# ON RELATIVELY PRIME SUBSETS AND SUPERSETS 

Mohamed El Bachraoui ${ }^{1}$<br>Dept. Math. Sci., United Arab Emirates University, P.O.Box 17551, Al-Ain, UAE<br>melbachraoui@uaeu.ac.ae

Received: 10/9/09, Accepted: 5/17/10, Published: 11/5/10


#### Abstract

A nonempty finite set of positive integers $A$ is relatively prime if $\operatorname{gcd}(A)=1$ and it is relatively prime to $n$ if $\operatorname{gcd}(A \cup\{n\})=1$. The number of nonempty subsets of $A$ which are relatively prime to $n$ is $\Phi(A, n)$ and the number of such subsets of cardinality $k$ is $\Phi_{k}(A, n)$. Given positive integers $l_{1}, l_{2}, m_{2}$, and $n$ such that $l_{1} \leq l_{2} \leq m_{2}$ we give $\Phi\left(\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right], n\right)$ along with $\Phi_{k}\left(\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right], n\right)$. Given positive integers $l, m$, and $n$ such that $l \leq m$ we count for any subset $A$ of $\{l, l+1, \ldots, m\}$ the number of its supersets in $[l, m]$ which are relatively prime and we count the number of such supersets which are relatively prime to $n$. Formulas are also obtained for corresponding supersets having fixed cardinalities. Intermediate consequences include a formula for the number of relatively prime sets with a nonempty intersection with some fixed set of positive integers.


## 1. Introduction

Throughout let $k, l, m, n$ be positive integers such that $l \leq m$, let $[l, m]=\{l, l+$ $1, \ldots, m\}$, let $\mu$ be the Möbius function, and let $\lfloor x\rfloor$ be the floor of $x$. If $A$ is a set of integers and $d \neq 0$, then $\frac{A}{d}=\{a / d: a \in A\}$. A nonempty set of positive integers $A$ is called relatively prime if $\operatorname{gcd}(A)=1$ and it is called relatively prime to $n$ if $\operatorname{gcd}(A \cup\{n\})=\operatorname{gcd}(A, n)=1$. Unless otherwise specified $A$ and $B$ will denote nonempty sets of positive integers. We will need the following basic identity on binomial coefficients stating that for nonnegative integers $L \leq M \leq N$

$$
\begin{equation*}
\sum_{j=M}^{N}\binom{j}{L}=\binom{N+1}{L+1}-\binom{M}{L+1} \tag{1}
\end{equation*}
$$

[^0]Definition 1. Let

$$
\begin{aligned}
\Phi(A, n) & =\#\{X \subseteq A: X \neq \emptyset \text { and } \operatorname{gcd}(X, n)=1\} \\
\Phi_{k}(A, n) & =\#\{X \subseteq A: \# X=k \text { and } \operatorname{gcd}(X, n)=1\} \\
f(A) & =\#\{X \subseteq A: X \neq \emptyset \text { and } \operatorname{gcd}(X)=1\} \\
f_{k}(A) & =\#\{X \subseteq A: \# X=k \text { and } \operatorname{gcd}(X)=1\}
\end{aligned}
$$

Nathanson in [5] introduced $f(n), f_{k}(n), \Phi(n)$, and $\Phi_{k}(n)$ (in our terminology $f([1, n]), f_{k}([1, n]), \Phi([1, n], n)$, and $\Phi_{k}([1, n], n)$ respectively) and gave their formulas along with asymptotic estimates. Formulas for $f([m, n]), f_{k}([m, n]), \Phi([m, n], n)$, and $\Phi_{k}([m, n], n)$ are found in $[3,6]$ and formulas for $\Phi([1, m], n)$ and $\Phi_{k}([1, m], n)$ for $m \leq n$ are obtained in [4]. Recently Ayad and Kihel in [2] considered phi functions for sets which are in arithmetic progression and obtained the following more general formulas for $\Phi([l, m], n)$ and $\Phi_{k}([l, m], n)$.

Theorem 2. We have
(a) $\Phi([l, m], n)=\sum_{d \mid n} \mu(d) 2^{\lfloor m / d\rfloor-\lfloor(l-1) / d\rfloor}$,
(b) $\quad \Phi_{k}([l, m], n)=\sum_{d \mid n} \mu(d)\binom{\lfloor m / d\rfloor-\lfloor(l-1) / d\rfloor}{ k}$.

## 2. Relatively Prime Subsets for $\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right]$

If $\left[1, m_{1}\right] \cap\left[l_{2}, m_{2}\right] \neq \emptyset$, then phi functions for $\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right]=\left[1, m_{2}\right]$ are obtained by Theorem 2. So we may assume that $1 \leq m_{1}<l_{2} \leq m_{2}$.
Lemma 3. Let

$$
\Psi\left(m_{1}, l_{2}, m_{2}, n\right)=\#\left\{X \subseteq\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right]: l_{2} \in X \text { and } \operatorname{gcd}(X, n)=1\right\}
$$

and
$\Psi_{k}\left(m_{1}, l_{2}, m_{2}, n\right)=\#\left\{X \subseteq\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right]: l_{2} \in X,|X|=k\right.$, and $\left.\operatorname{gcd}(X, n)=1\right\}$.
Then
(a) $\Psi\left(m_{1}, l_{2}, m_{2}, n\right)=\sum_{d \mid\left(l_{2}, n\right)} \mu(d) 2^{\left\lfloor m_{1} / d\right\rfloor+\left\lfloor m_{2} / d\right\rfloor-l_{2} / d}$,
(b) $\quad \Psi_{k}\left(m_{1}, l_{2}, m_{2}, n\right)=\sum_{d \mid\left(l_{2}, n\right)} \mu(d)\binom{\left\lfloor m_{1} / d\right\rfloor+\left\lfloor m_{2} / d\right\rfloor-l_{2} / d}{k-1}$.

Proof. (a) Assume first that $m_{2} \leq n$. Let $\mathcal{P}\left(m_{1}, l_{2}, m_{2}\right)$ denote the set of subsets of $\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right]$ containing $l_{2}$ and let $\mathcal{P}\left(m_{1}, l_{2}, m_{2}, d\right)$ be the set of subsets $X$ of $\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right]$ such that $l_{2} \in X$ and $\operatorname{gcd}(X, n)=d$. It is clear that the set $\mathcal{P}\left(m_{1}, l_{2}, m_{2}\right)$ of cardinality $2^{m_{1}+m_{2}-l_{2}}$ can be partitioned using the equivalence relation of having the same gcd (dividing $l_{2}$ and $n$ ). Moreover, the mapping $A \mapsto \frac{1}{d} X$ is a one-to-one correspondence between $\mathcal{P}\left(m_{1}, l_{2}, m_{2}, d\right)$ and the set of subsets $Y$ of $\left[1,\left\lfloor m_{1} / d\right\rfloor\right] \cup\left[l_{2} / d,\left\lfloor m_{2} / d\right\rfloor\right]$ such that $l_{2} / d \in Y$ and $\operatorname{gcd}(Y, n / d)=1$. Then

$$
\# \mathcal{P}\left(m_{1}, l_{2}, m_{2}, d\right)=\Psi\left(\left\lfloor m_{1} / d\right\rfloor, l_{2} / d,\left\lfloor m_{2} / d\right\rfloor, n / d\right)
$$

Thus,

$$
2^{m_{1}+m_{2}-l_{2}}=\sum_{d \mid\left(l_{2}, n\right)} \# \mathcal{P}\left(m_{1}, l_{2}, m_{2}, d\right)=\sum_{d \mid\left(l_{2}, n\right)} \Psi\left(\left\lfloor m_{1} / d\right\rfloor, l_{2} / d,\left\lfloor m_{2} / d\right\rfloor, n / d\right)
$$

which by the Möbius inversion formula extended to multivariable functions [3, Theorem 2] is equivalent to

$$
\Psi\left(m_{1}, l_{2}, m_{2}, n\right)=\sum_{d \mid\left(l_{2}, n\right)} \mu(d) 2^{\left\lfloor m_{1} / d\right\rfloor+\left\lfloor m_{2} / d\right\rfloor-l_{2} / d}
$$

Assume now that $m_{2}>n$ and let $a$ be a positive integer such that $m_{2} \leq n^{a}$. As $\operatorname{gcd}(X, n)=1$ if and only if $\operatorname{gcd}\left(X, n^{a}\right)=1$ and $\mu(d)=0$ whenever $d$ has a nontrivial square factor, we have

$$
\begin{aligned}
\Psi\left(m_{1}, l_{2}, m_{2}, n\right) & =\Psi\left(m_{1}, l_{2}, m_{2}, n^{a}\right) \\
& =\sum_{d \mid\left(l_{2}, n^{a}\right)} \mu(d) 2^{\left\lfloor m_{1} / d\right\rfloor+\left\lfloor m_{2} / d\right\rfloor-l_{2} / d} \\
& =\sum_{d \mid\left(l_{2}, n\right)} \mu(d) 2^{\left\lfloor m_{1} / d\right\rfloor+\left\lfloor m_{2} / d\right\rfloor-l_{2} / d} .
\end{aligned}
$$

(b) For the same reason as before, we may assume that $m_{2} \leq n$. Noting that the correspondence $X \mapsto \frac{1}{d} X$ defined above preserves the cardinality and using an argument similar to the one in part (a), we obtain the following identity

$$
\binom{m_{1}+m_{2}-l_{2}}{k-1}=\sum_{d \mid\left(l_{2}, n\right)} \Psi_{k}\left(\left\lfloor m_{1} / d\right\rfloor, l_{2} / d,\left\lfloor m_{2} / d\right\rfloor, n / d\right)
$$

which by the Möbius inversion formula [3, Theorem 2] is equivalent to

$$
\Psi_{k}\left(m_{1}, l_{2}, m_{2}, n\right)=\sum_{d \mid\left(l_{2}, n\right)} \mu(d)\binom{\left\lfloor m_{1} / d\right\rfloor+\left\lfloor m_{2} / d\right\rfloor-l_{2} / d}{k-1}
$$

as desired.

Theorem 4. We have
(a) $\Phi\left(\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right], n\right)=\sum_{d \mid n} \mu(d) 2^{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\left\lfloor\frac{l_{2}-1}{d}\right\rfloor}$,
(b) $\quad \Phi_{k}\left(\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right], n\right)=\sum_{d \mid n} \mu(d)\binom{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\left\lfloor\frac{l_{2}-1}{d}\right\rfloor}{ k}$.

Proof. (a) Clearly

$$
\begin{align*}
\Phi\left(\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right], n\right) & =\Phi\left(\left[1, m_{1}\right] \cup\left[l_{2}-1, m_{2}\right], n\right)-\Psi\left(m_{1}, l_{2}-1, m_{2}, n\right) \\
& =\Phi\left(\left[1, m_{1}\right] \cup\left[m_{1}+1, m_{2}\right], n\right)-\sum_{i=m_{1}+1}^{l_{2}-1} \Psi\left(m_{1}, i, m_{2}, n\right) \\
& =\Phi\left(\left[1, m_{2}\right]-\sum_{i=m_{1}+1}^{l_{2}-1} \Psi\left(m_{1}, i, m_{2}, n\right)\right.  \tag{2}\\
& =\sum_{d \mid n} \mu(d) 2^{\left\lfloor m_{2} / d\right\rfloor}-\sum_{i=m_{1}+1}^{l_{2}-1} \sum_{d \mid(n, i)} \mu(d) 2^{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\frac{i}{d}}
\end{align*}
$$

where the last identity follows by Theorem 2 for $l=1$ and Lemma 3. Rearranging the last summation in (2) gives

$$
\begin{align*}
\sum_{i=m_{1}+1}^{l_{2}-1} \sum_{d \mid(n, i)} \mu(d) 2^{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\frac{i}{d}} & =\sum_{d \mid n} \sum_{\substack{m_{1}+1 \\
d \mid i}}^{l_{2}-1} \mu(d) 2^{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\frac{i}{d}} \\
& =\sum_{d \mid n} \mu(d) 2^{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor} \sum_{j=\left\lfloor\frac{m_{1}}{d}\right\rfloor+1}^{\left\lfloor\frac{l_{2}-1}{d}\right\rfloor} 2^{-j}  \tag{3}\\
& =\sum_{d \mid n} \mu(d) 2^{\left\lfloor\frac{m_{2}}{d}\right\rfloor}\left(1-2^{-\left\lfloor\frac{l_{2}-1}{d}\right\rfloor+\left\lfloor\frac{m_{1}}{d}\right\rfloor}\right)
\end{align*}
$$

Now combining identities (2) and (3) yields the result.
(b) Proceeding as in part (a) we find
$\Phi_{k}\left(\left[1, m_{1}\right] \cup\left[l_{2}, m_{2}\right], n\right)=\sum_{d \mid n} \mu(d)\binom{\left\lfloor\frac{m_{2}}{d}\right\rfloor}{ k}-\sum_{i=m_{1}+1}^{l_{2}-1} \sum_{d \mid(n, i)} \mu(d)\binom{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\frac{i}{d}}{k-1}$.

Rearranging the last summation on the right of (4) gives

$$
\begin{align*}
\sum_{i=m_{1}+1}^{l_{2}-1} \sum_{d \mid(n, i)}\binom{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\frac{i}{d}}{k-1} & =\sum_{d \mid n} \mu(d) \sum_{j=\left\lfloor\frac{m_{1}}{d}\right\rfloor+1}^{\left\lfloor\frac{l_{2}-1}{d}\right\rfloor}\binom{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-j}{k-1} \\
& =\sum_{d \mid n} \mu(d) \sum_{i=\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\left\lfloor\frac{m_{2}-1}{d}\right\rfloor}^{d}\binom{i}{k-1} \\
& =\sum_{d \mid n} \mu(d)\left(\binom{\left.\frac{m_{2}}{d}\right\rfloor}{ k}-\binom{\left\lfloor\frac{m_{1}}{d}\right\rfloor+\left\lfloor\frac{m_{2}}{d}\right\rfloor-\left\lfloor\frac{l_{2}-1}{d}\right\rfloor}{ k}\right) \tag{5}
\end{align*}
$$

where the last identity follows by formula (1). Then identities (4) and (5) yield the desired result.

Definition 5. Let

$$
\begin{aligned}
\varepsilon(A, B, n) & =\#\{X \subseteq B: X \neq \emptyset, X \cap A=\emptyset, \text { and } \operatorname{gcd}(X, n)=1\} \\
\varepsilon_{k}(A, B, n) & =\#\{X \subseteq B: \# X=k, X \cap A=\emptyset, \text { and } \operatorname{gcd}(X, n)=1\}
\end{aligned}
$$

If $B=[1, n]$ we will simply write $\varepsilon(A, n)$ and $\varepsilon_{k}(A, n)$ rather than $\varepsilon(A,[1, n], n)$ and $\varepsilon_{k}(A,[1, n], n)$ respectively.

Theorem 6. If $l \leq m<n$, then

$$
\begin{gathered}
\text { (a) } \varepsilon([l, m], n)=\sum_{d \mid n} \mu(d) \mathfrak{2}^{\lfloor(l-1) / d\rfloor+n / d-\lfloor m / d\rfloor}, \\
\text { (b) } \varepsilon_{k}([l, m], n)=\sum_{d \mid n} \mu(d)\binom{\lfloor(l-1) / d\rfloor+n / d-\lfloor m / d\rfloor}{ k} .
\end{gathered}
$$

Proof. Immediate from Theorem 4 since $\varepsilon([l, m], n)=\Phi([1, l-1] \cup[m+1, n], n)$ and $\varepsilon_{k}([l, m], n)=\Phi_{k}([1, l-1] \cup[m+1, n], n)$.

## 3. Relatively Prime Supersets

In this section the sets $A$ and $B$ are not necessary nonempty.
Definition 7. If $A \subseteq B$ let

$$
\begin{aligned}
\bar{\Phi}(A, B, n) & =\#\{X \subseteq B: X \neq \emptyset, A \subseteq X, \text { and } \operatorname{gcd}(X, n)=1\} \\
\bar{\Phi}_{k}(A, B, n) & =\#\{X \subseteq B: A \subseteq X, \# X=k, \text { and } \operatorname{gcd}(X, n)=1\} \\
\bar{f}(A, B) & =\#\{X \subseteq B: X \neq \emptyset, A \subseteq X, \text { and } \operatorname{gcd}(X)=1\} \\
\bar{f}_{k}(A, B) & =\#\{X \subseteq B: \# X=k, A \subseteq X, \text { and } \operatorname{gcd}(X)=1\}
\end{aligned}
$$

The purpose of this section is to give formulas for $\bar{f}(A,[l, m]), \bar{f}_{k}(A,[l, m]), \bar{\Phi}(A,[l, m], n)$, and $\bar{\Phi}_{k}(A,[l, m], n)$ for any subset $A$ of $[l, m]$. We need a lemma.

Lemma 8. If $A \subseteq[1, m]$, then

$$
\text { (a) } \bar{\Phi}(A,[1, m], n)=\sum_{d \mid(A, n)} \mu(d) \mathfrak{L}^{\lfloor m / d\rfloor-\# A}
$$

(b) $\bar{\Phi}_{k}(A,[1, m], n)=\sum_{d \mid(A, n)} \mu(d)\binom{\lfloor m / d\rfloor-\# A}{k-\# A}$ whenever $\# A \leq k \leq m$.

Proof. If $A=\emptyset$, then clearly

$$
\bar{\Phi}(A,[1, m], n)=\Phi([1, m], n) \text { and } \bar{\Phi}_{k}(A,[1, m], n)=\Phi_{k}([1, m], n)
$$

and the identities in (a) and (b) follow by Theorem 2 for $l=1$. Assume now that $A \neq \emptyset$. If $m \leq n$, then

$$
2^{m-\# A}=\sum_{d \mid(A, n)} \bar{\Phi}\left(\frac{A}{d},[1,\lfloor m / d\rfloor], n / d\right)
$$

and

$$
\binom{m-\# A}{k-\# A}=\sum_{d \mid(A, n)} \mu(d) \bar{\Phi}_{k}\left(\frac{A}{d},[1,\lfloor m / d\rfloor], n / d\right)
$$

which by Möbius inversion [3, Theorem 2] are equivalent to the identities in (a) and in (b) respectively. If $m>n$, let $a$ be a positive integer such that $m \leq n^{a}$.

As $\operatorname{gcd}(X, n)=1$ if and only if $\operatorname{gcd}\left(X, n^{a}\right)=1$ and $\mu(d)=0$ whenever $d$ has a nontrivial square factor we have

$$
\begin{aligned}
\bar{\Phi}(A,[1, m], n) & =\bar{\Phi}\left(A,[1, m], n^{a}\right) \\
& =\sum_{d \mid\left(A, n^{a}\right)} \mu(d) 2^{\lfloor m / d\rfloor-\# A} \\
& =\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\# A} .
\end{aligned}
$$

The same argument gives the formula for $\bar{\Phi}_{k}(A,[1, m], n)$.
Theorem 9. If $A \subseteq[l, m]$, then

$$
\text { (a) } \bar{\Phi}(A,[l, m], n)=\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\lfloor(l-1) / d\rfloor-\# A} \text {, }
$$

(b) $\bar{\Phi}_{k}(A,[l, m], n)=\sum_{d \mid(A, n)} \mu(d)\binom{\lfloor m / d\rfloor-\lfloor(l-1) / d\rfloor-\# A}{k-\# A}$
whenever $\# A \leq k \leq m-l+1$.

Proof. If $A=\emptyset$, then clearly

$$
\bar{\Phi}(A,[l, m], n)=\Phi([l, m], n)
$$

and

$$
\bar{\Phi}_{k}(A,[l, m], n)=\Phi_{k}([l, m], n)
$$

and the identities in (a) and (b) follow by Theorem 2. Assume now that $A \neq \emptyset$. Let

$$
\Psi(A, l, m, n)=\#\{X \subseteq[l, m]: A \cup\{l\} \subseteq X, \text { and } \operatorname{gcd}(X, n)=1\}
$$

Then

$$
2^{m-l-\# A}=\sum_{d \mid(A, l, n)} \Psi\left(\frac{A}{d}, l / d,\lfloor m / d\rfloor, n / d\right)
$$

which by Möbius inversion [3, Theorem 2] means that

$$
\begin{equation*}
\Psi(A, l, m, n)=\sum_{d \mid(A, l, n)} \mu(d) 2^{\lfloor m / d\rfloor-l / d-\# A} \tag{6}
\end{equation*}
$$

Then combining identity (6) with Lemma 8 gives

$$
\begin{align*}
\bar{\Phi}(A,[l, m], n) & =\bar{\Phi}\left([A,[1, m], n)-\sum_{i=1}^{l-1} \Psi(i, m, A, n)\right. \\
& =\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\# A}-\sum_{i=1}^{l-1} \sum_{d \mid(A, i, n)} \mu(d) 2^{\lfloor m / d\rfloor-i / d-\# A} \\
& =\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\# A}-\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\# A} \sum_{j=1}^{\lfloor(l-1) / d\rfloor} 2^{-j} \\
& =\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\# A}-\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\# A}\left(1-2^{-\lfloor(l-1) / d\rfloor}\right) \\
& =\sum_{d \mid(A, n)} \mu(d) 2^{\lfloor m / d\rfloor-\lfloor(l-1) / d\rfloor-\# A} . \tag{7}
\end{align*}
$$

This completes the proof of (a). Part (b) follows similarly.

As to $\bar{f}(A,[l, m])$ and $\bar{f}_{k}(A,[l, m])$ we similarly have:
Theorem 10. If $A \subseteq[l, m]$, then

> (a) $\bar{f}(A,[l, m])=\sum_{d \mid \operatorname{gcd}(A)} \mu(d) 2^{\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{l-1}{d}\right\rfloor-\# A}$,
> (b) $\quad \bar{f}_{k}(A,[l, m])=\sum_{d \mid \operatorname{gcd}(A)} \mu(d)\binom{\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{l-1}{d}\right\rfloor-\# A}{k-\# A}$,
whenever $\# A \leq k \leq m-l+1$.
We close this section by formulas for relatively prime sets which have a nonempty intersection with $A$.

Definition 11. Let

$$
\begin{aligned}
\bar{\varepsilon}(A, B, n) & =\#\{X \subseteq B: X \cap A \neq \emptyset \text { and } \operatorname{gcd}(X, n)=1\} \\
\bar{\varepsilon}_{k}(A, B, n) & =\#\{X \subseteq B: \# X=k, X \cap A \neq \emptyset, \text { and } \operatorname{gcd}(X, n)=1\} \\
\bar{\varepsilon}(A, B) & =\#\{X \subseteq B: X \cap A \neq \emptyset \text { and } \operatorname{gcd}(X)=1\} \\
\bar{\varepsilon}_{k}(A, B) & =\#\{X \subseteq B: \# X=k, X \cap A \neq \emptyset, \text { and } \operatorname{gcd}(X)=1\}
\end{aligned}
$$

Theorem 12. We have

$$
\begin{gathered}
\text { (a) } \bar{\varepsilon}(A,[l, m], n)=\sum_{\emptyset \neq X \subseteq A} \sum_{d \mid(X, n)} \mu(d) 2^{\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{l-1}{d}\right\rfloor-\# X}, \\
\text { (b) } \bar{\varepsilon}_{k}(A,[l, m], n)=\sum_{\substack{\emptyset \neq X \subseteq A \\
\# X \leq k}} \sum_{d \mid(X, n)} \mu(d)\binom{\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{l-1}{d}\right\rfloor-\# X}{k-\# X}, \\
\text { (c) } \bar{\varepsilon}(A, B)=\sum_{\emptyset \neq X \subseteq A} \sum_{d \mid \operatorname{gcd}(X)} \mu(d) 2^{\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{l-1}{d}\right\rfloor-\# X}, \\
\text { (d) } \bar{\varepsilon}_{k}(A, B)=\sum_{\substack{\emptyset \neq X \subseteq A d \mid \operatorname{gcd}(X) \\
\# X \leq k}} \mu(d)\binom{\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{l-1}{d}\right\rfloor-\# X}{k-\# X}
\end{gathered}
$$

Proof. These formulas follow by Theorems 4 and 5 along with the facts:

$$
\begin{aligned}
\bar{\varepsilon}(A,[l, m], n) & =\sum_{\substack{\emptyset \neq X \subseteq A}} \bar{\Phi}(X,[l, m], n) \\
\bar{\varepsilon}_{k}(A,[l, m], n) & =\sum_{\substack{\emptyset \neq X \subseteq A \\
\# X \leq k}} \bar{\Phi}_{k}(X,[l, m], n), \\
\bar{\varepsilon}(A,[l, m]) & =\sum_{\substack{\emptyset \neq X \subseteq A}} \bar{f}(X,[l, m]) \\
\bar{\varepsilon}_{k}(A,[l, m]) & =\sum_{\substack{\emptyset \neq X \subseteq A \\
\# X \leq k}} \bar{f}_{k}(X,[l, m])
\end{aligned}
$$

Acknowledgments. The author thanks the referee for reviewing the manuscript, for valuable comments, and for interesting suggestions.

## References

[1] Mohamed Ayad and Omar Kihel, On the Number of Subsets Relatively Prime to an Integer, Journal of Integer Sequences, Vol. 11, (2008), Article 08.5.5.
[2] Mohamed Ayad and Omar Kihel, On Relatively Prime Sets, Integers 9, (2009), 343-352.
[3] Mohamed El Bachraoui, The number of relatively prime subsets and phi functions for sets $\{m, m+1, \ldots, n\}$, Integers 7 (2007), A43, 8pp.
[4] Mohamed El Bachraoui, On the Number of Subsets of $[1, m]$ Relatively Prime to $n$ and Asymptotic Estimates, Integers 8 (2008), A 41, 5 pp.
[5] Melvyn B. Nathanson, Affine invariants, relatively prime sets, and a phi function for subsets of $\{1,2, \ldots, n\}$, Integers 7 (2007), A01, 7pp.
[6] Melvyn B. Nathanson and Brooke Orosz, Asymptotic estimates for phi functions for subsets of $\{m+1, m+2, \ldots, n\}$, Integers 7 (2007), A54, 5pp.


[^0]:    ${ }^{1}$ Supported by RA at UAEU, grant: 02-01-2-11/09

