that the
converse of the former statement is not true. For instance, [6, Example 2.7] shows that
Vn(B(Z3 ⊕ Z3)) = Vn(B(Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2)) for all n.

In this paper, we will explore questions related to those above for numerical monoids. A
numerical monoid S is an additive submonoid of N ∪ {0}. The elements of S are positive
integers x such that

x = x1a1 + · · ·+ xtat =
t∑

i=1

xiai

for some xi ∈ N ∪ {0}. The set {a1, . . . , at} is the generating set of S, often denoted as
S = 〈a1, . . . , at〉. Every numerical monoid S has a unique minimal set of generators. The
monoid S is primitive if gcd{s | s ∈ S} = 1. Every numerical monoid S is isomorphic to a
unique primitive numerical monoid, so we always assume that S is primitive. A good general
survey on numerical monoids and numerical semigroups can be found in [9, Chapter 10].

Our focus in this paper are numerical monoids whose minimal generating sets form arith-
metic progressions. Hence we consider such monoids where

S = 〈a, a + k, . . . , a + wk〉, (1)
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with 0 ≤ w < a and gcd(a, k) = 1. In Section 2, we find in Theorem 2.2 a formula for the
length set of any element in S. In Theorem 2.7 we find a corresponding formula for the sets
Vn(S). Suppose that S1 and S2 are numerical monoids of the form (1). In Section 3, we use
the results of Section 2 to determine necessary and sufficient conditions such that

1. Vn(S1) = Vn(S2) for all n (Theorem 3.1) and

2. L(S1) = L(S2) (Theorem 3.2).

Hence, unlike the situation with block monoids, we are able to build a large class of distinct
numerical monoids which have equal length sets and and an even larger class with equal
sequences of Vn(S) sets.

Before proceeding, we will require some further notation. If M is as above and x ∈ M∗,
then set L(x) = maxL(x) and l(x) = minL(x). The quotient L(x)

l(x) is called the elasticity of
x and the constant

ρ(M) = sup

{
L(x)

l(x)
| x ∈ M∗

}

is known as the elasticity of M . If S is a numerical monoid of form (1) above, then ρ(S) =
a+wk

a by [5, Theorem 2.1]. If
L(x) = {n1, . . . , nt} (2)

with the ni’s listed in increasing order, then the delta set of x is

∆(x) = {ni − ni−1 | 2 ≤ i ≤ t}.

The delta set of M is then defined as

∆(M) =
⋃

x∈M∗

∆(x).

By [2, Theorem 3.9], ∆(〈a, a + k, . . . , a + wk〉) = {k}. Notice that Theorem 2.2 along with
Corollary 2.3 provide a considerably shorter alternate proof of this fact.

We will also require the following generalization of ∆(M). For a fixed monoid M , suppose
for each n ∈ N that Vn(M) = {v1,n, . . . , vt,n} where vi,n < vi+1,n for 1 ≤ i < t. Define the
Vn-Delta set of M to be

∆(Vn) = {vi,n − vi−1,n | 2 ≤ i ≤ t}

and the V-Delta set of M to be

∆V(M) =
⋃

n∈N

∆(Vn).

Some preliminary results concerning these sets can be found in [1].
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2. Numerical Monoids Generated by an Interval

Let S = 〈a, a + k, . . . , a + wk〉, with 0 ≤ w < a and gcd(a, k) = 1, as well as S′ =
〈c, c + t, . . . , c + vt〉, where v < c, gcd(c, t) = 1 and S *= S′. Our results in Lemma 2.1 and
Theorem 2.2 take advantage of the membership criteria for a numerical monoid of the form
S found in [3, Lemma 7].

Lemma 2.1. If n ∈ S, then n = c1a + c2k with c1, c2 ∈ N0 and 0 ≤ c2 < a.

Proof. Any n ∈ S can be written d1a+d2k, with d1, d2 ∈ N. Let d2 = pa+ q with 0 ≤ q < a.
Now n = d1a + d2k = a(d1 + pk) + qk.

Theorem 2.2. Suppose n = c1a + c2k ∈ S with 0 ≤ c2 < a. Then

L(n) =

{
c1 + kd

∣∣∣
⌈

c2 − c1w

a + wk

⌉
≤ d ≤ 0

}
.

Proof. Suppose l ∈ L(n). Now la ≡ n ≡ c1a mod k, and thus L(n) ⊂ c1 + kZ.

We can now let l = c1 + kd. We know that

a(c1 + kd) ≤ n ≤ (a + wk)(c1 + kd) =⇒
⌈ n

a+wk − c1

k

⌉
≤ d ≤

⌊ n
a − c1

k

⌋

=⇒ minL(n) ≥ c1 + k

⌈ n
a+wk − c1

k

⌉
= c1 + k

⌈
c2 − c1w

a + wk

⌉
,

and

maxL(n) ≤ c1 + k

⌊ n
a − c1

k

⌋
= c1.

Thus, L(n) ⊂
{
c1 + kd

∣∣∣
⌈

c2−c1w
a+wk

⌉
≤ d ≤ 0

}
.

Let d ∈ Z such that
⌈

c2−c1w
a+wk

⌉
≤ d ≤ 0. Let p = n−a(c1+dk)

k , which is ∈ Z. If q is the
remainder upon division of p by w, then we have,

n = a(c1 + dk) + kp =

= a
(⌊ p

w

⌋
+ 1 + c1 + dk − 1−

⌊ p

w

⌋)
+ k

(
w

⌊ p

w

⌋
+ q

)
=

⌊ p

w

⌋
(a + wk) +

(
a +

(
p− w

⌊ p

w

⌋)
k
)

+
(
c1 + dk − 1−

⌊ p

w

⌋)
a,

which is a factorization of n of length c1 + dk. Thus c1 + dk ∈ L(n), as desired.

An obvious corollary to this theorem follows.

Corollary 2.3. ∆(S) = {k} and hence ∆V(S) = {k}.
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Proof. The first assertion follows directly from the characterization of length sets in Theorem
2.2. The second assertion follows from [1, Corollary 4].

Lemma 2.4. Wn(S) = {an, an + k, . . . , an + nwk}.

Proof. Let r ∈Wn(S). Then,

r = α0 · a + · · ·+ αw · (a + wk),

so r = an + ck with 0 ≤ c ≤ nw. Also, for any such c,

an + ck = (a +
⌊ c

n

⌋
· k) · (1− { c

n
})n + (a +

⌈ c

n

⌉
· k) · ({ c

n
})n.

Lemma 2.5. Given n, n + k ∈ S, l(n + k) = l(n) or l(n) + k and L(n + k) = L(n) or
L(n) + k.

Proof. Let n = c1a + c2k, and n + k = c′1a + c′2k with c1, c2, c′1, c
′
2 ∈ N0 and c2, c′2 < a.

Case 1: c2 < a − 1. Now c′2 = c2 + 1 and c′1 = c1. From Theorem 2.2, we have
L(n + k) = c1 = L(n) and

l(n + k)− l(n) = k

(⌈
1 + c2 − c1w

a + wk

⌉
−

⌈
c2 − c1w

a + wk

⌉)
,

which is 0 or k.

Case 2: c2 = a − 1. Now c′2 = 0 and c′1 = c1 + k. From Theorem 2.2, we have
L(n + k) = c′1 = L(n) + k and

l(n + k)− l(n) = k + k

(⌈
−(c1 + k)w

a + wk

⌉
−

⌈
a− 1− c1w

a + wk

⌉)
.

The numerator in the second ceiling function is a + wk − 1, greater than the first, thus
l(n + k)− l(n) = 0 or k.

We say that L(S) has a jump at n if n, n + k ∈ S, l(n) + k = l(n + k), and L(n) + k =
L(n + k).

Lemma 2.6. L(S) has a jump if and only if gcd(a,w) = 1.

Proof. Suppose L(S) has a jump at n. Let n = c1a + c2k, and n + k = c′1a + c′2k with
c1, c2, c′1, c

′
2 ∈ N0 and c2, c′2 < a. c1 + k = L(n) + k = L(n + k) = c′1. Thus c2 = a − 1 and

c′2 = 0. By Theorem 2.2,

0 = l(n + k)− l(n)− k = c1 + k + k

⌈
−(c1 + k)w

a + wk

⌉
−

(
c1 + k

⌈
a− 1− c1w

a + wk

⌉)
− k.
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The two ceiling functions are equal, although the second numerator is a + wk − 1 greater
than the first. Thus, the second fraction is an integer so a + wk divides a − 1 − c1w. Any
factor dividing a and w also divides a + wk but not a− 1− c1w, thus gcd(a,w) = 1.

Now suppose gcd(a,w) = 1. We also have gcd(a + wk,w) = 1, so choose positive c1 such
that a + wk divides a − 1 − c1w. Let n = c1a + (a − 1)k. The same calculation as above
shows that L(S) has a jump at n.

Theorem 2.7. For n ∈ N,

Vn(S) =

{
n + kd | −

⌊
nw

a + wk

⌋
≤ d ≤

⌊nw

a

⌋}
.

Proof. From Corollary 2.3, Vn(S) is a sequence where all pairs of consecutive terms have a
difference of k. For all m ∈ Wn(S) we have an ≤ m ≤ (a + wk)n. In addition, we have
an, (a + wk)n ∈ Wn(S). From Lemma 2.5, both l(x) and L(x) are increasing when x is
incremented by k, so by Theorem 2.2,

minVn(S) = l (minWn(S)) = l(an) = n + k

⌈
−nw

a + wk

⌉
,

and
maxVn(S) = L (maxWn(S)) = L((a + wk)n) = n + k

⌈nw

a

⌉
.

Therefore,

Vn(S) =

{
n− k

⌊
nw

a + wk

⌋
, n− k

⌊
nw

a + wk

⌋
+ k, . . . , n + k

⌊nw

a

⌋}

and the result clearly follows.

3. Equality of Vn-Sets and Length Sets

In this section, we again let S = 〈a, a + k, . . . , a + wk〉, with 0 ≤ w < a and gcd(a, k) = 1,
as well as S′ = 〈c, c + t, . . . , c + vt〉, where v < c, gcd(c, t) = 1 and S *= S′

Theorem 3.1. Let S and S′ be as above. Then Vn(S) = Vn(S′) for every n ∈ N if and only
if k = t and c

a = v
w .

Proof. Suppose for every n ∈ N that Vn(S) = Vn(S′). Now minVn(S) = minVn(S′) implies
that

n− k

⌊
nw

a + wk

⌋
= n− t

⌊
nv

c + vt

⌋
.
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Let n = (a + wk)(c + vt). So, kw(c + vt) = tv(a + wk) and thus avt = cwk. However,
∆(S) = {k} and ∆(S′) = {t}, so from Corollary 2.3, ∆V(S) = {k} and ∆V(S′) = {t}. Thus
k = t and therefore c

a = v
w .

Now suppose k = t and c
a = v

w . Since k = t, ∆V(S) = ∆V(S′). By Theorem 2.2,

minVn(S′) = n− t

⌊
nv

c + vt

⌋
= n− k

⌊
nw

a + wk

⌋
= minVn(S),

and
maxVn(S′) = n + t

⌊nv

c

⌋
= n + k

⌊nw

a

⌋
= maxVn(S).

Therefore, Vn(S) = Vn(S′) ∀ n ∈ N.

Theorem 3.2. If S *= S′, then L(S) = L(S′) if and only if k = t, c
a = v

w , gcd(a,w) ≥ 2,
and gcd(c, v) ≥ 2.

Proof. Suppose L(S) = L(S′). By Corollary 2.3, k = ∆(S) = ∆(S′) = t. Also, by [5,
Theorem 2.1] a+wk

a = ρ(S) = ρ(S′) = c+vt
c , so w

a = v
c . If gcd(w, a) = gcd(v, c) = 1, then

w = v, a = c, and S = S′. If only one pair is relatively prime, then by Lemma 2.6, exactly
one of L(S),L(S′) has a jump, so they are not congruent. Therefore, gcd(a,w), gcd(c, v) ≥ 2.

Now suppose k = t, c
a = v

w , gcd(a,w), gcd(c, v) ≥ 2. Let c1 ∈ N. Let H = {J ∈
L(S)|maxJ = c1} and H ′ = {J ∈ L(S′)|maxJ = c1}. From Theorem 2.2, the minimal val-

ues of the elements of H and H ′ are
{
c1 +

⌈
c2−c1w
a+wk

⌉ ∣∣∣0 ≤ c2 < a
}

and
{
c1 +

⌈
c′2−c1v
c+vk

⌉ ∣∣∣0 ≤ c′2 < c
}

.

The elements corresponding to c2 = c′2 = 0 are clearly equal. Also, because gcd(a,w),
gcd(c, v) ≥ 2,

⌈
a− 1− c1w

a + wk

⌉
=

⌈
a− c1w

a + wk

⌉
=

⌈
c− c1v

c + vk

⌉
=

⌈
c− 1− c1v

c + vk

⌉
.

Thus, the elements corresponding to c2 = a− 1 and c′2 = c− 1 are equal. Because the delta
sets are singletons and equal, we have H = H ′ and L(S) = L(S′).

We close with this immediate corollary.

Corollary 3.3. If Vn(S) = Vn(S′) for every n ∈ N, then L(S) = L(S′) if and only if
gcd(a,w) ≥ 2 and gcd(c, v) ≥ 2.
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