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Abstract
A new proof is given for the k-fold convolution of the Catalan numbers. This is done
by enumerating a certain class of polygonal dissections called k-in-n dissections.

1. Introduction

The Catalan numbers are defined as follows.

Definition 1. For any n ≥ 0,

Cn =
1

n + 1

(
2n
n

)
.

For n < 0, Cn = 0.

It is well known that for any n ≥ 0,
∑

i≥0

CiCn−i = Cn+1. (1)

In other words, the two-fold convolution of Catalan numbers is itself equal to a
Catalan number. In 1887, Catalan proved the following k-fold convolution formula.

Theorem 2. [2] Let 1 ≤ k ≤ n. Then

∑

i1+...+ik=n

Ci1−1 · · ·Cik−1 =
k

2n− k

(
2n− k

n

)
. (2)

Larcombe and French [4] present an account of Catalan’s original proof of The-
orem 2 (see also [5] for a discussion of the convolution and a related new identity).
This proof applies the Lagrange inversion formula to the functional equation

y = 2− 4x/y, (3)
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resulting in an expression for y−k as a power series. Comparing this to a direct
solution of (3) produces an equation satisfied by the k-th power of the generating

function
∞∑

n=0
Cnxn, and this equation is shown to be equivalent to (2).

Tedford [6] exhibits several interpretations of the Catalan k-fold convolution. In
particular, the left-hand side of (2) is equal to the number of lattice paths with up
and right unit steps from (0, 0) to the point (n, n− k), which stay below the main
diagonal. This fact can be used to give another known proof of Theorem 2 (also
presented in [4, Appendix]). The reflection principle shows that for any a > b, the
number of such lattice paths from (0, 0) to (a, b) is a−b

a+b

(a+b
a

)
(see, for example, [3,

p. 70]). Setting a = n and b = n− k then gives the result of the theorem.
One of the most natural interpretations of the Catalan numbers is as the number

of triangulations of a polygon. In this note we use this interpretation to give a new
proof of Theorem 2. We arrive at this proof using Theorem 5, which enumerates
a class of polygonal dissections called k-in-n dissections. The proof presented here
is unique in that it uses only the interpretation of the Catalan numbers as the
number of polygon triangulations, and furthermore does not use generating function
techniques.

2. The k-in-n Dissections

Definition 3. Let n ≥ 3 and let 0 ≤ k ≤ n− 3.

1. A k-dissection of an n-gon is a partition of the n-gon into k + 1 parts by k
noncrossing diagonals.

2. A triangulation of an n-gon is an (n− 3)-dissection.

3. For k ≥ 4, an k-in-n dissection is an (n − k)-dissection of an n-gon into one
k-gon and n−k triangles (see Figure 1). A 3-in-n dissection is a triangulation
with one of its n− 2 triangles marked.

4. Let fk(n) be the number of k-in-n dissections.

It is well known that for n ≥ 3 the number of triangulations of an n-gon is Cn−2.

Lemma 4. Let 3 ≤ k ≤ n. Then

(n− k)fk(n) = n
n−k+1∑

i=2

Ci−1fk(n− i + 1). (4)

Proof. The left-hand side of (4) is the number of k-in-n dissections, with one of the
n − k diagonals marked. These can also be chosen as follows. Choose one vertex
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v out of the n vertices, then choose 2 ≤ i ≤ n − k + 1. Form the diagonal from
v to a vertex which is a distance i from v (proceeding, say, counterclockwise along
the edges of the n-gon). Mark this diagonal. Now choose a triangulation of the
resulting (i+1)-gon and a k-in-((n− i)+1) dissection of the resulting ((n− i)+1)-
gon. Each such choice results in a unique k-in-n dissection with one of the diagonals
marked.

As will be shown, Lemma 4 together with Lemma 8 below can be used to enu-
merate the k-in-n dissections.

Theorem 5. Let 3 ≤ k ≤ n. The number of k-in-n dissections is

fk(n) =
(

2n− k − 1
n− 1

)
.

Note 6. There is a bijection between k-in-n dissections and k-crossing partitions
of {1, . . . n}, as defined in [1]. Thus Theorem 5 is equivalent to [1, Theorem 1].

The following lemmas will be used in the proof of Theorem 5.

Lemma 7. For any n ≥ 1,

∑

i≥0

iCiCn−i =
(

2n + 1
n− 1

)
. (5)

Proof. Note that ∑

i≥0

iCiCn−i =
∑

i≥0

(n− i)CiCn−i.

Therefore by (1),

∑

i≥0

iCiCn−i =
1
2

∑

i≥0

nCiCn−i =
n

2
Cn+1 =

(
2n + 1
n− 1

)
.

Lemma 8. Let 1 ≤ q ≤ p ≤ 2q − 1. Then

∑

i≥0

Ci

(
p− 1− 2i
q − 1− i

)
=

(
p

q

)
. (6)

Proof. We use induction on q. If q = 1 then p = 1 and both sides of (6) are equal
to 1. Now suppose q ≥ 2. If p = q then both sides are equal to 1. If p = 2q−1 then
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Figure 1: Example of a 5-in-12 dissection

(6) follows from (1) and (5), since

∑

i≥0

Ci

(
2q − 2− 2i
q − 1− i

)
=

∑

i≥0

Ci(q − i)Cq−1−i

= q
∑

i≥0

CiCq−1−i −
∑

i≥0

iCiCq−1−i

= qCq −
(

2q − 1
q − 2

)

=
(

2q − 1
q

)
.

Now suppose q + 1 ≤ p ≤ 2q − 2. Note that q − 1 ≤ p− 1 and p− 1 ≤ 2q − 2− 1 =
2(q − 1)− 1. Therefore by the induction hypothesis, (6) holds for p− 1 and q − 1.
Also q ≤ p− 1 and p− 1 ≤ 2q− 3 < 2q− 1, so that (6) holds for p− 1 and q. Thus

(
p

q

)
=

(
p− 1
q − 1

)
+

(
p− 1

q

)

=
∑

i≥0

1
i + 1

(
2i
i

)(
p− 2− 2i
q − 2− i

)
+

∑

i≥0

1
i + 1

(
2i
i

)(
p− 2− 2i
q − 1− i

)

=
∑

i≥0

1
i + 1

(
2i
i

)(
p− 1− 2i
q − 1− i

)
.
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2.1. Proof of Theorem 5

Proof. Fix k ≥ 3 and proceed by induction on n. If n = k then both sides are equal
to 1. Now let n ≥ k + 1. By Lemma 4 and by the induction hypothesis,

fk(n) =
n

n− k

n−k−1∑

i=2

Ci−1fk(n− i + 1)

=
n

n− k

n−k−1∑

i=2

Ci−1

(
2(n− i + 1)− k − 1

n− i

)

=
n

n− k




∑

i≥1

Ci−1

(
2(n− i + 1)− k − 1

n− i

)
− fk(n)



 .

Solving for fk(n) and applying Lemma 8, with q = n and p = 2n− k,

fk(n) =
n

2n− k

∑

i≥0

Ci

(
2n− k − 2i− 1

n− i− 1

)
=

n

2n− k

(
2n− k

n

)
=

(
2n− k − 1

n− 1

)
.

3. Proof of the Catalan Convolution Formula

The next lemma gives the relation between the number of k-in-n dissections and
the Catalan convolution.

Lemma 9. Let 3 ≤ k < n. Then

kfk(n) = n
∑

i1+...+ik=n

Ci1−1 · · ·Cik−1. (7)

Proof. The left-hand side of (7) is the number of k-in-n dissections, with one of
the vertices of the k-gon marked. These can also be chosen as follows. Choose any
vertex v of the n-gon. For each vertex v, choose i1, . . . , ik such that i1+ . . .+ik = n.
This determines the lengths of the sides of a k-gon by starting at v and proceeding,
say, counterclockwise. For example, in Figure 1, if v is the bottom vertex then the
lengths are 1, 4, 2, 2, 3. For each 1 ≤ r ≤ k, there is a resulting (ir + 1)-gon sharing
one edge of the k-gon. Each of these (ir + 1)-gons can be triangulated in Cir−1

ways, forming a uniquely determined k-in-n dissection with one of the of the k-gons
marked.
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The proof of Theorem 2 now follows from Lemma 9, since

∑

i1+...+ik=n

Ci1−1 · · ·Cik−1 =
k

n
fk(n) =

k

n

(
2n− k − 1

n− 1

)
=

k

2n− k

(
2n− k

n

)
.
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