ON VANISHING SUMS OF DISTINCT ROOTS OF UNITY

Gary Sivek
Department of Mathematics, University of California, Berkeley, CA, 94720
gsivek@math.berkeley.edu

Received: 1/25/10, Accepted: 3/24/10, Published: 7/9/10

Abstract

We show that for any integers $n \geq 2$ and $0 \leq k \leq n$, one may find k distinct nth roots of unity whose sum is 0 if and only if both k and $n-k$ are expressible as linear combinations of prime factors of n with nonnegative coefficients.

1. The Main Result

The inspiration for this problem is the following question: given a centrifuge with n buckets, for which k can we fill k of the buckets such that the centrifuge is balanced? An equivalent formulation asks for which k may we pick k distinct nth roots of unity whose sum is 0 ; we will say that n is k-balancing when this is possible.
T. Y. Lam and K. H. Leung proved in [2] that, if we allow repetition of roots (which we will not), then n is k-balancing if and only if k is expressible as a sum of the prime factors of n. Since we restrict to a subset of these cases, this is again a necessary condition. Additionally, since the sum of all nth roots vanishes, if a subset of nth roots has vanishing sum, so does its complement. Using the notation of Lam and Leung, and adopting their convention that $0 \in \mathbb{N}$, the complement condition implies the following:

Proposition 1 Write $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, with each p_{i} prime and each e_{i} positive. Then n is k-balancing only if both k and $n-k$ are in $\mathbb{N} p_{1}+\ldots+\mathbb{N} p_{r}$.

Our goal is to show that this condition is also sufficient; i.e.,
Theorem 2 (Main Theorem) Write $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ as above. Then n is k-balancing if and only if both k and $n-k$ are in $\mathbb{N} p_{1}+\ldots+\mathbb{N} p_{r}$.

This will be proven in several stages, depending on the prime factorization of n. This first lemma will be useful in all cases:

Lemma 3 If $\operatorname{gcd}(n, k)>1$, then n is k-balancing.

Proof. For convenience here and for the rest of this paper, let $\zeta_{n}:=\exp \frac{2 \pi i}{n}$. The cases $k=0$ and $k=n$ are trivial, so assume $1 \leq k \leq n-1$, and take any prime p dividing both n and k. The p th roots of unity are also nth roots of unity and have sum 0 , and multiplying them all by some other root of unity preserves the sum while effectively rotating the roots. Since $k<n$, we have $k / p<n / p$, so we may rotate the p th roots of unity by $\zeta_{n} k / p$ times without seeing any one root twice. Thus the set $\left\{\zeta_{p}^{a} \cdot \zeta_{n}^{b} \mid 0 \leq a<p, 0 \leq b<k / p\right\}$ has k distinct elements with sum 0 .

This, combined with Proposition 1, proves the main theorem for all prime powers. Next, we look at products of two primes.

Proposition 4 The main theorem holds for any product $n=p q$ of two distinct primes.

Proof. Fix $k \leq n$ and suppose we may write $k=a p+b q$ and $n-k=c p+d q$ for some $a, b, c, d \in \mathbb{N}$. Then $n=(a+c) p+(b+d) q=p q$, so p divides $b+d$ and q divides $a+c$. If both coefficient sums are positive, then we must have $n=(a+c) p+(b+d) q \geq p q+p q=2 n$, a contradiction, so either $a+c=0$ or $b+d=0$, hence either $a=c=0$ or $b=d=0$. Thus k is either a multiple of p or a multiple of q, and n is k-balancing by Lemma 3 .

To complete the proof of the main theorem, we introduce two more lemmas that will aid in the construction of vanishing sums.

Lemma 5 If $\operatorname{gcd}(p, q)=1$ and $k \geq(p-1)(q-1)$, then $k \in \mathbb{N} p+\mathbb{N} q$.

Proof. This is a classical result, dating back to [4].

Lemma 6 Suppose two concentric disks are each divided into n equal wedges. If a wedges are colored in the first disk and b in the second, and $a b<n$, then the disks may be rotated such that no two colored wedges overlap.

Proof. Fix one of the b wedges on the second disk. In the course of the n rotated positions, it overlaps a colored wedge from the first disk a different times. Considering each wedge and each rotation, we see a total of $a b$ overlaps. Since $a b<n$, there must be some rotation which has no overlaps.

The application of this lemma will be to vanishing sets of roots of size a and b, since with $a b<n$ we can rotate the second set so that the rotated set does not intersect the first set, and then the union gives a set of $a+b$ roots whose sum vanishes. In practice, we may restrict to the case where b is a prime dividing n and the roots correspond to a rotation of the b th roots of unity, in which case the exponents of ζ_{n} in the set of a roots cannot cover all possible residues modulo n / b and we may use the b roots in the remaining residue class.

Proof of the Main Theorem. The cases where n is a prime power or a product of two distinct primes have already been proven, so assume we are in neither case. Let $p<q$ be the two smallest distinct primes dividing n, and write $n=p q m$, where $m \geq p \geq 2$. If n is even, then the case $k=n / 2$ follows from Lemma 3. If n is arbitrary and $k>n / 2$, then $(p-1)(q-1)<n / m \leq n / 2<k$, so $k \in \mathbb{N} p+\mathbb{N} q$ by Lemma 5. Thus we may reduce the problem to showing that n is k-balancing if k is a sum of prime factors of n and $k<n / 2$.

First, suppose $k<(p-1)(q-1)$. Writing the prime factorization as $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with $p_{1}<p_{2}<\cdots<p_{r}$, so that $p_{1}=p$ and $p_{2}=q$, and writing $k=a_{1} p_{1}+\ldots+a_{r} p_{r}$ with each $a_{i} \in \mathbb{N}$, we can show by induction on $\sum a_{i}$ that n is k-balancing. The base case corresponds to a single prime factor of n and follows from Lemma 3. Assume that n is k-balancing whenever $\sum a_{i}=s$, and now consider $k<(p-1)(q-1)$ with $\sum a_{i}=s+1$. Choose the least i such that a_{i} is positive, and by hypothesis n is $\left(k-p_{i}\right)$-balancing. Pick distinct roots $\left\{\zeta_{n}^{b_{1}}, \ldots, \zeta_{n}^{b_{k-p_{i}}}\right\}$ whose sum vanishes, and take separately the balanced set $\left\{1, \zeta_{p_{i}}, \ldots, \zeta_{p_{i}}^{p_{i}-1}\right\}$. The first set has cardinality less than $(p-1)(q-1)$, and the second set has cardinality p_{i}, so if $(p-1)(q-1) p_{i}<n$ then by Lemma 6 we are done. Observe that p_{i} must divide at least one of p, q, and m. If $p_{i}=p$ or $p_{i} \mid m$ then $p_{i} \leq m$, so $(p-1)(q-1) p_{i}<p q m=n$. If $p_{i}=q$ then either $q \leq m$ and we proceed as before, or $m<q$, in which case m is a power of p. Then $n=p^{e_{1}} q\left(e_{1}>1\right)$, and we may write $k=a p+b q$; by minimality of i we have $a=0$, and n is k-balancing by Lemma 3, completing the induction.

Next, suppose $(p-1)(q-1) \leq k<n / 2$. By Lemma 5 we may write $k=a p+b q$ with $a, b \in \mathbb{N}$; this will simplify the construction of a balanced set of k roots of unity. If $b \geq p$ we may also write $k=(a+q) p+(b-p) q$ and repeat; it then suffices to assume $0 \leq b<p$. Take the set of $p q$ th roots of unity, and from those select b rotations of the q th roots; call their union S. Now there are at most q rotations of the p th roots of unity among the nth roots which intersect S, leaving at least $n / p-q=q m-q$ disjoint collections of p balanced roots which do not intersect S. Then we can add these sets one at a time to find a balanced set of as many as $b q+p(q m-q)=b q+n-p q$ roots. Since $m \geq 2, n-p q \geq n / 2$, so $b q+p(q m-q) \geq n / 2>k$ and we can balance k roots by including fewer sets of p, and the theorem follows.

References

[1] Conway, J. H. and Jones, A. J., Trigonometric Diophantine equations (On vanishing sums of roots of unity), Acta Arith. 30 (1976), 229-240.
[2] Lam, T. Y. and Leung, K. H., On vanishing sums of roots of unity, J. Algebra 224 (2000), 91-109.
[3] Mann, Henry B., On linear relations between roots of unity, Mathematika 12 (1965), 107-117.
[4] Sylvester, J. J., Question 7382, Mathematical Questions from the Educational Times 41 (1884).

