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Abstract
A nonempty finite set of positive integers A is relatively prime if gcd(A) = 1 and
it is relatively prime to n if gcd(A ∪ {n}) = 1. The number of nonempty subsets
of A which are relatively prime to n is Φ(A,n) and the number of such subsets
of cardinality k is Φk(A,n). Given positive integers l1, l2, m2, and n such that
l1 ≤ l2 ≤ m2 we give Φ([1,m1] ∪ [l2,m2], n) along with Φk([1,m1] ∪ [l2,m2], n).
Given positive integers l,m, and n such that l ≤ m we count for any subset A of
{l, l + 1, . . . ,m} the number of its supersets in [l,m] which are relatively prime and
we count the number of such supersets which are relatively prime to n. Formulas
are also obtained for corresponding supersets having fixed cardinalities. Intermedi-
ate consequences include a formula for the number of relatively prime sets with a
nonempty intersection with some fixed set of positive integers.

1. Introduction

Throughout let k, l,m, n be positive integers such that l ≤ m, let [l,m] = {l, l +
1, . . . ,m}, let µ be the Möbius function, and let #x$ be the floor of x. If A is a
set of integers and d %= 0, then A

d = {a/d : a ∈ A}. A nonempty set of positive
integers A is called relatively prime if gcd(A) = 1 and it is called relatively prime
to n if gcd(A ∪ {n}) = gcd(A,n) = 1. Unless otherwise specified A and B will
denote nonempty sets of positive integers. We will need the following basic identity
on binomial coefficients stating that for nonnegative integers L ≤ M ≤ N

N∑

j=M

(
j

L

)
=

(
N + 1
L + 1

)
−

(
M

L + 1

)
. (1)

1Supported by RA at UAEU, grant: 02-01-2-11/09



INTEGERS: 10 (2010) 566

Definition 1. Let

Φ(A,n) = #{X ⊆ A : X %= ∅ and gcd(X,n) = 1},
Φk(A,n) = #{X ⊆ A : #X = k and gcd(X,n) = 1},

f(A) = #{X ⊆ A : X %= ∅ and gcd(X) = 1},
fk(A) = #{X ⊆ A : #X = k and gcd(X) = 1}.

Nathanson in [5] introduced f(n), fk(n), Φ(n), and Φk(n) (in our terminology
f([1, n]), fk([1, n]), Φ([1, n], n), and Φk([1, n], n) respectively) and gave their formu-
las along with asymptotic estimates. Formulas for f([m,n]), fk([m,n]), Φ([m,n], n),
and Φk([m,n], n) are found in [3, 6] and formulas for Φ([1,m], n) and Φk([1,m], n)
for m ≤ n are obtained in [4]. Recently Ayad and Kihel in [2] considered phi func-
tions for sets which are in arithmetic progression and obtained the following more
general formulas for Φ([l,m], n) and Φk([l,m], n).

Theorem 2. We have

(a) Φ([l,m], n) =
∑

d|n

µ(d)2!m/d"−!(l−1)/d",

(b) Φk([l,m], n) =
∑

d|n

µ(d)
(
#m/d$ − #(l − 1)/d$

k

)
.

2. Relatively Prime Subsets for [1, m1] ∪ [l2, m2]

If [1,m1]∩[l2,m2] %= ∅, then phi functions for [1,m1]∪[l2,m2] = [1,m2] are obtained
by Theorem 2. So we may assume that 1 ≤ m1 < l2 ≤ m2.

Lemma 3. Let

Ψ(m1, l2,m2, n) = #{X ⊆ [1,m1] ∪ [l2,m2] : l2 ∈ X and gcd(X,n) = 1}

and

Ψk(m1, l2,m2, n) = #{X ⊆ [1,m1]∪[l2,m2] : l2 ∈ X, |X| = k, and gcd(X,n) = 1}.

Then
(a) Ψ(m1 , l2 ,m2 ,n) =

∑

d|(l2 ,n)

µ(d)2 !m1 /d"+!m2 /d"−l2 /d ,

(b) Ψk (m1 , l2 ,m2 ,n) =
∑

d|(l2 ,n)

µ(d)
(
#m1/d$+ #m2/d$ − l2/d

k − 1

)
.
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Proof. (a) Assume first that m2 ≤ n. Let P(m1, l2,m2) denote the set of subsets
of [1,m1] ∪ [l2,m2] containing l2 and let P(m1, l2,m2, d) be the set of subsets X
of [1,m1] ∪ [l2,m2] such that l2 ∈ X and gcd(X,n) = d. It is clear that the
set P(m1, l2,m2) of cardinality 2m1+m2−l2 can be partitioned using the equivalence
relation of having the same gcd (dividing l2 and n). Moreover, the mapping A +→ 1

dX
is a one-to-one correspondence between P(m1, l2,m2, d) and the set of subsets Y of
[1, #m1/d$] ∪ [l2/d, #m2/d$] such that l2/d ∈ Y and gcd(Y, n/d) = 1. Then

#P(m1, l2,m2, d) = Ψ(#m1/d$, l2/d, #m2/d$, n/d).

Thus,

2m1+m2−l2 =
∑

d|(l2,n)

#P(m1, l2,m2, d) =
∑

d|(l2,n)

Ψ(#m1/d$, l2/d, #m2/d$, n/d),

which by the Möbius inversion formula extended to multivariable functions [3, The-
orem 2] is equivalent to

Ψ(m1, l2,m2, n) =
∑

d|(l2,n)

µ(d)2!m1/d"+!m2/d"−l2/d.

Assume now that m2 > n and let a be a positive integer such that m2 ≤ na. As
gcd(X,n) = 1 if and only if gcd(X,na) = 1 and µ(d) = 0 whenever d has a nontrivial
square factor, we have

Ψ(m1, l2,m2, n) = Ψ(m1, l2,m2, n
a)

=
∑

d|(l2,na)

µ(d)2!m1/d"+!m2/d"−l2/d

=
∑

d|(l2,n)

µ(d)2!m1/d"+!m2/d"−l2/d.

(b) For the same reason as before, we may assume that m2 ≤ n. Noting that
the correspondence X +→ 1

dX defined above preserves the cardinality and using an
argument similar to the one in part (a), we obtain the following identity

(
m1 + m2 − l2

k − 1

)
=

∑

d|(l2,n)

Ψk(#m1/d$, l2/d, #m2/d$, n/d)
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which by the Möbius inversion formula [3, Theorem 2] is equivalent to

Ψk(m1, l2,m2, n) =
∑

d|(l2,n)

µ(d)
(
#m1/d$+ #m2/d$ − l2/d

k − 1

)
,

as desired.

Theorem 4. We have

(a) Φ([1 ,m1 ] ∪ [l2 ,m2 ],n) =
∑

d|n

µ(d)2!
m1
d "+!m2

d "−! l2−1
d ",

(b) Φk ([1 ,m1 ] ∪ [l2 ,m2 ],n) =
∑

d|n

µ(d)
(
#m1

d $+ #m2
d $ − #

l2−1
d $

k

)
.

Proof. (a) Clearly

Φ([1,m1] ∪ [l2,m2], n) = Φ([1,m1] ∪ [l2 − 1,m2], n)−Ψ(m1, l2 − 1,m2, n)

= Φ([1,m1] ∪ [m1 + 1,m2], n)−
l2−1∑

i=m1+1

Ψ(m1, i,m2, n)

= Φ([1,m2]−
l2−1∑

i=m1+1

Ψ(m1, i,m2, n)

=
∑

d|n

µ(d)2!m2/d" −
l2−1∑

i=m1+1

∑

d|(n,i)

µ(d)2!
m1
d "+!m2

d "− i
d ,

(2)

where the last identity follows by Theorem 2 for l = 1 and Lemma 3. Rearranging
the last summation in (2) gives

l2−1∑

i=m1+1

∑

d|(n,i)

µ(d)2!
m1
d "+!m2

d "− i
d =

∑

d|n

l2−1∑

i=m1+1
d|i

µ(d)2!
m1
d "+!m2

d "− i
d

=
∑

d|n

µ(d)2!
m1
d "+!m2

d "
! l2−1

d "∑

j=!m1
d "+1

2−j

=
∑

d|n

µ(d)2!
m2
d "

(
1− 2−!

l2−1
d "+!m1

d "
)

.

(3)

Now combining identities (2) and (3) yields the result.
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(b) Proceeding as in part (a) we find

Φk([1,m1] ∪ [l2,m2], n) =
∑

d|n

µ(d)
(
#m2

d $
k

)
−

l2−1∑

i=m1+1

∑

d|(n,i)

µ(d)
(
#m1

d $+ #m2
d $ −

i
d

k − 1

)
.

(4)

Rearranging the last summation on the right of (4) gives

l2−1∑

i=m1+1

∑

d|(n,i)

(
#m1

d $+ #m2
d $ −

i
d

k − 1

)
=

∑

d|n

µ(d)
! l2−1

d "∑

j=!m1
d "+1

(
#m1

d $+ #m2
d $ − j

k − 1

)

=
∑

d|n

µ(d)
!m2

d "−1∑

i=!m1
d "+!m2

d "−! l2−1
d "

(
i

k − 1

)

=
∑

d|n

µ(d)
((

#m2
d $
k

)
−

(
#m1

d $+ #m2
d $ − #

l2−1
d $

k

))
,

(5)

where the last identity follows by formula (1). Then identities (4) and (5) yield the
desired result.

Definition 5. Let

ε(A,B, n) = #{X ⊆ B : X %= ∅, X ∩A = ∅, and gcd(X,n) = 1},
εk(A,B, n) = #{X ⊆ B : #X = k, X ∩A = ∅, and gcd(X,n) = 1}.

If B = [1, n] we will simply write ε(A,n) and εk(A,n) rather than ε(A, [1, n], n) and
εk(A, [1, n], n) respectively.

Theorem 6. If l ≤ m < n, then

(a) ε([l ,m],n) =
∑

d|n

µ(d)2 !(l−1)/d"+n/d−!m/d",

(b) εk ([l ,m],n) =
∑

d|n

µ(d)
(
#(l − 1 )/d$+ n/d − #m/d$

k

)
.

Proof. Immediate from Theorem 4 since ε([l,m], n) = Φ([1, l−1]∪ [m+1, n], n) and
εk([l,m], n) = Φk([1, l − 1] ∪ [m + 1, n], n).
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3. Relatively Prime Supersets

In this section the sets A and B are not necessary nonempty.

Definition 7. If A ⊆ B let

Φ(A,B, n) = #{X ⊆ B : X %= ∅, A ⊆ X, and gcd(X,n) = 1},

Φk(A,B, n) = #{X ⊆ B : A ⊆ X, #X = k, and gcd(X,n) = 1},

f(A,B) = #{X ⊆ B : X %= ∅, A ⊆ X, and gcd(X) = 1},

fk(A,B) = #{X ⊆ B : #X = k, A ⊆ X, and gcd(X) = 1}.

The purpose of this section is to give formulas for f(A, [l,m]), fk(A, [l,m]), Φ(A, [l,m], n),
and Φk(A, [l,m], n) for any subset A of [l,m]. We need a lemma.

Lemma 8.If A ⊆ [1,m], then

(a) Φ(A, [1 ,m],n) =
∑

d|(A,n)

µ(d)2 !m/d"−#A,

(b) Φk (A, [1 ,m],n) =
∑

d|(A,n)

µ(d)
(
#m/d$ −#A

k −#A

)
whenever #A ≤ k ≤ m.

Proof. If A = ∅, then clearly

Φ(A, [1,m], n) = Φ([1,m], n) and Φk(A, [1,m], n) = Φk([1,m], n)

and the identities in (a) and (b) follow by Theorem 2 for l = 1. Assume now that
A %= ∅. If m ≤ n, then

2m−#A =
∑

d|(A,n)

Φ(
A

d
, [1, #m/d$], n/d)

and
(

m−#A

k −#A

)
=

∑

d|(A,n)

µ(d)Φk(
A

d
, [1, #m/d$], n/d),

which by Möbius inversion [3, Theorem 2] are equivalent to the identities in (a)
and in (b) respectively. If m > n, let a be a positive integer such that m ≤ na.
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As gcd(X,n) = 1 if and only if gcd(X,na) = 1 and µ(d) = 0 whenever d has a
nontrivial square factor we have

Φ(A, [1,m], n) = Φ(A, [1,m], na)

=
∑

d|(A,na)

µ(d)2!m/d"−#A

=
∑

d|(A,n)

µ(d)2!m/d"−#A.

The same argument gives the formula for Φk(A, [1,m], n).

Theorem 9. If A ⊆ [l,m], then

(a) Φ(A, [l ,m],n) =
∑

d|(A,n)

µ(d)2 !m/d"−!(l−1)/d"−#A,

(b) Φk (A, [l ,m],n) =
∑

d|(A,n)

µ(d)
(
#m/d$ − #(l − 1 )/d$ −#A

k −#A

)

whenever #A ≤ k ≤ m− l + 1.

Proof. If A = ∅, then clearly

Φ(A, [l,m], n) = Φ([l,m], n)

and
Φk(A, [l,m], n) = Φk([l,m], n)

and the identities in (a) and (b) follow by Theorem 2.
Assume now that A %= ∅. Let

Ψ(A, l,m, n) = #{X ⊆ [l,m] : A ∪ {l} ⊆ X, and gcd(X,n) = 1}.

Then

2m−l−#A =
∑

d|(A,l,n)

Ψ(
A

d
, l/d, #m/d$, n/d),

which by Möbius inversion [3, Theorem 2] means that

Ψ(A, l,m, n) =
∑

d|(A,l,n)

µ(d)2!m/d"−l/d−#A. (6)
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Then combining identity (6) with Lemma 8 gives

Φ(A, [l,m], n) = Φ([A, [1,m], n)−
l−1∑

i=1

Ψ(i,m,A, n)

=
∑

d|(A,n)

µ(d)2!m/d"−#A −
l−1∑

i=1

∑

d|(A,i,n)

µ(d)2!m/d"−i/d−#A

=
∑

d|(A,n)

µ(d)2!m/d"−#A −
∑

d|(A,n)

µ(d)2!m/d"−#A
!(l−1)/d"∑

j=1

2−j

=
∑

d|(A,n)

µ(d)2!m/d"−#A −
∑

d|(A,n)

µ(d)2!m/d"−#A(1− 2−!(l−1)/d")

=
∑

d|(A,n)

µ(d)2!m/d"−!(l−1)/d"−#A.

(7)

This completes the proof of (a). Part (b) follows similarly.

As to f(A, [l,m]) and fk(A, [l,m]) we similarly have:

Theorem 10. If A ⊆ [l,m], then

(a) f (A, [l ,m]) =
∑

d| gcd(A)

µ(d)2 !
m
d "−!

l−1
d "−#A,

(b) f k (A, [l ,m]) =
∑

d| gcd(A)

µ(d)
(
#m

d $ − #
l−1
d $ −#A

k −#A

)
,

whenever #A ≤ k ≤ m− l + 1.

We close this section by formulas for relatively prime sets which have a nonempty
intersection with A.

Definition 11. Let

ε(A,B, n) = #{X ⊆ B : X ∩A %= ∅ and gcd(X,n) = 1},

εk(A,B, n) = #{X ⊆ B : #X = k, X ∩A %= ∅, and gcd(X,n) = 1},

ε(A,B) = #{X ⊆ B : X ∩A %= ∅ and gcd(X) = 1},

εk(A,B) = #{X ⊆ B : #X = k, X ∩A %= ∅, and gcd(X) = 1}.



INTEGERS: 10 (2010) 573

Theorem 12. We have

(a) ε(A, [l,m], n) =
∑

∅%=X⊆A

∑

d|(X,n)

µ(d)2!
m
d "−!

l−1
d "−#X ,

(b) εk(A, [l,m], n) =
∑

∅%=X⊆A
#X≤k

∑

d|(X,n)

µ(d)
(
#m

d $ − #
l−1
d $ −#X

k −#X

)
,

(c) ε(A,B) =
∑

∅%=X⊆A

∑

d| gcd(X)

µ(d)2!
m
d "−!

l−1
d "−#X ,

(d) εk(A,B) =
∑

∅%=X⊆A
#X≤k

∑

d| gcd(X)

µ(d)
(
#m

d $ − #
l−1
d $ −#X

k −#X

)
.

Proof. These formulas follow by Theorems 4 and 5 along with the facts:

ε(A, [l,m], n) =
∑

∅%=X⊆A

Φ(X, [l,m], n),

εk(A, [l,m], n) =
∑

∅%=X⊆A
#X≤k

Φk(X, [l,m], n),

ε(A, [l,m]) =
∑

∅%=X⊆A

f(X, [l,m]),

εk(A, [l,m]) =
∑

∅%=X⊆A
#X≤k

fk(X, [l,m]).
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