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Abstract
Let G be an abelian group. A set A ⇢ G is a B+

k -set if whenever a1 + · · · + ak =
b1 + · · ·+ bk with ai, bj 2 A, there is an i and a j such that ai = bj . If A is a Bk-set
then it is also a B+

k -set, but the converse is not true in general. Determining the
largest size of a Bk-set in the interval {1, 2, . . . , N} ⇢ Z or in the cyclic group ZN

is a well-studied problem. In this paper we investigate the corresponding problem
for B+

k -sets. We prove nontrivial upper bounds on the maximum size of a B+
k -set

contained in the interval {1, 2, . . . , N}. For odd k � 3, we construct B+
k -sets that

have more elements than the Bk-sets constructed by Bose and Chowla. We prove
that any B+

3 -set A ⇢ ZN has at most (1 + o(1))(8N)1/3 elements. A set A is a
B⇤

k-set if whenever a1 + · · · + ak = ak+1 + · · · + a2k with ai 2 A, there is an i 6= j
such that ai = aj . We obtain new upper bounds on the maximum size of a B⇤

k-set
A ⇢ {1, 2, . . . , N}, a problem first investigated by Ruzsa.

1. Introduction

Let G be an abelian group. A set A ⇢ G is a B+
k -set if

a1 + · · · + ak = b1 + · · · + bk with a1, . . . , ak, b1, . . . , bk 2 A (1)

implies ai = bj for some i and j. A set A is a Bk-set if (1) implies (a1, . . . , ak) is a
permutation of (b1, . . . , bk). If A is a Bk-set then A is also a B+

k -set, but in general
the converse is not true. Often B2-sets are called Sidon sets and have received much
attention since they were first studied by Erdős and Turán [9] in 1941. Let Fk(N)
be the maximum size of a Bk-set A ⇢ [N ] and let Ck(N) be the maximum size of
a Bk-set A ⇢ ZN . If A ⇢ ZN is a Bk-set, then A is also a Bk-set when viewed as a
subset of Z. Thus, for any k � 2, Ck(N)  Fk(N).

Erdős and Turán proved F2(N)  N1/2 +O(N1/4). Their argument was used by
Lindström [13] to show F2(N)  N1/2 + N1/4 + 1. In 2010, Cilleruelo [5] obtained
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F2(N)  N1/2+N1/4+ 1
2 as a consequence of a more general result. This is the best

known upper bound on F2(N). By counting di↵erences a� b with a 6= b, it is easy
to prove C2(N) 

p
N + 1. There are several constructions of dense B2-sets (see

[17], [2], [16]) that show C2(N) � N1/2 for infinitely many N . These constructions
imply F2(N) ⇠

p
N and lim sup C2(N)p

N
= 1.

For k � 3, bounds on Fk(N) and Ck(N) are not as precise. For each k � 2 and
prime power q, Bose and Chowla [2] constructed a Bk-set A ⇢ Zqk�1 with |A| = q
so that

(1 + o(1))N1/k  Fk(N).

The current upper bounds on Fk(N) and Ck(N) do not match this lower bound for
any k � 3. If A ⇢ [N ] is a Bk-set then each k-multiset in A gives rise to a unique sum
in {1, . . . , kN}. Therefore,

�|A|+k�1
k

�
 kN which implies Fk(N)  (k! · kN)1/k.

Similar counting shows Ck(N)  (k!N)1/k. By considering di↵erences one can
improve these bounds. We illustrate this idea with an example that is relevant to
our results. Let A ⇢ ZN be a B3-set. There are

�|A|
2

�
(|A| � 2) sums of the form

a1 + a2 � a3 where a1, a2, and a3 are distinct elements of A. Let A(2) = {{x, y} :
x, y 2 A,x 6= y}. It is not hard to check that each n 2 ZN has at most one
representation as n = a1 + a2 � a3 with {a1, a2} 2 A(2) and a3 2 A\{a1, a2}. This
implies

�|A|
2

�
(|A|� 2)  N so |A|  (2N)1/3 + 2. In general, for any k � 2

Ck(N) 
✓�

k

2

⌫
!
⇠

k

2

⇡
!N

◆1/k

+ Ok(1), (2)

and

Fk(N) 
✓�

k

2

⌫
!
⇠

k

2

⇡
! ·
⇠

k

2

⇡
N

◆1/k

+ Ok(N1/2k). (3)

These bounds were first obtained by Jia [12] in the even case, and Chen [3] in
the odd case. The best upper bounds on Fk(N) are to due to Green [10]. For
every k � 2, (3) has been improved (see for example [10] or [4]), but there is no
value of k � 3 for which (2) has been improved. This is interesting since all of the
constructions take place in cyclic groups and provide lower bounds on Ck(N). For
other bounds on Bk-sets the interested reader is referred to Green [10], Cilleruelo
[4], O’Bryant’s survey [14], or the book of Halberstam and Roth [11].

Now we discuss B+
k -sets. Write F+

k (N) for the maximum size of a B+
k -set A ⇢

[N ], and C+
k (N) for the maximum size of a B+

k -set A ⇢ ZN . Ruzsa [16] proved
that a set A ⇢ [N ] with no solution to the equation x1 + · · · + xk = y1 + · · · + yk

in 2k distinct integers has at most (1 + o(1))k2�1/kN1/k elements. Call such a set
a B⇤

k-set and define F ⇤
k (N) in the obvious way. Any B+

k -set is also a B⇤
k-set so

that F+
k (N)  F ⇤

k (N). Using the constructions of Bose and Chowla [2] and Ruzsa’s
Theorem 5.1 of [16], we get for every k � 3,

(1 + o(1))N1/k  Fk(N)  F+
k (N)  F ⇤

k (N)  (1 + o(1))k2�1/kN1/k.
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In this paper we improve this upper bound on F+
k (N) and F ⇤

k (N). We also
improve this lower bound on F+

k (N) for all odd k � 3, and we prove a nontrivial
upper bound on C+

3 (N). We do not consider the case when k = 2. The reason
for this is that Ruzsa [16] proved F ⇤

2 (N)  N1/2 + 4N1/4 + 11, and thus F2(N) ⇠
F+

2 (N) ⇠ F ⇤
2 (N) ⇠ N1/2. In fact, a B2-set is the same as a B+

2 -set.
Our first result is a construction which shows that for any odd k � 3, there is a

B+
k -set in [N ] that has more elements than any known Bk-set contained in [N ].

Theorem 1.1. For any prime power q and odd integer k � 3, there is a B+
k -set

A ⇢ Z2(qk�1) with |A| = 2q.

Using known results on densities of primes (see [1] for example), Theorem 1.1
implies

Corollary 1.2. For any integer N � 1 and any odd integer k � 3,

F+
k (N) � (1 + o(1))21�1/kN1/k.

Green proved F3(N)  (1+o(1))(3.5N)1/3. We will use a Bose-Chowla B3-set to
construct a B+

3 -set A ⇢ [2q3] with |A| = 2q = (4 · 2q3)1/3. Putting the two results
together we see that A is denser than any B3-set in [2q3] for su�ciently large prime
powers q. Our construction and Green’s upper bound show that F3(N) and F ⇤

3 (N)
are not asymptotically the same.

The proof of Theorem 1.1 is based on a simple lemma, Lemma 2.1, which implies

2Ck(N)  C+
k (2N) for any odd k � 3. (4)

This inequality provides us with a method of estimating Ck(N) by proving upper
bounds on C+

k (N) for odd k. Our next theorem provides such an estimate when
k = 3.

Theorem 1.3. If A ⇢ ZN is a B+
3 -set, then |A|  (1 + o(1))(8N)1/3.

Theorem 1.3 and (4) imply

Corollary 1.4. If A ⇢ ZN is a B3-set, then |A|  (1 + o(1))(2N)1/3.

As shown above, there is a simpler argument that implies this bound. The novelty
here is that our results imply (2) for k = 3. It is important to mention that the error
term we obtain is larger than the error term in the bound C3(N)  (2N)1/3 + 2.
We feel that any improvement in the leading term of Theorem 1.3 or (2) would be
significant.

In Z we obtain the following bounds for small k.

Theorem 1.5. (i) If A ⇢ [N ] is a B+
3 -set, then |A|  (1 + o(1))(18N)1/3.

(ii) If A ⇢ [N ] is a B+
4 -set, then |A|  (1 + o(1))(272N)1/4.
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Recall that Ruzsa [16] proved F ⇤
k (N)  (1 + o(1))k2�1/kN1/k which implies

F+
k (N)  (1 + o(1))k2�1/kN1/k. For k � 5, we were able to improve this upper

bound on F+
k (N) by modifying arguments of Ruzsa. Our method also applies to

B⇤
k-sets. As a consequence, we improve the upper bound on F ⇤

k (N) for all k � 3.
We state our result only for k = 3 and for large k. For other small values of k the
reader is referred to Table 1 in Section 6.

Theorem 1.6. If A ⇢ [N ] is a B⇤
3 -set, then |A|  (1 + o(1))(162N)1/3. If A ⇢ [N ]

is a B⇤
k-set, then

|A| 
✓

1
4

+ ✏(k)
◆

k2N1/k

where ✏(k) ! 0 as k !1.

We remark that Ruzsa’s upper bound on F ⇤
k (N) is asymptotic to k2N1/k. Our

results do not rule out the possibility of F+
k (N) being asymptotic to F ⇤

k (N).

Problem 1.7. Determine whether or not F+
k (N) is asymptotic to F ⇤

k (N) for k � 3.

If A ⇢ [N ] is a B⇤
k-set, then the number of solutions to 2x1 + x2 + · · · + xk�1 =

y1 + · · · + yk with xi, yj 2 A is o(|A|k) (see [16]). A B⇤
k-set allows solutions to this

equation with x1, . . . , xk�1, y1, . . . , yk all distinct, but such a solution cannot occur
in a B+

k -set. If it were true that F+
k (N) is asymptotic to F ⇤

k (N), then this would
confirm the belief that it is the sums of k distinct elements of A that control the size
of A and the lower order sums should not matter. Jia [12] defines a semi-Bk-set to
be a set A with the property that all sums consisting of k distinct elements of A are
distinct. He states that Erdős conjectured [8] that a semi-Bk-set A ⇢ [N ] should
satisfy |A|  (1 + o(1))N1/k. A positive answer to Problem 1.7 would be evidence
in favor of this conjecture.

At this time we do not know how to construct B+
2k-sets or B⇤

2k-sets for any k � 2
that are bigger than the corresponding Bose-Chowla B2k-sets. We were able to
construct interesting B+

4 -sets in the non-abelian setting.
Let G be a non-abelian group. A set A ⇢ G is a non-abelian Bk-set if

a1a2 · · · ak = b1b2 · · · bk with ai, bj 2 A (5)

implies ai = bi for 1  i  k. If A ⇢ G is a non-abelian Bk-set, then every k-letter
word in |A| is di↵erent so |A|k  |G|. Odlyzko and Smith [15] proved that there
exist infinitely many groups G such that G has a non-abelian B4-set A ⇢ G with

|A| = (1 + o(1))
⇣

|G|
1024

⌘1/4
. They actually proved a more general result that gives

constructions of non-abelian Bk-sets for all k � 2. The case when k = 4 is the
only result that we will need. Define a non-abelian B+

k -set to be a set A ⇢ G
such that (5) implies ai = bi for some i 2 {1, 2, . . . , k}. As in the abelian setting,
a non-abelian Bk-set is also a non-abelian B+

k -set but the converse is not true in
general. Using a construction of [15], we prove
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Theorem 1.8. For any prime p with p � 1 divisible by 4, there is a non-abelian
group G of order 48(p4 � 1) that contains a non-abelian B+

4 -set A ⇢ G with

|A| =
1
2
(p� 1).

Our result shows that there are infinitely many groups G such that G has a non-

abelian B+
4 -set A with |A| =

⇣
|G|
768

⌘1/4
+ o(|G|1/4). We conclude our introduction

with the following conjecture concerning B+
2k-sets.

Conjecture 1.9. If k � 4 is any even integer, then there exists a positive constant
ck such that for infinitely many N ,

F+
k (N) � (1 + ck + o(1))N1/k.

If Conjecture 1.9 is true with ck = 21�1/k � 1 as in the odd case, then using
Green’s upper bound F4(N)  (1 + o(1))(7N)1/4, we can conclude that F4(N) and
F ⇤

4 (N) are not asymptotically the same just as in the case when k = 3. Our hope
is that a positive answer to Conjecture 1.9 will either provide an analogue of (4) for
even k � 4, or a construction of a B+

k -set that does not use Bose-Chowla Bk-sets.

2. Proof of Theorem 1.1

In this section we show how to construct B+
k -sets for odd k � 3. Our idea is to take

a dense Bk-set A and a translate of A.

Lemma 2.1. If A ⇢ ZN is a Bk-set where k � 3 is odd, then

A+ := {a + bN : a 2 A, b 2 {0, 1}}

is a B+
k -set in Z2N .

Proof. Let k � 3 be odd and suppose

kX
i=1

ai + biN ⌘
kX

i=1

ci + diN (mod 2N) (6)

where ai, ci 2 A, and bi, di 2 {0, 1}. Taking (6) modulo N gives

kX
i=1

ai ⌘
kX

i=1

ci (mod N).
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Since A is a Bk-set in ZN , (a1, . . . , ak) must be a permutation of (c1, . . . , ck). If
we label the ai’s and ci’s so that a1  a2  · · ·  ak and c1  c2  · · ·  ck, then
ai = ci for 1  i  k. Rewrite (6) as

kX
i=1

biN ⌘
kX

i=1

diN (mod 2N).

The sums
Pk

i=1 bi and
Pk

i=1 di have the same parity. Since k is odd and bi, di 2
{0, 1}, there must be a j such that bj = dj , so aj + bjN ⌘ cj + djN (mod 2N).

Let q be a prime power, k � 3 be an odd integer, and Ak be a Bose-Chowla
Bk-set with Ak ⇢ Zqk�1 (see [2] for a description of Ak). Let

A+
k = {a + b(qk � 1) : a 2 Ak, b 2 {0, 1}}.

By Lemma 2.1, A+
k is a B+

k -set in Z2(qk�1) and |A+
k | = 2|Ak| = 2q. This proves

Theorem 1.1.

3. Proof of Theorem 1.3

Let A ⇢ ZN be a B+
3 -set. If N is odd, then 2x ⌘ 2y (mod N) implies x ⌘ y (mod N).

If N is even, then 2x ⌘ 2y (mod N) implies x ⌘ y (mod N) or x ⌘ y+N/2 (mod N).
Because of this, the odd case is quite a bit easier to deal with and so we present
the more di�cult case. In this section N is assumed to be even. If N is odd,
then the proof of Theorem 1.5(i) given in the next section works in ZN . The only
modification needed is to divide by N instead of 3N when applying Cauchy-Schwarz.
For simplicity of notation, we write x = y rather than x ⌘ y (mod N).

For n 2 ZN , define

f(n) = #
n
({a, c}, b) 2 A(2) ⇥A : n = a� b + c, {a, c} \ {b} = ;

o
.

Recall that A(2) = {{x, y} : x, y 2 A,x 6= y}. The sum
P

f(n)(f(n)�1) counts the
number of ordered pairs (({a, c}, b), ({x, z}, y)) such that the tuples ({a, c}, b) and
({x, z}, y) are distinct, and both are counted by f(n). For each such pair we cannot
have {a, c} = {x, z}. Otherwise, the tuples would be equal. If (({a, c}, b), ({x, z}, y))
is counted by

P
f(n)(f(n) � 1), then a + y + c = x + b + z. By the B+

3 property,
{a, y, c} \ {x, b, z} 6= ; so that {a, c} \ {x, z} 6= ; or b = y. The tuples are distinct,
so both of these cases cannot occur at the same time.
Case 1: {a, c} \ {x, z} 6= ; and b 6= y.

Without loss of generality, assume a = x. Cancel a from both sides of the
equation a � b + c = x � y + z and solve for c to get c = b � y + z. Here we are
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using the ordering of the tuples (({a, c}, b), ({x, z}, y)) to designate which element
is solved for after the cancellation of the common term.

If z = b, then c + y = 2b and we have a 3-term arithmetic progression (a.p. for
short). The number of trivial 3-term a.p.’s in A is at most 2|A| since for any a 2 A,

a + a = 2a = 2(a + N/2).

Next we count the number of nontrivial 3-term a.p.’s. By nontrivial, we mean that
all terms involved in the a.p. are distinct, and a + a = 2(a + N/2) is considered to
be trivial.

If p + q = 2r is a 3-term a.p., then call p and q outer terms. Let p be an outer
term of the 3-term a.p. p + q = 2r where p, q, r 2 A. We will show that p is an
outer term of at most one other nontrivial a.p. Let p + q0 = 2r0 be another a.p.
with q0, r0 2 A and (q, r, ) 6= (q0, r0).

If r = r0, then p + q = 2r = 2r0 = p + q0 so q = q0. This is a contradiction and
so we can assume that r 6= r0.

If q = q0, then 2r = p + q = p + q0 = 2r0 so r0 = r or r0 = r + N/2. Thus,
p + q = 2r or p + q = 2(r + N/2).

Now suppose r 6= r0 and q 6= q0. Since 2r � q = p = 2r0 � q0 we have by the B+
3

property,
{r, q0} \ {r0, q} 6= ;.

The only two possibilities are r = q or r0 = q0, but in either of these cases we get a
trivial 3-term a.p. Putting everything together proves the following lemma.

Lemma 3.1. If A ⇢ ZN is a B+
3 -set, then the number of 3-term arithmetic pro-

gressions in A is at most 4|A|.
Given a fixed element a 2 A and a fixed 3-term a.p. c + y = 2b in A, there are

at most 4! ways to form an ordered tuple of the form (({a, c}, b), ({a, b}, y)). The
number of ordered tuples counted by

P
f(n)(f(n) � 1) when {a, c} \ {x, z} 6= ;

and z = b is at most 4!|A| · 4|A| = 96|A|2. The first factor of |A| in the expression
4!|A| · 3|A| comes from the number of ways to choose the element a.

Assume now that z 6= b. Recall that we have solved for c to get c = b � y + z.
If b = y, then c = z which implies {a, c} = {x, z}, a contradiction as the tuples are
distinct. By definition y 6= z, so c = b�y+z where {b, z} 2 A(2) and {y}\{b, z} = ;.
The number of ways to write c in this form is f(c). Given such a solution {b, z}, y
counted by f(c), there are two ways to order b and z, and |A| ways to choose a = x.
The number of ordered tuples we obtain when {a, c} \ {x, z} 6= ; and z 6= b is at
most |A| · 2

P
c2A f(c). This completes the analysis in Case 1.

Before addressing Case 2, the case when b = y and {a, c} \ {x, z} = ;, some
additional notation is needed. For d 2 A + A, define

S(d) =
�
{a, b} 2 A(2) : a + b = d and there is a pair {a0, b0} 2 A(2)

with {a, b} \ {a0, b0} = ; and a0 + b0 = d} .
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Let d1, d2, . . . , dM be the integers for which S(di) 6= ;. Write S2
i for S(di) and define

T 1
i = {a : a 2 {a, b} for some {a, b} 2 S2

i }.

Let si = |S2
i | and d1, d2, . . . , dm be the integers for which si = 2. Let dm+1, . . . , dM

be the integers for which si � 3. For 1  i  M , we will use the notation S2
i =

{{ai
1, b

i
1}, {ai

2, b
i
2}, . . . , {ai

si
, bi

si
}}. A simple, but important, observation is that for

any fixed i 2 {1, . . . ,M}, any element of A appears in at most one pair in S2
i .

If A was a B3-set, then there would be no di’s. This suggests that a B+
3 -set

or a B⇤
3 -set that is denser than a B3-set should have many di’s. The B+

3 -set A+
3

constructed in Theorem 1.1 has m ⇡ 1
2

�|A+
3 |
2

�
. However, if A+

3 is viewed as a subset
of Z, then m ⇡ 1

4

�|A+
3 |
2

�
(see Lemma 4.3 which also holds in ZN if N is odd).

Case 2: b = y and {a, c} \ {x, z} = ;.
If b = y, then a + c = x + z. There are |A| choices for b = y and

MX
i=1

|S2
i |(|S2

i |� 1)

ways to choose an ordered pair of di↵erent sets {a, c}, {x, z} 2 A(2) with a+c = x+z,
and {a, c} \ {x, z} = ;.

Putting Cases 1 and 2 together gives the estimate

X
f(n)(f(n)� 1)  |A|

 
2
X
c2A

f(c) +
MX
i=1

|S2
i |(|S2

i |� 1)

!
+ 96|A|2. (7)

Our goal is to find upper bounds on the sums
P

c2A f(c) and
PM

i=1 |S2
i |(|S2

i |�1).

Lemma 3.2. If x 2 T 1
i \ T 1

j for some i 6= j, then (i) max{si, sj}  3 and (ii) if
si = sj = 3, then for some x1, y, z 2 A depending on i and j, we have dj = di +N/2
and S2

i = {{x, x1}, {y, z}, {y+N
2 , z+N

2 }}, S2
j = {{x, x1+N

2 }, {y+N
2 , z}, {y, z+N

2 }}.

Proof. If si = 2 and sj = 2 then we are done. Assume sj > 2. Let S2
i =

{{ai
1, b

i
1}, . . . , {ai

si
, bi

si
}} and S2

j = {{aj
1, b

j
1}, . . . , {aj

sj
, bj

sj
}}. Without loss of gen-

erality, suppose x = a1
i and x = a1

j . By definition, si � 2 so we can write
di = x + bi

1 = ai
2 + bi

2 and dj = x + bj
1 = aj

2 + bj
2 = aj

3 + bj
3.

Solve for x to get x = ai
2 + bi

2 � bi
1 = aj

2 + bj
2 � bj

1. This can be rewritten as

ai
2 + bi

2 + bj
1 = aj

2 + bj
2 + bi

1. (8)

Since di 6= dj , bi
1 cannot be bj

1 therefore bj
1 is not on the right hand side of (8), and

bi
1 is not on the left hand side of (8). By the B+

3 property, {ai
2, b

i
2} \ {aj

2, b
j
2} 6= ;.
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The same argument can be repeated with aj
3 in place of aj

2 and bj
3 in place of bj

2 to
get

{ai
2, b

i
2} \ {aj

3, b
j
3} 6= ;.

Recall any element of A can occur at most once in the list aj
1, b

j
1, a

j
2, b

j
2, . . . a

j
sj

, bj
sj

thus sj  3. By symmetry, si  3.
Now suppose si = sj = 3. Repeating the argument above, we have for each

2  k  3 and 2  l  3,
|{ai

l, b
i
l} \ {aj

k, bj
k}| = 1.

This intersection cannot have size 2 since di 6= dj . Without loss of generality, let
y = ai

2 = aj
2, z = bi

2 = aj
3, u = ai

3 = bj
2, and v = bi

3 = bj
3. We represent these

equalities between T 1
i and T 1

j using a bipartite graph with parts T 1
i and T 1

j where
w 2 T 1

i is adjacent to w0 2 T 1
j if and only if w = w0 (see Figure 1).

s s s s s s

s s s s s s

�
�

�
�

�
�

@
@

@
@

@
@

aj
1 = x

ai
1 = x

bj
1

bi
1

aj
2 = y

ai
2 = y

bj
2 = u

bi
2 = z

aj
3 = z

ai
3 = u

bj
3 = v

bi
3 = v

T 1
j

T 1
i

Figure 1 - Equality Graph for Lemma 3.2

The equalities di = y+z = u+v and dj = y+u = z+v imply di�dj = z�u and
di � dj = u� z. Therefore 2z = 2u. If z = u, then this is a contradiction since the
elements in the list x, bi

1, y, z, u, v are all distinct. It is in this step that the parity
of N plays an important role. We conclude u = z + N/2 and

dj = y + u = y + (z + N/2) = y + z + N/2 = di + N/2.

Let bi
1 = x1 so bj

1 = x1 + N/2. Since di = y + z = u + v and u = z + N/2,

v = y + z � u = y + z � (z + N/2) = y �N/2 = y + N/2.

Substituting u = z + N/2 and v = y + N/2 gives the assertion about the pairs in
S2

i and S2
j when si = sj = 3.

Corollary 3.3. If si � 4, then for any j 6= i, T 1
i \T 1

j = ;. Furthermore, any x 2 A
is in at most two T 1

i ’s with si = 3.
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Proof. The first statement follows immediately from Lemma 3.2. For the second
statement, suppose x 2 T 1

i \ T 1
j with si = sj = 3 and i 6= j. By Lemma 3.2,

{x, x1} 2 S2
i and {x, x1 + N/2} 2 S2

j for some x1 2 A. If x 2 T 1
k with k 6= i, then

{x, x1 + N/2} 2 S2
k so dj = x + (x1 + N/2) = dk and j = k.

Lemma 3.4. If A ⇢ ZN is a B+
3 -set, thenX

c2A

f(c)  |A|2 + 7|A|.

Proof. For c 2 A, let

g1(c) = #
n
({x, z}, y) 2 A(2) ⇥A : c = x� y + z, c 6= y, {x, z} \ {y} = ;

o

and

g2(c) = #
n
({x, z}, y) 2 A(2) ⇥A : c = x� y + z, c = y, {x, z} \ {y} = ;

o
.

For each c 2 A, f(c) = g1(c) + g2(c). The sum
P

c2A g2(c) is exactly the number
of nontrivial 3-term a.p.’s in A. By Lemma 3.1,

P
c2A g1(c)  4|A|. EstimatingP

c2A g1(c) takes more work. To compute g1(c) with c 2 A, we first choose an i
with c 2 T 1

i , and then choose one of the pairs {x, z} 2 S2
i \{c, y} to obtain a solution

c = x� y + z with c 6= y and {x, z} \ {y} = ;.
If c /2 T 1

1 [ · · ·[T 1
M , then the equation c+y = x+z with c, y, x, and z all distinct

has no solutions in A so g1(c) = 0. Assume c 2 T 1
1 [ · · · [ T 1

M .
Case 1: c /2 T 1

1 [ · · · [ T 1
m.

By Corollary 3.3, there are two possibilities. One is that there is a unique j with
c 2 T 1

j and sj � 3. In this case, |S2
j | 

|A|
2 so g1(c)  |A|

2 . The other possibility is
that c 2 T 1

i \ T 1
j with si = sj = 3 and i 6= j. In this case, g1(c)  4 because we

can choose either i or j, and then one of the two pairs in S2
i or S2

j that does not
contain c.
Case 2: c 2 T 1

1 [ · · · [ T 1
m.

By Lemma 3.2, c is not in any T 1
j with sj � 4 and c is in at most two T 1

j ’s with
sj = 3. There are at most |A| T 1

i ’s with c 2 T 1
i since there are at most |A| pairs

{c, y} that contain c so g1(c)  |A| + 4.
In all cases, g1(c)  |A| + 4 andX

c2A

f(c) =
X
c2A

(g1(c) + g2(c))  |A|(|A| + 4) + 4|A|

which proves the lemma.

Lemma 3.5. If g1(c) is the function of Lemma 3.4, then

2
MX
i=1

|S2
i |(|S2

i |� 1) =
X
c2A

g1(c).
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Proof. Define an edge-colored graph G with vertex set A, edge set [M
i=1S

2
i , and such

that the color of edge {a, b} is a + b. The sum
PM

i=1 |S2
i |(|S2

i | � 1) counts ordered
pairs ({c, y}, {x, z}) of distinct edges of G where {c, y} and {x, z} have the same
color, i.e., c + y = x + z, and c, y, x, and z are all distinct elements of A. The
sum

P
c2A g1(c) counts each such ordered pair ({c, y}, {x, z}) exactly two times,

one contribution coming from g1(c) and the other from g1(y).

By Lemma 3.5,
MX
i=1

|S2
i |(|S2

i |� 1)  1
2

X
c2A

f(c). (9)

Next we use the following version of the Cauchy-Schwarz inequality.

Lemma 3.6. (Cauchy-Schwarz) If x1, . . . , xn are real numbers, t 2 {1, 2, . . . , n�1},
and � = 1

t

Pt
i=1 xi � 1

n

Pn
i=1 xi, then

nX
i=1

x2
i �

1
n

 
nX

i=1

xi

!2

+
tn�2

n� t
.

A simple counting argument shows
P

f(n) =
�|A|

2

�
(|A| � 2). Let

P
c2A f(c) =

�|A|2. If

� :=
1
|A|

X
c2A

f(c)� 1
N

X
n

f(n) = �|A|� 1
N

X
n

f(n)

then, using Ruzsa’s bound |A| = O(N1/3) and C+
3 (N)  F+

3 (N), we get

� = �|A|�
�|A|

2

�
(|A|� 2)
N

� �|A|� C

where C is some absolute constant. By Lemma 3.6,

X
f(n)2 �

�|A|
2

�2
(|A|� 2)2

N
+

|A| · N(�|A|� C)2

N � |A|

=
�|A|

2

�2
(|A|� 2)2

N
+ �2|A|3

⇣
1� C

�|A|

⌘2

1� |A|
N

.

By (7) and (9),

X
f(n)2 

X
f(n) + |A|

 
2
X
c2A

f(c) +
MX
i=1

|S2
i |(|S2

i |� 1)

!
+ 96|A|2

 |A|3
2

+
5|A|
2

X
c2A

f(c) + 96|A|2

= |A|3
✓

1 + 5�
2

◆
+ 96|A|2.
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Combining the two estimates on
P

f(n)2 gives the inequality

�|A|
2

�2
(|A|� 2)2

N
+ �2|A|3

⇣
1� C

�|A|

⌘2

1� |A|
N

 |A|3
✓

1 + 5�
2

◆
+ 96|A|2. (10)

If � = 0, then (10) is not valid but we still get

�|A|
2

�2
(|A|� 2)2

N
 |A|3

2
+ 96|A|2.

This inequality implies |A|  (1 + o(1))(2N)1/3. Assume that � > 0. In this case,
(10) simplifies to

|A|  (1 + o(1))
�
2 + 10� � 4�2

�1/3
N1/3. (11)

At this point we find the maximum of the right hand side of (11) using the fact
that 0  �  1 + 7

|A| , which follows from Lemma 3.4. For |A| � 28, the maximum
occurs when � = 1 + 7

|A| therefore, after some simplifying, we find

|A|  (1 + o(1))(8N)1/3.

4. Proof of Theorem 1.5(i)

The proof of Theorem 1.5(i) follows along the same lines as the proof of Theorem 1.3.
We will use the same notation as in the previous section. The derivation of (7) is
very similar except in Z, or in ZN with N odd, there are fewer 3-term a.p.’s in
A. Regardless, (7) still holds under the assumption that A ⇢ [N ] is a B+

3 -set, or
A ⇢ ZN is a B+

3 -set and N odd.
Next we prove a lemma that corresponds to Lemma 3.2.

Lemma 4.1. If x 2 T 1
i \ T 1

j for distinct i and j, then either si = sj = 2, or if
sj > 2, then si = 2, sj = 3, and |T 1

i \ T 1
j | � 3.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 3.2 up
until the point where we write the equation 2z = 2u. In Z (or ZN with N odd),
this implies z = u which is a contradiction since the elements x, bi

1, y, z, u, v are all
distinct. This allows us to conclude that T 1

i \ T 1
j = ; for any i 6= j with si � 3 and

sj � 3.
The assertion |T 1

i \T 1
j | � 3 can be verified with some easy computations. Alter-

natively, one can just ignore ai
3 = u and bi

3 = v in Figure 1 to see |T 1
i \T 1

j | � 3.

Corollary 4.2. If m + 1  i < j  M , then T 1
i \ T 1

j = ;.
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Proof. If x 2 Ti \ Tj with i 6= j, then by Lemma 4.1, one of si or sj must be equal
to 2.

The next lemma has no corresponding lemma from the previous section. It will
be used to estimate

P
c2A f(c).

Lemma 4.3. If A ⇢ [N ] is a B+
3 -set or if A ⇢ ZN is a B+

3 -set and N is odd, then
for any a 2 A, the number of distinct i 2 {1, 2, . . . ,m} such that a 2 T 1

i is at most
|A|
2 .

Proof. To make the notation simpler, we suppose a 2 T 1
i for 1  i  k and we

will show k  |A|
2 . The case when a 2 T 1

i1 \ · · · \ T 1
ik

for some sequence 1 
i1 < · · · < ik  m is the same. For this lemma we deviate from the notation
S2

i = {{ai
1, b

i
1}, . . . {ai

si
, bi

si
}}. Write S2

i = {{a, ai}, {bi, ci}} and a + ai = bi + ci

where 1  i  k, and for fixed i, the elements a, ai, bi, and ci are all distinct. Observe
a1, . . . , ak are all distinct since the sums a + ai are all distinct. For 1  i  k,
a = bi + ci � ai. Therefore,

bi + ci + aj = bj + cj + ai

for any 1  i, j  k. These two sums must intersect and they cannot intersect at
aj or ai, unless i = j, so for 2  j  k,

{b1, c1} \ {bj , cj} 6= ;.

Let 2  j  l be the indices for which the sums intersect at b1. Let l + 1  j  k
be the indices for which the sums intersect at c1. Let b = b1 and c = c1. We have
the k equations

a + a1 = b + c,

a + a2 = b + c2,
...

...
a + al = b + cl,

a + al+1 = bl+1 + c,

...
...

a + ak = bk + c.

We will show that a1, . . . , ak, c1, . . . , cl, bl+1, . . . , bk are all distinct which implies
2k  |A|.

Suppose ai = bj for some 2  i  l and l+1  j  k. Then a+bj = a+ai = b+ci,
but a = bj + c � aj . Therefore, b + ci = a + bj = 2bj + c � aj which implies
2bj +c = b+ci +aj . The elements aj , bj , and c are all distinct so these sums cannot
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intersect at aj . Similarly they cannot intersect at c. The only remaining possibility
is bj = ci, but then ai = bj = ci, which is a contradiction. We conclude that ai and
bj are distinct for 2  i  l and l + 1  j  k. A similar argument shows that aj

and ci are distinct for l + 1  j  k and 2  i  l.
Suppose now that ai = ci0 for some 2  i 6= i0  l. Then b + ci = a + ai =

a + ci0 = a + (a + ai0 � b), so that 2b + ci = 2a + ai0 . Since 2  i0  l, these sums
cannot intersect at b and they cannot intersect at a. If ci = ai0 , then a = b which is
impossible. The equation 2b+ ci = 2a+ai0 contradicts the B+

3 property. Note that
2b = 2a need not imply a = b if A ⇢ ZN with N even. We conclude that ai 6= ci0

for each 2  i 6= i0  l. Similarly, aj 6= bj0 for l + 1  j 6= j0  k.
The previous two paragraphs imply

{a1, a2, . . . , ak} \ {c2, c3, . . . , cl, bl+1, bl+2, . . . , bk} = ;.

To finish the proof we show {c2, c3, . . . , cl}\{bl+1, bl+2, . . . , bk} = ;. Suppose ci = bj

for some 2  i  l and l + 1  j  k. Then

a + ai = b + ci = b + bj = b + (a + aj � c) = b + a + aj � (a + a1 � b) = aj + 2b� a1

which implies a + ai + a1 = aj + 2b. Since i < l + 1  j, these sums cannot
intersect at aj . They cannot intersect at b either since a, ai, b, and ci are all distinct
whenever 1  i  l. This is a contradiction. Therefore, ci 6= bj for all 2  i  l and
l + 1  j  k.

Lemma 4.4. If A ⇢ [N ] is a B+
3 -set, then

X
c2A

f(c)  |A|2
2

+ 4|A|.

Proof. Again we write f as a sum of the simpler functions g1 and g2. Recall that
for c 2 A,

g1(c) = #
n
({x, z}, y) 2 A(2) ⇥A : c = x� y + z, c 6= y, {x, z} \ {y} = ;

o
,

and

g2(c) = #
n
({x, z}, y) 2 A(2) ⇥A : c = x� y + z, c = y, {x, z} \ {y} = ;

o
.

For each c 2 A, f(c) = g1(c) + g2(c). The sum
P

c2A g2(c) is exactly the number of
nontrivial 3-term a.p.’s in A. By Lemma 3.1, this is at most 4|A|.

If c /2 T 1
1 [ · · ·[T 1

M , then the equation c+y = x+z with c, y, x, and z all distinct
has no solutions in A so g1(c) = 0. Assume c 2 T 1

1 [ · · · [ T 1
M .

Case 1: c /2 T 1
1 [ · · · [ T 1

m.
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By Corollary 4.2, there is a unique j with c 2 T 1
j and m + 1  j  M . For such

a j we have |S2
j | 

|A|
2 by Corollary 4.2. There is a unique pair in S2

j that contains
c so y is determined. There are at most |A|

2 choices for the pair {x, z} 2 S2
j \{c, y}

so g1(c)  |A|
2 .

Case 2: c 2 T 1
1 [ · · · [ T 1

m.
First assume c /2 T 1

m+1 [ · · · [ T 1
M . A solution to c + y = x + z with c, y, x, and

z all distinct corresponds to a choice of an S2
i with 1  i  m and c 2 T 1

i . By
Lemma 4.3, c is in at most |A|

2 T 1
i ’s and so g1(c)  |A|

2 .
Lastly suppose c 2 T 1

m+1 [ · · · [ T 1
M . There is a unique j with c 2 T 1

j and
m + 1  j  M . Furthermore, for this j we have |T 1

j | = 6 by Lemma 4.1. If
c 2 T 1

i with 1  i  m then, again by Lemma 4.1, |T 1
i \ T 1

j | � 3. There are
�6
3

�
3-subsets of T 1

j and given such a 3-subset, there are
�3
1

�
ways to pair up an element

in the 3-subset with c in S2
i . This implies c is in at most 3

�6
3

�
S2

i ’s with 1  i  m,
so g1(c)  2 + 3

�6
3

�
 |A|

2 . The 2 comes from choosing one of the two pairs in
S2

j \{c, y}.

The rest of the proof of Theorem 1.5(i) is almost identical to that of Theorem 1.3.
If
P

c2A f(c) = �|A|2, then by (7) and (9),

X
f(n)2  |A|3

✓
1 + 5�

2

◆
+ O(|A|2).

We use the same version of the Cauchy-Schwarz inequality to get

�|A|
2

�2
(|A|� 2)2

3N
+ �2|A|3

⇣
1� C

�|A|

⌘
1� |A|

3N

 |A|3
✓

1 + 5�
2

◆
+ O(|A|2). (12)

If � = 0, then �|A|
2

�2
(|A|� 2)2

3N
 |A|3

2
+ O(|A|2)

which implies |A|  (1 + o(1))(6N)1/3. Assume � > 0. Then (12) simplifies to

|A|  (1 + o(1))(6 + 30� � 12�2)1/3N1/3.

By Lemma 4.4, 0  �  1
2 + 3

|A| . The maximum occurs when � = 1
2 + 3

|A| and we
get

|A|  (1 + o(1))(18N)1/3.

If we were working in ZN with N odd, then in (12) the 3N can be replaced by
N . Some simple calculations show that we get Theorem 1.3 in the odd case. We
actually obtain the upper bound |A|  (1+ o(1))(6N)1/3 when A ⇢ ZN is a B+

3 -set
and N is odd.
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5. Proof of Theorem 1.5(ii)

Let A ⇢ [N ] be a B+
4 -set. For n 2 [�2N, 2N ], define

f(n) = #{({a1, a2}, {b1, b2}) 2 A(2) ⇥A(2) : a1 + a2 � b1 � b2 = n,

{a1, a2} \ {b1, b2} = ;}.

Recall that A(2) = {{x, y} : x, y 2 A,x 6= y}.

Lemma 5.1. If A ⇢ [N ] is a B+
4 -set, then A is a B2-set.

Proof. Suppose a + b = c + d with a, b, c, d 2 A. If {a, b} \ {c, d} = ;, then the
equation 2(a + b) = 2(c + d) contradicts the B+

4 property so {a, b} \ {c, d} 6= ;.
Since a + b = c + d and {a, b} \ {c, d} 6= ;, we have {a, b} = {c, d}.

Lemma 5.2. If A ⇢ [N ] is a B+
4 -set, then for any integer n, f(n)  2|A|.

Proof. Suppose f(n) � 1. Fix a tuple ({a1, a2}, {b1, b2}) counted by f(n). Let
({c1, c2}, {d1, d2}) be another tuple counted by f(n), not necessarily di↵erent from
({a1, a2}, {b1, b2}). Then a1 + a2 � b1 � b2 = c1 + c2 � d1 � d2 so

a1 + a2 + d1 + d2 = c1 + c2 + b1 + b2. (13)

By the B+
4 property, {a1, a2, d1, d2} \ {c1, c2, b1, b2} 6= ;. In order for this in-

tersection to be non-empty, it must be the case that {a1, a2} \ {c1, c2} 6= ; or
{b1, b2} \ {d1, d2} 6= ;.
Case 1: {a1, a2} \ {c1, c2} 6= ;.

Assume a1 = c1. There are at most |A| choices for c2 so we fix one. The equality
a1 = c1 and (13) imply

d1 + d2 = b1 + b2 + c2 � a2. (14)

The right hand side of (14) is determined. By Lemma 5.1, there is at most one pair
{d1, d2} such that (14) holds.
Case 2: {a1, a2} \ {c1, c2} = ; and {b1, b2} \ {d1, d2} 6= ;.

Again there is no loss in assuming b1 = d1. There are at most |A| choices for d2

so fix one. The equality b1 = d1 and (13) imply

c1 + c2 = a1 + a2 � b2 + d2. (15)

The right hand side of (15) is determined and there is at most one pair {c1, c2}
satisfying (15) as before.

Putting the two possibilities together we get at most 2|A| solutions
({c1, c2}, {d1, d2}). We have also accounted for the solution ({a1, a2}, {b1, b2}) in
our count so f(n)  2|A|.
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Lemma 5.3. If A ⇢ [N ] is a B+
4 -set, then

X
f(n)(f(n)� 1)  2|A|

X
n2A�A

f(n). (16)

Proof. The left hand side of (16) counts the number of ordered tuples

(({a1, a2}, {b1, b2}), ({c1, c2}, {d1, d2}))

such that ({a1, a2}, {b1, b2}) 6= ({c1, c2}, {d1, d2}), and both tuples are counted by
f(n). Equation (13) holds for these tuples. As before we consider two cases.
Case 1: {a1, a2} \ {c1, c2} 6= ;.

Assume a1 = c1 so that a2 � c2 = b1 + b2 � d1 � d2.
If {b1, b2}\{d1, d2} 6= ;, say b1 = d1, then a2� c2 = b2�d2. We can rewrite this

equation as a2+d2 = b2+c2 so that {a2, d2} = {b2, c2}. Since {a1, a2}\{b1, b2} = ;,
it must be the case that a2 = c2 and d2 = b2. This contradicts the fact that the
tuples are distinct. We conclude {b1, b2} \ {d1, d2} = ;.

There are |A| choices for the element a1 = c1 and we fix one. Since a2 � c2 =
b1 + b2 � d1 � d2 and {b1, b2} \ {d1, d2} = ;, there are f(a2 � c2) ways to choose
{b1, b2} and {d1, d2}. Also observe that each n 2 A � A with n 6= 0 has a unique
representation as n = a2 � c2 with a2, c2 2 A. This follows from the fact that A is
a B2-set.
Case 2: {a1, a2} \ {c1, c2} = ; and {b1, b2} \ {d1, d2} 6= ;.

The argument in this case is essentially the same as that of Case 1.
Putting the two cases together proves the lemma.

Observe
P

f(n) =
�|A|

2

��|A|�2
2

�
. Using Cauchy-Schwarz, and Lemmas 5.3 and

5.2,
⇣�|A|

2

��|A|�2
2

�⌘2

4N


X
f(n)2 

✓
|A|
2

◆✓
|A|� 2

2

◆
+ 2|A|

X
n2A�A

f(n)

 |A|4
4

+ 2|A||A�A| · 2|A|

 |A|4
4

+ 4|A|4 =
17|A|4

4
.

After rearranging we get

|A|  (1 + o(1))(16 · 17N)1/4 = (1 + o(1))(272N)1/4.
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6. Proof of Theorem 1.6

Lemma 6.1. Let A be a B+
k -set with k � 4. If k = 2l, then there is a subset

A0 ⇢ A such that A0 is a B+
l -set and |A0| � |A|� 2l. If k = 2l + 1, then there is a

subset A0 ⇢ A such that |A0| � |A|� 2k and A0 is either a B+
l -set or a B+

l+1-set.

Proof. Suppose k = 2l with l � 2. If A is not a B+
l -set, then there is a set of 2l

(not necessarily distinct) elements a1, . . . , a2l 2 A, such that

a1 + · · · + al = al+1 + · · · + a2l

and {a1, . . . , al} \ {al+1, . . . , a2l} = ;. Let A0 = A\{a1, a2, . . . , a2l}. If A0 is not a
B+

l -set, then there is another set of 2l elements of A0, say b1, . . . , b2l, such that

b1 + · · · + bl = bl+1 + · · · + b2l

and {b1, . . . , bl} \ {bl+1, . . . , b2l} = ;. Adding these two equations together gives

a1 + · · · + al + b1 + · · · + bl = al+1 + · · · + a2l + bl+1 + · · · + b2l

with {a1, . . . , al, b1, . . . , bl} \ {al+1, . . . , a2l, bl+1, . . . , b2l} = ;. This is a contradic-
tion.

The case when k = 2l + 1 � 5 can be handled in a similar way.

It is easy to modify the proof of Lemma 6.1 to obtain a version for B⇤
k-sets.

Lemma 6.2. Let A be a B⇤
k-set with k � 4. If k = 2l, then there is a subset A0 ⇢ A

such that A0 is a B⇤
l -set and |A0| � |A| � 2l. If k = 2l + 1, then there is a subset

A0 ⇢ A such that |A0| � |A|� 2k and A0 is either a B⇤
l -set or a B⇤

l+1-set.

For A ⇢ [N ] and j � 2, let

�j(n) = #
�
(a1, . . . , aj) 2 Aj : a1 + · · · + aj = n

 
.

Let e(x) = e2⇡ix and f(t) =
X
a2A

e(at). For any j � 1, f(t)j =
P

�j(n)e(nt) so by

Parseval’s Identity,
P

�j(n)2 =
R 1
0 |f(t)|2jdt. The next lemma is (5.9) of [16].

Lemma 6.3. If A ⇢ [N ] is a B⇤
k-set, then

X
�k(n)2  (1 + o(1))k2|A|

X
�k�1(n)2. (17)

In [16], Ruzsa estimates the right hand side of (17) using Hölder’s Inequality and
shows X

�k�1(n)2 
⇣X

�k(n)
⌘ k�2

k�1 |A| 1
k�1 .

Our next lemma uses Hölder’s Inequality in a di↵erent way.
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Lemma 6.4. Let A ⇢ [N ] be a B⇤
k-set. If k � 4 is even, then

X
�k(n)2  (1 + o(1))kk|A|k/2

X
�k/2(n)2.

If k = 2l + 1 � 5, then
X

�k(n)2  (1 + o(1))max
n
kk+1|A|l+1

X
�l(n)2, kk�1|A|l

X
�l+1(n)2

o
.

Proof. First assume that k = 2l � 4. By Lemma 6.2, we may assume that A is
a B⇤

l -set. Otherwise, we pass to a subset of A that is a B⇤
l set and has at least

|A|� 2k elements. Applying Hölder’s Inequality with p = k
k�2 and q = k

2 , we get

X
�k�1(n)2 =

Z 1

0
|f(t)|2(k�1)dt =

Z 1

0
|f(t)| 2k

p |f(t)| 2l
q dt


✓Z 1

0
|f(t)|2kdt

◆1/p ✓Z 1

0
|f(t)|2ldt

◆1/q

=
⇣X

�k(n)2
⌘(k�2)/k ⇣X

�l(n)2
⌘2/k

.

Substituting this estimate into (17) and solving for
P

�k(n)2 gives the first part of
the lemma.

Now assume k = 2l + 1 � 5. Again by Lemma 6.2, we can assume that A is
either a B⇤

l -set or a B⇤
l+1-set.

Suppose A is a B⇤
l -set. Applying Hölder’s Inequality with p = k+1

k�1 and q = k+1
2 ,

we get X
�k�1(n)2 

⇣X
�k(n)2

⌘ k�1
k+1

⇣X
�l(n)2

⌘ 2
k+1

.

This inequality and (17) imply
X

�k(n)2  (1 + o(1))kk+1|A| k+1
2
X

�l(n)2.

If A is a B⇤
l+1-set instead, then apply Hölder’s Inequality with p = l

l�1 and q = 1
l

and proceed as above. It is in this step that we must assume k = 2l + 1 � 5
otherwise if k = 3, then l = 1 and p is not defined.

For k � 2 let c+
k be the smallest constant such that for any B+

k -set A,
X

�k(n)2  (1 + o(1))c+
k |A|k.

Define c⇤k similarly. The techniques of [16] can be used to show that c⇤k  k2k so c+
k

and c⇤k are well defined. Observe that for any k � 2, c+
k  c⇤k. Using Lemma 6.4, it

is not di�cult to show that for even k � 4,

c+
k  kkc+

k/2 and c⇤k  kkc⇤k/2, (18)
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Similarly, one can show that for odd k = 2l + 1 � 5,

c+
k  max

�
kk+1c+

l , kk�1c+
l+1

 
and c⇤k  max

�
kk+1c⇤l , k

k�1c⇤l+1

 
. (19)

Lemma 6.5. Let A ⇢ [N ] be a B+
k -set. If k � 4 is even, then

|A|  (1 + o(1))
⇣
kk+1c+

k/2N
⌘1/k

. (20)

If k = 2l + 1 � 5, then

|A|  (1 + o(1))
�
kk · max{k2c+

l , c+
l+1}N

�1/k
. (21)

The same inequalities hold under the assumption that A ⇢ [N ] is a B⇤
k-set provided

that the c+
k ’s are replaced with c⇤k’s.

Proof. By Cauchy-Schwarz,

|A|2k

kN

X

�k(n)2 (22)

for any k � 2.
First suppose k � 4 is even. By (22) and Lemma 6.4,

|A|2k

kN

X

�k(n)2  (1 + o(1))kk|A|k/2
X

�k/2(n)2  (1 + o(1))kkc+
k/2|A|k.

Solving this inequality for |A| proves (20).
Now suppose k = 2l + 1 � 5. By (22) and Lemma 6.4,

|A|2k

kN


X
�k(n)2  (1 + o(1))max

�
kk+1c+

l |A|k, kk�1c+
l+1|A|k

 
= (1 + o(1))|A|kkk�1 max{k2c+

l , c+
l+1}.

Lemma 6.5 shows that we can obtain upper bounds on B+
k -sets and B⇤

k-sets
recursively. To start the recursion we need estimates on c+

2 , c⇤2, c+
3 , and c⇤3.

Lemma 6.6. If A is a B⇤
2 -set, thenX

�2(n)2  2|A|2 + 32|A|

and therefore c⇤2  2.

Proof. Let �(n) = #{(a1, a2) 2 A2 : a1 � a2 = n}. Observe
P

�2(n)2 =
P

�(n)2.
In [16] (see Theorem 4.7) it is shown that �(n)  1 for any n 6= 0, and �(n) = 2 for
at most 8|A| integers n. We concludeX

�(n)2  �(0)2 + 8|A| · 4 + |A�A|  2|A|2 + 32|A|.
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Lemma 6.7. If A ⇢ [N ] is a B+
3 -set, thenX

�3(n)2  (1 + o(1))18|A|3

and therefore c+
3  18.

Proof. Let A ⇢ [N ] be a B+
3 -set and let

r2(n) = #
n
{a, b} 2 A(2) : a + b = n

o
.

Define 2 · A := {2a : a 2 A}. For n 2 2 · A, �2(n) = 2r2(n) + 1 and �2(n) = 2r2(n)
otherwise. The sum

P
n22·A r2(n) counts the number of 3-term a.p.’s in A so by

Lemma 3.1,X
�2(n)2 = 4

X
r2(n)2 + 4

X
n22·A

r2(n) + |2 · A|

 4
X

r2(n)2 + 4 · 4|A| + |A| = 4
X

r2(n)2 + 17|A|.

Using the notation and results of Section 3, and the inequality x2  2x(x � 1) for
x � 2, we have

X
r2(n)2 =

MX
i=1

|S2
i |2  2

MX
i=1

|S2
i |(|S2

i |� 1) 
X
c2A

f(c)  |A|2
2

+ 3|A|.

Combining this inequality with (17) givesX
�3(n)2  (1 + o(1))32|A|

X
�2(n)2  (1 + o(1))9|A|(4

X
r2(n)2 + 17|A|)

 (1 + o(1))9|A|(2|A|2 + 29|A|)  (1 + o(1))(18|A|3 + 261|A|2).

Lemma 6.8. If A ⇢ [N ] is a B⇤
3 -set, thenX

�3(n)2  (1 + o(1))54|A|3

and therefore c⇤3  54.

Proof. Let A ⇢ [N ] be a B⇤
3 -set. The idea of the proof is motivated by the same

arguments that we used for B+
3 -sets. For d 2 A + A, let

P 2(d) = {{a, b} 2 A(2) : a + b = d}.

Define m0 = 0 and for 1  j  4, let dmj�1+1, dmj�1+2, . . . , dmj be the integers for
which |P 2(di)| = j. Let dm4+1, dm4+2, . . . , dM be the integers for which |P 2(di)| �
5. Write P 2

i for P 2(di), pi for |P 2
i |, and for 1  i  M , let

Q1
i = {a : a 2 {a, b} for some {a, b} 2 P 2

i }.
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We will use the notation P 2
i = {{ai

1, b
i
1}, . . . , {ai

pi
, bi

pi
}}. A di↵erence between the

P 2
i ’s of this section and the S2

i ’s of earlier sections is that we allow for a P 2
i to

contain only one pair.

Lemma 6.9. If x 2 Q1
i \ Q1

j for some i 6= j where pi � 3 and pj � 3, then
pi + pj  7.

Proof. Without loss of generality, assume x = ai
1 and x = aj

1 where

P 2
i = {{ai

1, b
i
1}, {ai

2, b
i
2}, . . . , {ai

pi
, bi

pi
}} and P 2

j = {{aj
1, b

j
1}, {a

j
2, b

j
2}, . . . , {aj

pj
, bj

pj
}}.

For 2  l  pi we have di = x + bi
1 = ai

l + bi
l. Similarly, for 2  k  pj we have

dj = x + bj
1 = aj

k + bj
k. Then ai

l + bi
l � bi

1 = x = aj
k + bj

k � bj
1, so

ai
l + bi

l + bj
1 = aj

k + bj
k + bi

1 for any 2  l  pi and 2  k  pj . (23)

If bj
1 2 T 1

i , then there is no loss in assuming bj
1 2 {ai

2, b
i
2}. The same assumption

may be made with i and j interchanged. This means that for l � 3, bj
1 is not a

term in the sum ai
l + bi

l and for k � 3, bi
1 is not a term in the sum aj

k + bj
k. The B⇤

3

property and (23) imply

|{ai
l, b

i
l} \ {aj

k, bj
k}| = 1 for any 3  l  pi and 3  k  pj . (24)

In particular, {ai
3, b

i
3} \ {aj

3, b
j
3} 6= ; and {ai

3, b
i
3} \ {aj

4, b
j
4} 6= ; so that pj  4.

Here we are using the fact that any element of A can occur at most once in the list
ai
1, b

i
1, . . . , a

i
pi

, bi
pi

. By symmetry, pi  4.
If pi = pj = 4, then by (24), {ai

3, b
i
3, a

i
4, b

i
4} = {aj

3, b
j
3, a

j
4, b

j
4} but then 2di =

ai
3 + bi

3 + ai
4 + bi

4 = 2dj implying di = dj , a contradiction.

Corollary 6.10. If pi � 4 and pj � 4 with i 6= j, then Q1
i \Q1

j = ;.

Using the definition of the P 2
i ’s, we can write

X
r2(n)2 =

MX
i=1

|P 2
i |2 = m1+4(m2�m1)+9(m3�m2)+16(m4�m3)+

MX
i=m4+1

|P 2
i |2.

If pi = pj = 4 for some i 6= j, then Q1
i \Q1

j = ; by Corollary 6.10 so m4�m3  |A|
8 .

For 1  i  3, let �i|A|2 = mi �mi�1. Then

X
r2(n)2  |A|2(�1 + 4�2 + 9�3) +

MX
i=m4+1

|P 2
i |2 + 2|A|. (25)

Define a graph H with vertex set Q1
m2+1[· · ·[Q1

m3
and edge set P 2

m2+1[· · ·[P 2
m3

.
Let n = |V (H)|. The graph H has 3(m3 � m2) = 3�3|A|2 edges so 3�3|A|2  n

2

which can be rewritten asp
6�3|A|  |Q1

m2+1 [ · · · [Q1
m3

|. (26)



INTEGERS: 14 (2014) 23

For any i and j with m2 + 1  i  m3 and m4 + 1  j  M , Q1
i \ Q1

j = ; by
Lemma 6.9. Thus (26) implies

MX
i=m4+1

|P 2
i | =

1
2

MX
i=m4+1

|Q1
i | =

1
2
|Q1

m4+1 [ · · · [Q1
M |  1

2
(1�

p
6�3)|A|.

We conclude
PM

i=m4+1 |P 2
i |2 

⇣
1�

p
6�3

2

⌘2
|A|2. This estimate and (25) give

X
r2(n)2  |A|2

✓
�1 + 4�2 + 9�3 +

1
4
(1�

p
6�3)2

◆
+ 2|A|. (27)

Each pair {a, b} 2 A(2) is in at most one P 2
i so

|A|2(�1 + 2�2 + 3�3) = m1 + 2(m2 �m1) + 3(m3 �m2) 
✓
|A|
2

◆
 |A|2

2
.

The maximum of �1 +4�2 +9�3 + 1
4 (1�

p
6�3)2 subject to the conditions �1 +2�2 +

3�3  1
2 , �1 � 0, �2 � 0, and �3 � 0 is 3

2 , achieved when �1 = �2 = 0 and �3 = 1
6 .

By (27), X
r2(n)2  3|A|2

2
+ 2|A|. (28)

An immediate consequence is that
X

n22·A
r2(n) =

X
112·A(n)r2(n)  |A|1/2

⇣X
r2(n)2

⌘1/2
 2|A|3/2. (29)

Next we proceed as in Lemma 6.7. Using (29) and (28),X
�2(n)2 = 4

X
r2(n)2 + 4

X
n22·A

r2(n) + |2 · A|

 6|A|2 + 8|A|3/2 + 9|A|.

By Lemma 6.3, X
�3(n)2  (1 + o(1))32|A|

X
�2(n)2.

The previous two estimates show that
P

�3(n)2  (1+o(1))54|A|3. This completes
the proof of Lemma 6.8.

Corollary 6.11. If A ⇢ [N ] is a B⇤
3 -set, then

|A|  (1 + o(1))(162N)1/3.

Proof. Let A ⇢ [N ] be a B⇤
3 -set. By Cauchy-Schwarz and Lemma 6.8,

|A|6
3N


X

�3(n)2  (1 + o(1))54|A|3.
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So far we have shown c+
2  c⇤2  2, c+

3  18, and c⇤3  54. Now we describe our
method for obtaining upper bounds on F+

k (N) and F ⇤
k (N). Assume we have upper

bounds on c+
2 , c+

3 , . . . , c+
k�1. Lemma 6.5 gives an upper bound on |A| in terms of

c+
k/2 when k is even, and in terms of c+

l and c+
l+1 when k = 2l + 1 � 5. An upper

bound on c+
k is obtained from (18) and (19). We can also apply this method to

B⇤
k-sets. The upper bounds we obtain are given in Table 1 below. They have been

rounded up to the nearest tenth. They hold for large enough N without error terms.

k U.b. of [16] on F ⇤
k Our U.b. on F ⇤

k Our U.b. on F+
k

3 6.3N1/3 5.5N1/3 2.7N1/3

4 11.4N1/4 6.8N1/4 4.1N1/4

5 18.2N1/5 11.2N1/5 11N1/5

6 26.8N1/6 15.8N1/6 13.1N1/6

7 37.2N1/7 21.6N1/7 18.5N1/7

8 49.4N1/8 22.7N1/8 22.7N1/8

Table 1: Upper bounds on B+
k -sets and B⇤

k-sets.

We conclude this section with our proof of the second statement of Theorem 1.6.
Recall that (18) states c⇤k  kkc⇤k/2 for any even k � 4. For k = 2l + 1 � 5, (19)
gives c⇤k  kk+1 max{c⇤l , c⇤l+1}. For x � 0, let dxe be the smallest integer greater
than or equal to x. Let bxc be the greatest integer less than or equal to x. For
k � 0, define �1(k) = dk

2 e and �i(k) := �1(�i�1(k)) for i � 2. A simple induction
argument can be used to show that for all i � 1, �i(k)  k2�i +

Pi�1
t=0 2�t. The

conclusion is that for every i � 1, �i(k)  k2�i + 2. For any k � 5,

c⇤k  kk+1

blog2 kcY
i=1

�i(k)�i(k)+1  kk+1

blog2 kcY
i=1

�
k2�i + 2

�k2�i+3
.

Taking k-th roots,

(c⇤k)1/k  k1+1/k

blog2 kcY
i=1

(k2�i + 2)2
�i+3/k

 k1+1/k

✓
k

2
+ 2

◆ 3 log2 k
k

blog2 kcY
i=1

(k2�i + 2)2
�i

 k1+1/kk
3 log2 k

k k
Pblog2 kc

i=1 2�i
blog2 kcY

i=1

✓
2�i +

2
k

◆2�i

 k2k
4 log2 k

k

blog2 kcY
i=1

✓
2�i +

2
k

◆2�i

.
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We claim the sequence (c⇤k)1/k is bounded above by a function F (k) that tends
to k2

4 as k !1. With this in mind, we rewrite the previous inequality as

4(c⇤k)1/k

k2
 4k

4 log2 k
k

blog2 kcY
i=1

✓
2�i +

2
k

◆2�i

. (30)

It is easy to check k
4 log2 k

k ! 1 as k ! 1. Using
P1

n=0 nxn�1 = 1
(1�x)2 from

elementary calculus, we obtain

blog2 kcY
i=1

(2�i)2
�i

=
✓

1
2

◆Pblog2 kc
i=1 i2�i

! 1
4

as k !1. Using the inequality 1 + x  ex for x � 0, we have

1 
Qblog2 kc

i=1 (2�i + 2/k)2
�i

Qblog2 kc
i=1 (2�i)2�i

=
blog2 kcY

i=1

✓
1 +

2i+1

k

◆2�i


blog2 kcY

i=1

e2i+1/k  e
1
k

Pblog2 kc
i=2 2i  e1/k.

As k !1, e1/k ! 1 so

blog2 kcY
i=1

✓
2�i +

2
k

◆2�i

! 1
4
.

This shows that the right hand side of (30) tends to 1 as k !1 which proves the
claim.

Given ✏ > 0, we can choose k large enough so that k1/k(c⇤k)1/k  (1 + ✏)k2

4 . The
theorem now follows from the definition of c⇤k and the estimate |A|2k

kN 
P

�k(n)2.

7. Proof of Theorem 1.8

Lemma 7.1. If A ⇢ G is a non-abelian Bk-set and B ⇢ H is a non-abelian B+
k -set,

then A⇥B is a non-abelian B+
k -set in G⇥H.

Proof. Suppose a1, . . . , ak, a01, . . . , a
0
k 2 A, b1, . . . , bk, b01, . . . , b

0
k 2 B and

(a1, b1) · · · (ak, bk) = (a01, b
0
1) · · · (a0k, b0k).

Then a1 · · · ak = a01 · · · a0k and b1 · · · bk = b01 · · · b0k so that ai = a0i for every i and
bj = b0j for some j. Thus, (aj , bj) = (a0j , b0j).
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Let F4 = {0, 1, a, b} be the finite field with four elements. Let

H =
⇢✓

x y
0 x�1

◆
: x 2 F⇤4, y 2 F4

�
.

Then H is a group under matrix multiplication and |H| = 12. Let

↵ =
✓

a 1
0 b

◆
and � =

✓
a a
0 b

◆
.

Simple computations show that ↵ and � satisfy ↵3 = �3 = id and ↵2� = �2↵.

Lemma 7.2. The set {↵,�} is a B+
4 -set in H.

Proof. Suppose there is a solution to the equation x1x2x3x4 = y1y2y3y4 with xi 6= yi

for 1  i  4, and xi, yj 2 {↵,�} for all i, j. Without loss of generality, assume
x1 = ↵ and y1 = �. There are eight cases which we can deal with using the relations
↵3 = �3 = id and ↵2� = �2↵. Instead of considering each individually, we handle
several cases at the same time.
Case 1: ↵4 = �4 or ↵3� = �3↵ or ↵�3 = �↵3.

If any of these equations hold, then the relation ↵3 = �3 = id implies ↵ = �, a
contradiction.
Case 2: ↵2�↵ = �2↵� or ↵2�2 = �2↵2.

If either of these equations hold, then the relation ↵2� = �2↵ implies ↵ = �.
Case 3: ↵�↵2 = �↵�2.

Multiplying the equation on the right by � and using �3 = id, we get ↵�↵2� =
�↵. On the other hand, ↵�↵2� = ↵�3↵ = ↵2 so combining the two equations we
get �↵ = ↵2. This implies ↵ = �, a contradiction.
Case 4: ↵�↵� = �↵�↵.

Multiply the equation on the left by �2 to get �2↵�↵� = ↵�↵. This can be
rewritten as ↵2�2↵� = ↵�↵ using �2↵ = ↵2�. Replace �2↵ with ↵2� on the left
hand side of ↵2�2↵� = ↵�↵ and cancel ↵ to get �2 = �↵. This implies � = ↵.
Case 5: ↵�2↵ = �↵2�.

Using the relation �2↵ = ↵2�, we can rewrite this equation as ↵3� = �3↵ which
implies ↵ = � since ↵3 = �3 = id.

The set {↵,�} is not a non-abelian B4-set since ↵2�� = �2↵�. The next theorem
is a special case of a result of Odlyzko and Smith. We will use it in our construction.

Theorem 7.3. (Odlyzko, Smith, [15]) For each prime p with p � 1 divisible by 4,
there is a non-abelian group G of order 4(p4 � 1) and a non-abelian B4-set A ⇢ G
with

|A| =
1
4
(p� 1).
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Armed with Lemma 7.1, Lemma 7.2, and Theorem 7.3, we now prove Theo-
rem 1.8.

Let p be any prime with p�1 divisible by 4. By Theorem 7.3, there is a group G1

of order 4(p4 � 1) and a non-abelian B4-set A1 ⇢ G1 with |A1| = 1
4 (p� 1). Define

the group G to be the product group G = G1 ⇥H. Let A = A1 ⇥ {↵,�}. Clearly
|G| = 12 · 4(p4 � 1), |A| = 1

2 (p� 1), and by Lemma 7.1, A is a non-abelian B+
4 -set

in G.
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