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Abstract
Multiple harmonic sums are iterated generalizations of harmonic sums. Recently
Dilcher has considered congruences involving g-analogs of these sums in depth one.
In this paper we shall study the homogeneous case for arbitrary depth by using
generating functions and shuffle relations of the g-analog of multiple harmonic sums.
At the end, we also consider some non-homogeneous cases.

1. Introduction

In [8] Shi and Pan extended Andrews’ result [1] on the g-analog of Wolstenholme
Theorem to the following two cases: for all prime p > 5

p—1 B -
2 ﬁ szl(l —q)+ 2 Ny 1 (1-9)%[plg (mod [p]2), (1)
= ﬁ = — W(l _ q)2 (Inod [p]q)’ (2)

where [n], = (1 — ¢™)/(1 — q) for any n € N and ¢ # 1. This type of congruences
is considered in the polynomial ring Z[g] throughout this paper. Notice that the

modulus [p], is an irreducible polynomial in ¢ when p is a prime. In [3] Dilcher

1

i1z

Z?: [(JI‘T for all positive integers n in terms of certain determinants of binomial
q

coefficients. However, his modulus is always [p],. He also expressed these congru-

ences using Bernoulli numbers, Bernoulli numbers of the second kind, and Stirling

and

generalized the above two congruences further to sums of the form Zf;i

numbers of the first kind, which we briefly recall now.
The well-known Bernoulli numbers are defined by the following generating series:

€T s x™ 1z 1 22 1 24
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On the other hand, the Bernoulli numbers of the second kind are defined by the
power series (cf. [7, p. 114]).

log 1+SC 21! 62 43! 24 4!

This is a little different from the definition of b, in [3], which is changed to b, later
in the same paper. Finally, the Stirling numbers of the first kind s(n, j) are defined
by

zx—1)(x—2)---(z—n+1) anj

Define

j=1
By [3, Thm. 1, (6.5) and Thm. 4] and [4, Thm. 3.1] one gets:

Theorem 1.1. If p > 3 is a prime, then for all integers n > 1 we have
¢ _ n
= = Ka(p)(1—¢)"  (mod [p]).

We will need the following easy generalization of this theorem.

Theorem 1.2. If p > 3 is a prime, then for every integer n >t > 1 we have

p—1 tj _ nt—l P i |
2~ Z( i >“> Koilp)  (mod [ply). ()
Moreover,
p—1 _ n
SR E=b S0) RECIER G
Jj=1 =2

Proof. If t > 1 it is clear that

7 =d(1-(1-¢)) —qu< ) ) (1—¢')".

So (4) follows from Theorem 1.1 immediately. Congruence (5) is a variation of |3,
(5.11)]. O
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All the sums in Theorem 1.1 and 1.2 are special cases of the g-analog of multiple
harmonic sums. The congruence properties of the classical multiple harmonic sums
(MHS for short) are systematically investigated in [10]. In this paper we shall study
their g-analogs which are natural generalizations of the congruences obtained by Shi
and Pan [8] and Dilcher [3].

Similar to its classical case (cf. [10]) a g-analog of multiple harmonic sum (¢-MHS
for short) is defined as follows. For s := (sy,...,8¢) € N, t := (¢1,...,t,) € N and
n € Zxq set

(t) qkltlJr---Jrklté *(t) (t) u)(s)
Hq (S; TL) = E S1 EYRI Hq (S,TL) = Hq (S; n)/(l - q) )
1<k; <. [kl]q "'[k’f]q
<k1<-<ke<n
(6)

where w(s) := s1 + + -+ + s; is the weight, £(s) := ¢ the depth and t the modifier.
For trivial modifier we set

Hy(sn) = H%O(sin),  Hy(sin) = Hy(sin)/(1 - q)"®.

Note that in [3] Hy(s;p — 1) := Hél)(s;p — 1) are studied in some detail and are
related to H,(s;p — 1). Also note that H,gﬁ*l """ SPl)(s; n) are the partial sums of
the most convenient form of g-multiple zeta functions (see [9]).

In this paper we mainly consider ¢-MHS with the trivial modifier. By convention
we set Hét)(s;r) =0forr=0,...,4(s) — 1, and Hét)(ﬁ);n) = 1. To save space,

for an ordered set (ey,...,e;) we denote by {ej,...,e;}? the ordered set formed by
repeating (e1, . .., e;) d times. For example, H,({s}%;n) will be called a homogeneous
sum.

Throughout the paper, we use short-hand H(s) to denote H,(s;p — 1) for some
fixed prime p.

2. Homogeneous ¢g-MHS

It is extremely beneficial to study the so-called stuffle (or quasi-shuffle) relations
among MHS (see, for e.g., [10]). The same mechanism works equally well for ¢-MHS.

Recall that for any two ordered sets (r1,...,7r:) and (ryy1,...,7,) the shuffle
operation is defined by
Shfl ((rl,...,rt),(rt_,_l,...,rn)) = U (rg(l),...,ra(n)).

o permutes {1,...,n},
o 1)< <o (1),
o (t+1)<-<o7(n)

Fix a positive integer s. For any k =1,...,¢ — 1, by stuffle relation we have
H; ((¢=k)s)-Hy ({s}*) = > H;(s)+ > Hy(s).

seshfl ({(¢—k)s}.{s}*) seshfl ({(e—k+1)s},{s}k1)
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)€k1

Applying Ek 1( on both sides we get

L—
H (s1) = £ S0 (0 199) - 1 (1) @

k=0

Theorem 2.1. Let s be a positive integer and let ns = exp(2my/—1/s) be the sth

primitive root of unity. Then
[T (1-=m=2)")7)  (mod [pl,).

ZH* {s} t = (
n=0

Proof. Let ¢ = exp(2my/—1/p) be the primitive pth root of unity and set

)s s—1

p—1

=Y i ®)

Jj=1

It is easy to see that Hy(n) = P, (mod [p],). By using partial fractions Dilcher [4,
(4.2)] obtained essentially the following generating function of P,:

=3 pan = HETI ©

Let ap = H}({s}') for all £ > 0. Let w(z) = Y ;2 asx’ be its the generating
function. By (7) we get

14

oo o0 1
(r) = Zazxé =1+ Z 7 Z k= 1P(z k)sakfe (mod [P]q)~
(=0 =1 o

I
-

b
I

Differentiating both sides and changing index ¢ — ¢ + 1 we get, modulo [p],,

co /£
() = ZZ(— PPy grrysant’ = ZZ D Py g1y san’

£=0 k=0 k=0 ¢=k

Changing index ¢ — ¢ + k and then exchanging the order of summation we get

x)ZP(ZJrl)S(_ = (ZP )

n=0 ¢=0
Eli(;) (s+§g(ns( )Y ))

_w() " (=) (" (=) Vo — 1P
:—sx< Z 1— (1 —nr(—x)l/s)p )



INTEGERS: 13 (2013) )

Here 75 = exp(2my/—1/s) is the sth primitive root of unity. Thus

"= | —(Inz) - (1 — (1 — nn(_$)1/s)p)/
WW@»_<(1)+Z%1—Q—WP@WV>'

Therefore by comparing the constant term we get

_ (_1)3 T n 1/s\p
wr)= = ST (1= =) (mod [ply)

n=0

as desired. O

Corollary 2.2. For every positive integer £ < p we have

1 p—1
H,({1}) = — -(1—q)* :
()= (7)) a0t medbiy
Proof. By the theorem we get
eyl ()P — 1
> H;({1})a' = "
£=0
= D 1 1 <p - 1) ¢
=— = — d
pr &~ <£+1>x ;:%E+1 ¢ )o (mod pl)
The corollary follows immediately. O

Corollary 2.3. For every positive integer £ < p we have

2.4 (p—l

m / ) 'FQ,e(p) (11— q)2Z (mod [p]q),

H,({2}") = (-1)*
where Fy 4(p) is a monic polynomial in p of degree .

Proof. By Theorem 2.1 we have modulo [p],
2 i (2! Eﬁ (1= 0= v=vap) (1= 0+ V=Tvey)
£=0
2

(pzl)/z (fj)(—l)jxw\/—_l\/?;(pzl)/z (jS 1><_1)jxj |

j=1 =0

|~

8

P2
which easily yields

Hy ({2}Y) = <_pi)e > <2j2—9|— 1) (21;1 1) > @) <2€€>

J+k=¢ GHk=t+1
0<4,k<p/2 1<4,k<p/2
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In the first sum above if j+k =¢+ 1 and 1 < j,k < p/2 then we may assume
j>¢/2. Then (£ + 1)!(€_’;1) is a factor of (2j + 1)!(2],’;1) as a polynomial of p, and
so is £1(*;"). Similarly we can see that ¢!(”,") is a factor of the second sum.

In order to determine the leading coefficient we set

C1e) = L@ (4 1) (g 1)242
RS ACT RSV R 2 )
c ( ) _K—‘rl (2@4‘ 2)!$2j _ (.Z‘ + 1)2Z+2 + (x _ 1)25+2
e @)=+ 2 '
Hence
> = Y o
P (25 + DI(2k + 1)! Pt (25)!(2k)!
0<4,k<p/2 1<j,k<p/2
G- (G -2) 2
(20 +2)! (20 + 2)!”
This finishes the proof of the corollary. [

Corollary 2.4. Let { be a positive integer. Set 6, = (1 + (—1)%) and L = 3¢ + 3.
Then for every prime p > L we have modulo [p|,

-3-0 (p—1
(Be+1)\ ¢

6.0 (p—1 , -
(3£+3)| <p ¢ ) : F3,€(p) : (1 - Q)M B Zfe 1S even,

) “Fa(p)- (1—q)® , if€is odd,

H,({3}") = (10)

where F3 ¢(p) is a monic polynomial in p of degree 20 — 1 if £ is odd and of degree
20 if £ is even.

Proof. Let n = exp(2mi/3). Then n?> +n+ 1 = 0. By Theorem 2.1 we have
o} 1 2
S H;({3})a' = — I1 (1 (- 77“\3/—x)p>. (11)
=0

a=0

We now use two ways to expand this. Set y = /—z. First, the product on the right
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hand side of (11) can be expressed as

2 2 2
L= (A =n*y)P +> 1 =n*yP—n* Ty = []Q = ny)?
a=0 a=0 a=0
P
=1-> (J) Zn‘”yg +Z L'y + 0T y?)P — (14 2)?
j=0 a=0
[p/3] i Qk;)/g
pv( )(]+
,kZO,J+k<p
2j+k=0(3)

Thus for £ > 0 we get

) ) () ()

Note that if £ is odd then the degree of the polynomial is reduced to 3¢ — 1 with
leading coefficient given by

1 (L-1 -3 -3
(_1)Z'3(L_1)!( 1 >_(L—2)!_(3£+1)!

H; ({3})

as we wanted.
Now to prove ¢!(%) is a factor we use the following expansion of (11):

Z Z J+k+n( ) (p) (P) x(j+k+n)/3nk+2n.
i) \k/\n

jkn>1

Thus

w0 =g X o (D () (M) mod ),

1<j,k,n<p
Jj+k4+n=30+3

Notice that j + k + n = 3¢ + 3 implies one of the indices, say j, is at least ¢ + 1.
Then clearly (1;) contains ¢!(}) as a factor, therefore so does H} ({3}) (mod [p],).
This completes the proof of the corollary. O

3. Some Non-Homogeneous g-MHS Congruences

In this section we consider some non-homogeneous ¢-MHS of depth two with mod-
ifiers of special type.
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Theorem 3.1. Let m,n be two positive integers. For every prime p we have

H™) (2m, 2n) = £ {£(mip) f(nip) — flm+nip)} (mod [pl).
where

FN;p)=(1—¢"N >

=0

N-1 oy
1

IR

Proof. By definition and substitution ¢ — p — i and j — p — j we have
qmiJrnj
(1= ¢ )2m(1—gi)2n

Y (m,m) = Y
1<i<j<p
qpm+pn—m1'—nj

R e e

1<j<i<p
5 o (mod [ol,)
= - - mo
1<j<i<p (¢" — qv)*™ (g7 — qP)*" !
PR (e (mod [,
= - - mod |p
1<j<i<p (1 _pz)Qm(l _pJ)Qn !
=H; "™ (2n,2m) (mod [p],) (12)

By shuffle relation we have
*(m) *(n) _ pyx(mn) *(n,m) * (m+n)
H" (2m)H; " (2n) = H, (2m,2n) + H; (2n,2m) + H; (2m + 2n).
Together with (12) this yields
*(m,n) _ pyx(m) *(n) * (m+n)
2H, (2m,2n) = H;'" (2m)H; " (2n) — H,, (2m +2n) (mod [p]y).
Our theorem follows from (4) quickly. O

In the study of g-multiple zeta functions the following function appears naturally
(see [9, (47)] or [2, Theorem 1)):

0 (n—1)k > k,q(n—l)k
I ST L o Y
fulm) = 30081 T = 3 G)
1k

(n— . . .
where (g(n) = > p 4 Q[T is the g-Riemann zeta value defined by Kaneko et al. in
q
[5]. Using the results we have obtained so far in this paper we discover a congruence
related to the partial sums of ¢,(2).
Proposition 3.2. For every prime p we have

1

3

k _
k 7%(1 —q)* (mod [ply). (13)

0

=~

Il

QO
Ii
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Proof. To save space, all congruences are modulo [p], throughout this proof.
We can check the congruence (13) for p = 2 and p = 3 easily by hand. Now we
assume p > 5. By definition we have

1
HX(2,1) = E —_ .
q\= _ 4%)2 _
<=, 1= —d)
With the substitutions ¢ — p —4¢ and j — p — 7 we get
2i

* _ q 'qj
—H;(2,1)=— ) @ — 2@ — )

1<j<i<p
=" P 1)2(qgi —
o, @ =M@ 1)
_ Z (qi71)2+2(qi71)+1.17qj71
= i _1)2 Y
1<j<i<p (¢ =1) 1=¢
p—1 p—1
. . p—3+k k-1 <p—1>
—H*(1,2) — 2H*(1,1) + - -
R S W

=H;(1,2) = 2H;(1,1) + (p 3)H (1) + H;(2)
p— ,, .
( 2 ) — 1*(1

Hr(2,1)+ H}(1,2) = H; (1)H;(2) — H}(3),
2H;(1,1) = H} (1) — H}(2).

Notice that we have the stuffle relations

Hence

p—1 k )
2 J#ﬁ = (Hg (1) +2)H3(2) = Hy (3) = Hy (1)* + (p = 3)H; (1) - (p ; 1),

k=1

Notice that by [3, Theorem 2]

The proposition now follows from (1) and (2) immediately. O
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4. A Congruence of Lehmer Type

Instead of the harmonic sums up to (p—1)-st term Lehmer also studied the following
type of congruence (see [6]): for every odd prime p

(p—1)/2
Z - = —2¢,(2) + ¢,(2)?p  (mod p?),
i=1

NS

where ¢,(2) = (27! — 1)/p is the Fermat quotient. It is also easy to see that for
every positive integer n and prime p > 2n +1

(p—1)/2

1
Z —- =0 (mod p).
= 7

As a g-analog of the above we have

Theorem 4.1. Let n be a positive integer. For every odd prime p we have

n—1

1 n—1 .
-1/ = 50 -0 Y (") 0 Kas) (mod )
=0
Proof. By definition and substitution ¢ — p — ¢ we have
«(n) «(n) q" =)
H; " (2n) =H; ™ 2n;(p - 1)/2) + > A—g iy
1<i<(p—1)/2 7
=2H;" (2n; (p—1)/2) (mod [p],)
which yields the theorem by (4) easily. O

To conclude the paper we remark that the congruence for general ¢-MHS should
involve some type of g-analog of Bernoulli numbers and Euler numbers similar to
the classical cases treated in [10]. We hope to return to this theme in the future.
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