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Abstract
A set of natural numbers is primitive if no element of the set divides another. Erdős
conjectured that if S is any primitive set, thenX

n2S

1
n log n

6
X
p2P

1
p log p

,

where P denotes the set of primes. In this paper, we make progress towards this
conjecture by restricting the setting to smaller sets of primes. Let P denote any
subset of P, and let N(P) denote the set of natural numbers all of whose prime
factors are in P. We say that P is Erdős-best among primitive subsets of N(P) if the
inequality X

n2S

1
n log n

6
X
p2P

1
p log p

holds for every primitive set S contained in N(P). We show that if the sum of
the reciprocals of the elements of P is small enough, then P is Erdős-best among
primitive subsets of N(P). As an application, we prove that the set of twin primes
exceeding 3 is Erdős-best among the corresponding primitive sets.

This problem turns out to be related to a similar problem involving multiplicative
weights. For any real number t > 1, we say that P is t-best among primitive subsets
of N(P) if the inequality X

n2S

n�t 6
X
p2P

p�t

holds for every primitive set S contained in N(P). We show that if the sum on the
right-hand side of this inequality is small enough, then P is t-best among primitive
subsets of N(P).

1. Introduction

A nonempty set of natural numbers is called primitive if no element of the set
divides another (for later convenience, we stipulate that the singleton set {1} is not
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primitive). In 1935, Erdős [3] established the convergence of the sum of 1/(n log n)
over all elements n of a given primitive set; from this he deduced that the lower
asymptotic density of a primitive set must equal 0 (in contrast to the upper density,
which can be positive, as shown by Besikovitch [1]). Erdős actually proved that this
sum of 1/(n log n) is bounded by a universal constant:

sup
S primitive

X
n2S

1
n log n

<1.

Noting that the set P of all primes is itself primitive and contains many small
elements, Erdős proposed that the supremum on the left-hand side is attained when
S = P.

Conjecture 1 (Erdős). For any primitive set S, we have
X
n2S

1
n log n

6
X
p2P

1
p log p

.

This conjecture is still open, although it has been established for primitive sets S

with additional properties (see for example [7]).
We consider a generalization of this problem, to primitive sets whose elements are

restricted to have only certain prime factors. For a given set of primes P, let N(P)
denote the set of natural numbers divisible only by primes in P (the multiplicative
semigroup generated by P), that is,

N(P) = {n 2 N : p | n) p 2 P}.

We say that P is Erdős-best among primitive subsets of N(P) if the inequality
X
n2S

1
n log n

6
X
p2P

1
p log p

holds for every primitive set S contained in N(P). In this terminology, Conjecture 1
can be restated as the assertion that P is Erdős-best among primitive subsets of N. A
similar heuristic, together with some computational evidence, leads us to generalize
the conjecture of Erdős to these restricted sets.

Conjecture 2. Any set of primes P is Erdős-best among primitive subsets of N(P).

Our first result shows that this conjecture holds if the sum of the reciprocals of
the elements of P is small enough.

Theorem 3. Let P be a set of primes such that

X
p2P

p�1 6 1 +
✓

1�
X
p2P

p�2

◆1/2

, (1)

Then P is Erdős-best among primitive subsets of N(P).
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Remark. The square root on the right-hand side of the inequality (1) is always
well-defined, as

P
p2P p�2 6

P
p2P p�2 < 1. In fact, the latter sum can be precisely

evaluated using the rapidly converging series

X
p2P

p�2 =
1X

m=1

µ(m)
m

log ⇣(2m) = 0.45224742 · · · . (2)

We conclude that if P satisfies the inequality (1) then
P

p2P p�1 < 2, while ifP
p2P p�1 6 1 +

�
1�

P
p2P p�2

�1/2 = 1.74010308 · · · then P satisfies (1).

The following application of Theorem 3 is quickly derived in Section 2.

Corollary 4. Let T denote the set of twin primes exceeding 3, that is, the set of all
primes p > 3 for which p � 2 or p + 2 is also prime. Then T is Erdős-best among
primitive subsets of N(T).

We find it amusing that we can identify the optimal primitive subset of N(T) without
needing to determine whether that subset is finite or infinite!

We can further generalize this problem by demanding that the integers in our
sets have at least a certain number of prime factors. For every natural number k,
define

Nk = {n 2 N : ⌦(n) = k} and N>k = {n 2 N : ⌦(n) > k},

where as usual ⌦(n) denotes the number of prime factors of n counted with multi-
plicity; for example, N1 = P and N>1 = N \ {1}. Note that each of the sets Nk is
itself a primitive set. One step towards a proof of Conjecture 1 would thus be to
establish the natural conjecture

X
p2P

1
p log p

>
X

n2N2

1
n log n

>
X

n2N3

1
n log n

> · · · ,

but this is still an open problem: it was shown by Zhang [7] that the first sum
over P is indeed larger than any of the other sums, but even this partial result is
nontrivial. However, in the setting of restricted prime factors, we can establish the
analogous chain of inequalities and in fact more. For any set P of primes, define

Nk(P) = N(P) \ Nk and N>k(P) = N(P) \ N>k,

so that we are now simultaneously restricting the allowable prime factors P and the
minimum number of prime factors k.

Theorem 5. Let P be a set of primes for which the inequality (1) holds. Then
for every natural number k, the set Nk(P) is Erdős-best among primitive subsets of
N>k(P).
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Manifestly, Theorem 3 is the special case k = 1 of Theorem 5. Since Nk(P) ⇢ N>j(P)
for all k > j, Theorem 5 implies in particular that when P is a set of primes satisfying
the inequality (1), we have

X
p2P

1
p log p

>
X

n2N2(P)

1
n log n

>
X

n2N3(P)

1
n log n

> · · · . (3)

We do not formulate Theorem 5 simply for its own sake: our proof of Theorem 3
requires comparing sets containing elements with di↵erent numbers of prime factors,
and the chain of inequalities (3) is a stable yardstick upon which these comparisons
can be made.

Finally, we modify the problem in yet a di↵erent way. Instead of counting an
integer n with weight 1/(n log n) in these sums, we may instead count it with weight
n�t for some fixed real number t. We can establish an analogue of Theorem 5 for
these weights as well. We say that Nk(P) is t-best among primitive subsets of N>k(P)
if the inequality X

n2S

n�t 6
X

p2Nk(P)

n�t

holds for every primitive set S contained in Nk(P).

Theorem 6. Let t > 1 be a real number, and let P be a set of primes satisfying the
inequality X

p2P

p�t 6 1 +
✓

1�
X
p2P

p�2t

◆1/2

. (4)

Then for every natural number k, the set Nk(P) is t-best among primitive subsets
of N>k(P).

In fact, it su�ces to establish Theorem 6 when P is finite, as we show in Section 2.
It can be verified that the function

X
p2P

p�t � 1�
✓

1�
X
p2P

p�2t

◆1/2

=
1X

m=1

µ(m)
m

log ⇣(tm)� 1�
✓

1�
1X

m=1

µ(m)
m

log ⇣(2tm)
◆1/2

,

which is defined for t > 1, has a unique zero ⌧ = 1.1403659 · · · and is positive for
all t > ⌧ . Furthermore, by monotonicity, if the inequality (4) is satisfied for P = P
then it is satisfied for any set of primes. We therefore have the following corollary.

Corollary 7. If t > ⌧ , then any set of primes P is t-best among all primitive
subsets of N(P).
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This assertion does not necessarily hold for every t: in fact, if
P

p2P p�1 diverges,
then one can establish, using equation (9) below, the existence of a number �(P) > 0
such that

P
p2P p�t <

P
n2N2(P) n�t for all t between 1 and 1 + �(P).

These new weighted sums
P

n2S n�t are much easier to handle than the original
sums

P
n2S 1/(n log n), because n�t is a multiplicative function of n. However,

Theorem 6 is not merely analogous to Theorem 5: in the next section we actually
derive the latter from the former. Once Section 2 is done, the only remaining task
is to prove Theorem 6, which we accomplish in Section 3.

2. Quick Derivations

In this section we give the three quick derivations described in the introduction:
first we demonstrate that the infinite case of Theorem 3 follows from the finite case,
then we deduce Theorem 5 (of which Theorem 3 is a special case) from Theorem 6,
and finally we derive Corollary 4 from Theorem 3. For convenience we introduce
the notation

⌃t(S) =
X
n2S

n�t

for any set S ⇢ N and any t > 1.

Proof of Theorem 3 for infinite P, assuming Theorem 3 for finite P. Let t > 1 be
a real number, let P be an infinite set of primes satisfying the inequality (4), and let
S be any primitive subset of N(P); we want to show that ⌃t(S) 6 ⌃t(P). Enumerate
P as P = {p1, p2, . . . }, and for each natural number n, let Pn = {p1, . . . , pn}. Also
let Sn = S \ N(Pn), so that Sn is a primitive subset of N(Pn). Note that the Pn

form a nested sequence of sets whose union is P, and similarly for Sn and S.
Because the inequality (4) holds for P, it also holds for each Pn by monotonicity:

⌃t(Pn) < ⌃t(P) 6 1 +
�
1� ⌃2t(P)

�1/2
< 1 +

�
1� ⌃2t(Pn)

�1/2
.

Therefore we may apply Theorem 3 to the finite set Pn for each natural number n,
concluding that ⌃t(Sn) 6 ⌃t(Pn). Taking the limit as n tends to infinity (valid by
the dominated convergence theorem, for example), we deduce that ⌃t(S) 6 ⌃t(P)
as desired.

Lemma 8. Let U be a subset of N, and let S? be a primitive subset of U. If S? is
t-best among all primitive subsets of U for every t > 1, then S? is also Erdős-best
among all primitive subsets of U.

Proof. If S is any primitive subset of U, then
X
n2S

1
n log n

=
X
n2S

Z 1

1
n�t dt =

Z 1

1

X
n2S

n�t dt =
Z 1

1
⌃t(S) dt.
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(The leftmost sum is finite by Erdős’s result [3], and the interchange of integral and
sum is justified because all terms are positive.) The hypothesis that S? is t-best
among all primitive subsets of U for every t > 1 means that ⌃t(S) 6 ⌃t(S?) for
every t > 1. It follows that

X
n2S

1
n log n

=
Z 1

1
⌃t(S) dt 6

Z 1

1
⌃t(S?) dt =

X
n2S?

1
n log n

,

as required.

Proof of Theorem 5, assuming Theorem 6. If P is a set of primes for which the in-
equality (1) holds, then for any t > 1,

X
p2P

p�t <
X
p2P

p�1 6 1 +
✓

1�
X
p2P

p�2

◆1/2

< 1 +
✓

1�
X
p2P

p�2t

◆1/2

.

Theorem 6 implies that Nk(P) is t-best among primitive subsets of N>k(P) for
every natural number k and every t > 1. It follows from Lemma 8 that Nk(P) is
also Erdős-best among primitive subsets of N>k(P).

Proof of Corollary 4, assuming Theorem 3. It su�ces to verify that the inequal-
ity (1) is satisfied with the set T = {5, 7, 11, 13, . . .} consisting of twin primes ex-
ceeding 3. On one hand, if B is the Brun constant defined by

B =
X

p : p+22P

✓
1
p

+
1

p + 2

◆
=
✓

1
3

+
1
5

◆
+
✓

1
5

+
1
7

◆
+
✓

1
11

+
1
13

◆
+ · · · ,

then the bound B < 2.347 has been given by Crandall and Pomerance [2, pp. 16–17]
(for a proof, see Klyve [4, Chapter 3]), and therefore

X
p2T

p�1 = B � 1
3
� 1

5
< 1.814. (5)

On the other hand, we have

X
p2T

p�2 <
1X

n=1

✓
1

(6n� 1)2
+

1
(6n + 1)2

◆
<

1X
n=1

✓
1

6n(6n� 3)
+

1
6n(6n + 3)

◆

=
1X

n=1

1
9

✓
1

2n� 1
� 1

2n + 1

◆
=

1
9

. (6)

We conclude that
X
p2T

p�1 < 1.814 < 1.9428 < 1 +
✓

1� 1
9

◆1/2

< 1 +
✓

1�
X
p2T

p�2

◆1/2

,

and thus Theorem 3 can be applied to deduce that T is Erdős-best among primitive
subsets of N(T).
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Let T3 = T [ {3} be the set of all twin primes, including 3. It can be shown
that

P
p2T3

p�2 is between 0.19725177 and 0.19725181. To show that T3 is Erdős-
best among all primitive subsets of N(T3), it therefore su�ces to establish the
unconditional bound B < 2.0959621 on the Brun constant. The true value of Brun’s
constant is believed to be B = 1.90216 · · · (see for example Sebah and Demichel [6]),
and if this is the case, then it follows from Theorem 3 that T3 is indeed Erdős-best.
Regrettably, the value B = 1.90216 · · · is quoted in several places in the literature
in a manner that suggests it has been rigorously established, but at the present
time no bound better than B < 2.347 is known unconditionally.

3. Proof of Theorem 6

We now turn to the sole remaining task, namely, establishing Theorem 6 when the
set of primes P is finite; we accomplish this task with the more detailed Proposi-
tion 11 stated below. As before, N(P) denotes the set of natural numbers all of
whose prime factors lie in P. We recall the previously defined notation

Nk = {n 2 N : ⌦(n) = k} and N>k = {n 2 N : ⌦(n) > k}

(with N0 = {1}), as well as

Nk(P) = N(P) \ Nk and N>k(P) = N(P) \ N>k.

We also recall the notation ⌃t(S) =
P

n2S n�t for any set S of natural numbers.

Lemma 9. Let t > 1 be a real number, and let P be a finite set of primes. Suppose
that

(i) for every proper subset Q of P and for every k 2 N, the primitive set Nk(Q)
is t-best among all primitive subsets of N>k(Q);

(ii) the inequality ⌃t(Nk(P)) > ⌃t(Nk+1(P)) holds for all k 2 N.

Then Nk(P) itself is t-best among all primitive subsets of N>k(P), for every k 2 N.

Proof. Fix k 2 N, and let S be a primitive subset of N>k(P); we need to show that
⌃t(S) 6 ⌃t(Nk(P)). Define ` = min{⌦(n) : n 2 S} (so that ` > k), and fix a number
s 2 S with ⌦(s) = `. We proceed to partition both N`(P) and S according to the
greatest common divisor of their elements with s.

Let d denote any divisor of s. Notice that

{n 2 N`(P) : (n, s) = d} = d ·
�
m 2 1

dN`(P) \ N :
�
m, s

d

�
= 1

 
= d · N`�⌦(d)(Qd),

where Qd is the set of primes in P that do not divide s/d; note that Qd is a proper
subset of P when d 6= s.
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We define

Sd = 1
d{n 2 S : (n, s) = d} =

�
m 2 1

dS \ N :
�
m, s

d

�
= 1

 
,

noting that Sd is a primitive subset of N>`�⌦(d)(Qd). With this notation, the sets
N`(P) and S can be decomposed as the disjoint unions

N`(P) =
[
d|s

d · N`�⌦(d)(Qd) and S =
[
d|s

d · Sd.

Therefore

⌃t(N`(P))� ⌃t(S) =
X
d|s

d�t
�
⌃t(N`�⌦(d)(Qd))� ⌃t(Sd)

�

=
X
d|s
d6=s

d�t
�
⌃t(N`�⌦(d)(Qd))� ⌃t(Sd)

�
, (7)

since N`�⌦(s)(Qs) = Ss = {1}.
However, Qd is a proper subset of P when d is a proper divisor of s, and

so hypothesis (i) tells us that N`�⌦(d)(Qd) is t-best among primitive subsets of
N>`�⌦(d)(Qd). In particular, Sd is a primitive subset of N>`�⌦(d)(Qd), and so
⌃t(Sd) 6 ⌃t(N`�⌦(d)(Qd)) for every proper divisor d of s. Consequently, equa-
tion (7) demonstrates that ⌃t(S) 6 ⌃t(N`(P)). Finally, since ` > k, hypothesis (ii)
tells us that ⌃t(N`(P)) 6 ⌃t(Nk(P)); thus we have derived the required inequality
⌃t(S) 6 ⌃t(Nk(P)).

The proof of Proposition 11 relies upon one remaining statement, which has an
elegant proof from the field of algebraic combinatorics. For all natural numbers k
and m, define the polynomial

hk(x1, . . . , xm) =
X

16j16···6jk6m

xj1xj2 · · ·xjk . (8)

Lemma 10. Let (x1, . . . , xm) be an arbitrary m-tuple of nonnegative real numbers.
If h1(x1, . . . , xm) > h2(x1, . . . , xm), then hk(x1, . . . , xm) > hk+1(x1, . . . , xm) for all
k 2 N.

Proof. For ease of notation, we suppress the dependence of the polynomials hk on
the quantities x1, . . . , xm. For any k 2 N, the Jacobi–Trudi identity tells us that
the determinant

det
✓

hk+1 hk

hk+2 hk+1

◆
= h2

k+1 � hkhk+2

is equal to the Schur function s� corresponding to the partition � = (k+1, k+1); see,
for example, Macdonald [5, Ch. I, §3, Eq. (4.3)]. Since the monomials comprising
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s� have nonnegative coe�cients (and we are evaluating at nonnegative real num-
bers x1, . . . , xm), this determinant is nonnegative, which implies that hk/hk+1 6
hk+1/hk+2 for each k 2 N. However, our assumption is that 1 6 h1/h2, and there-
fore 1 6 hk/hk+1 for all k 2 N, as required.

Proposition 11. Let t > 1 be a real number, and let P be a finite set of primes
satisfying the inequality ⌃t(P) 6 1 +

p
1� ⌃2t(P). Then

(i) for every proper subset Q of P and for every k 2 N, the primitive set Nk(Q)
is t-best among all primitive subsets of N>k(Q);

(ii) the inequality ⌃t(Nk(P)) > ⌃t(Nk+1(P)) holds for all k 2 N;

(iii) the primitive set Nk(P) is t-best among all primitive subsets of N>k(P), for
every k 2 N.

Remark. Note that the inequality ⌃t(P) 6 1+
p

1� ⌃2t(P) is exactly the same as
the hypothesis (4) of Theorem 6, while conclusion (iii) is the same as the conclusion
of that theorem; hence this proposition implies Theorem 6. Note also that conclu-
sions (i) and (ii) are the same as the hypotheses of Lemma 9, while conclusion (iii)
is the same as the conclusion of that lemma. We feel that this redundancy makes
clearer the structure of this proposition’s proof.

Proof. We proceed by induction on the cardinality #P. Suppose first that #P = 1,
so that P = {p} for some prime p. Conclusion (i) holds vacuously. Clearly Nk(P) =
{pk} and Nk+1(P) = {pk+1}, from which it follows that

⌃t(Nk(P)) = p�kt > p�(k+1)t = ⌃t(Nk+1(P))

for all k 2 N, establishing conclusion (ii). Finally, since P satisfies both (i) and (ii),
Lemma 9 tells us that P satisfies conclusion (iii) as well.

Now suppose that #P > 1. First, let Q be any proper subset of P. Since
#Q < #P, the induction hypothesis is that the proposition holds for Q; in particular,
conclusion (iii) holds for Q. Thus conclusion (i) holds for P.

Turning now to (ii), we begin by treating the case k = 1, which requires us to
establish the inequality ⌃t(P) > ⌃t(N2(P)). Note that

⌃t(P)2 =
✓X

p2P

p�t

◆2

= 2
X

n2N(P)
⌦(n)=2

n�t �
X
p2P

p�2t = 2⌃t(N2(P))� ⌃2t(P). (9)

The inequality ⌃t(P) > ⌃t(N2(P)) is therefore equivalent to ⌃t(P)2 � 2⌃t(P) +
⌃2t(P) 6 0, which holds if and only if 1�

p
1� ⌃2t(P) 6 ⌃t(P) 6 1+

p
1� ⌃2t(P).
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The second inequality is exactly the condition we have placed on P, and so it
remains only to prove the first inequality. First, note that 0 < ⌃2t(P) < ⌃2(P) 6
⌃2(P) < 1 by equation (2); therefore 1� ⌃2t(P) 6

p
1� ⌃2t(P). Consequently,

1�
p

1� ⌃2t(P) 6 ⌃2t(P) =
X
p2P

p�2t <
X
p2P

p�t = ⌃t(P),

as required.
This argument establishes conclusion (ii) in the case k = 1. However, if we write

P = {p1, . . . , pm}, note that

⌃t(Nk(P)) =
X

n2Nk(P)

n�t =
X

16j16···6jk6m

p�t
j1

p�t
j2

· · · p�t
jk

= hk

�
p�t
1 , . . . , p�t

m

�

using notation (8). We have just shown that h1

�
p�t
1 , . . . , p�t

m

�
> h2

�
p�t
1 , . . . , p�t

m

�
,

and so Lemma 10 imples that hk

�
p�t
1 , . . . , p�t

m

�
> hk+1

�
p�t
1 , . . . , p�t

m

�
for all k 2 N,

which establishes conclusion (ii) in full. Finally, since P satisfies both (i) and (ii),
Lemma 9 tells us that P satisfies conclusion (iii) as well, which completes the proof
of the proposition.
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