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PROOFS OF RUEHR’S IDENTITIES
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Abstract
Naoki Kimura proposed a question concerning the “change of variable formula for
definite integration” in the American Mathematical Monthly (Problem E2765). In
this paper, we give proofs of two new combinatorial identities discovered by Otto
G. Ruehr in his solution to Problem E2765.

1. Introduction

In 1979, Naoki Kimura proposed (in the American Mathematical Monthly Problem
E2765) to establish the following two equations: For all continuous functions f on
the interval 1/2  x  3/2,

Z 3/2

�1/2
f(3x2 � 2x3) dx = 2

Z 1

0
f(3x2 � 2x3) dx
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and Z 3/2

�1/2
xf(3x2 � 2x3) dx = 2

Z 1

0
xf(3x2 � 2x3) dx.

Otto G. Ruehr [3] proposed two solution methods, one using a trigonometric
substitution and the other that involved the Weierstrass Approximation Theorem.
The latter led to two combinatorial identities, namely
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j=0

(�4)j

✓
3n + 1

n + j + 1
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j=0

2j
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2n + j + 1

◆
(1)

and
2nX

j=0

(�3)j
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3n� j

n
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=
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j=0

3j

✓
3n� j

2n

◆
. (2)

Ruehr concluded that these identities are “apparently new and no easier to prove
than the original equations [from which they are obtained].” Note that equation (2)
is the corrected version of the identity that appeared in Ruehr’s work (where he
used 4j instead of 3j in the summand of the right-hand side).

The purpose of this paper is to provide proofs for these identities. We will also
show that identities (1) and (2) are equivalent. Each sum gives a new formula for
the sequence (1, 6, 39, 258, 1719, 11496, 77052, . . .). This is sequence A006256 in the
On-Line Encyclopedia of Integer Sequences [2]. The paper is organized as follows.
In section 2, we state the main results. In section 3, we present a combinatorial
proof for Theorem 1 and computer-generated proofs for Theorems 2 and 3 using
the Wilf-Zeilberger method.

2. Main Results

Theorem 1. For integers n � 0,
nX
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Theorem 2. For integers n � 0,
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Theorem 3. For integers n � 0,
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From Theorem 1, it follows that Theorems 2 and 3 are equivalent.
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3. Proofs of the Main Results

3.1. Combinatorial Proof of Theorem 1

Proof. For non-negative integers n, let

A(n) =
nX

j=0

3j

✓
3n� j

2n

◆
and B(n) =

nX
j=0

2j

✓
3n + 1
n� j

◆
.

Let �1 be the set of words over the alphabet {1, 2, 3} and �2 be the set of words
over the alphabet {1, 2}. For a word w, we denote its length by |w|. Let S be the
set of pairs of words (w1, w2) with the following conditions:

1. w1 2 �1 and w2 2 �2,

2. |w1| + |w2| = 3n, and

3. |w1| + (# of 1s in w2) = n.

We show that both A(n) and B(n) count the size of S. First, we select elements
for S depending upon the length of the first word w1 in the ordered pair. From
condition 3, we observe that 0  |w1|  n. Therefore, for |w1| = j, there are 3j

possible ways to select w1. In this case, condition 2 implies that |w2| = 3n � j.
From condition 3, we infer that the number of 1’s in w2 is n � j. Thus, there are
3j

�3n�j
n�j

�
ways to select ordered pairs (w1, w2). Hence there are

Pn
j=0 3j

�3n�j
n�j

�
ways

to select elements for S. Since
�3n�j

n�j

�
=

�3n�j
2n

�
, this implies |S| = A(n).

Another way to choose elements for S would be to consider the number of 2’s
and 3’s in w1 of the ordered pair (w1, w2). Let j be the number of 2’s and 3’s in
w1 and let |w1| = k. So, there are 2j

�k
j

�
ways to select such a w1. In this case,

condition 2 implies that |w2| = 3n� k. From condition 3, we infer that the number
of 1’s in w2 is n � k. Thus, there are 2j

�k
j

��3n�k
n�k

�
ways to select ordered pairs

(w1, w2). Consequently there are
Pn

j=0
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for S. Note that
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In order to get the result |S| = B(n), it su�ces to show

nX
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✓
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j

◆✓
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n� k

◆
=

✓
3n + 1
n� j

◆
. (3)

The right-hand side of equation (3) counts the number of (n � j)-element subsets
of the ordered set [3n + 1] = {1, 2, . . . , 3n + 1}. Since

�3n+1
n�j

�
=

� 3n+1
2n+1+j

�
, another
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way of counting the number of (n � j)-element subsets of the ordered set [3n +
1] would be to analyze the (j + 1)-st element of a (2n + j + 1)-element subset
{a1, a2, . . . , a2n+j+1}. To this end, we consider the number of possibilities where
aj+1 = k + 1. We have to choose j elements from {1, 2, . . . , k} and the remaining
2n elements from {k + 2, . . . , 3n + 1}. This can be done in

�k
j

��3n�k
2n

�
ways. Since�3n�k

2n

�
=

�3n�k
n�k

�
, we have
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◆
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.

Therefore |S| = B(n). Consequently, A(n) = B(n) for all integers n � 0.

3.2. Computerized Proofs of Theorems 2 and 3

3.2.1. Proof of Theorem 2

Proof. Let FA(n, j) and FC(n, j) be the summands of

A(n) =
nX

j=0

3j

✓
3n� j

2n

◆
and C(n) =

2nX
j=0

(�3)j

✓
3n� j

n

◆
,

respectively.
Applying the Wilf-Zeilberger (WZ)-algorithm on FA, we get the WZ-equation:

�27FA(n, j) + 4FA(n + 1, j) = GA(n, j + 1)�GA(n, j) (4)

where
GA(n, j) =

(3n + 3� 8j � 9jn + j2)3j

(n + 1)(3n + 2� j)

✓
3n + 2� j

2n + 1

◆
.

Summing both sides of equation (4) for all values of j, we get

�27A(n) + 4A(n + 1) = � 3
3n + 2

✓
3n + 2
n + 1

◆
.

Applying the WZ-algorithm on FC , we get the WZ-equation:

�27FC(n, j) + 4FC(n + 1, j) = GC(n, j + 1)�GC(n, j) (5)

where
GC(n, j) =

(6 + 6n� j � j2)(�3)j

(3n + 3� j)(3n + 2� j)

✓
3n + 3� j

n + 1

◆
.

Summing both sides of equation (5) for all values of j, we get

�27C(n) + 4C(n + 1) = � 3
3n + 2

✓
3n + 2
n + 1

◆
.

Therefore, A(n) and C(n) satisfy the same recurrence equation. Moreover,
A(0) = C(0) = 1. Hence A(n) = C(n) for all n � 0.
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Remarks:

1. The recurrence equations (4) and (5) are automatically generated by the
Maple package EKHAD [1], which is freely available from http://www.math.
rutgers.edu/~zeilberg/. Alternatively, one can also use the built-in SumTools
package in Mapler that implements Zeilberger’s algorithm.

2. For an exposition of the Wilf-Zeilberger algorithm see, among others, the
book, A = B [4], which is devoted to this and other methods.

3.2.2. Proof of Theorem 3

Proof. Let FB(n, j) and FD(n, j) be the summands of

B(n) =
nX

j=0

2j

✓
3n + 1

2n + j + 1

◆
and D(n) =

2nX
j=0

(�4)j

✓
3n + 1

n + j + 1

◆
,

respectively.
Applying the WZ-algorithm on FB, we get the WZ-equation:

�27FB(n, j) + 4FB(n + 1, j) = GB(n, j + 1)�GB(n, j) (6)

where
GB(n, j) =

(2n + 2� 7j � 9jn� 3j2)2j

(n + 1)(3n + 2)

✓
3n + 3

2n + j + 2

◆
.

Summing both sides of equation (6) for all values of j, we get

�27B(n) + 4B(n + 1) = � 2
3n + 2

✓
3n + 3
n + 1

◆
.

Applying the WZ-algorithm on FD, we get the WZ-equation:

�27FD(n, j) + 4FD(n + 1, j) = GD(n, j + 1)�GD(n, j) (7)

where
GD(n, j) =

(2 + 2n + j � 3j2)(�4)j

(n + 1)(3n + 2)

✓
3n + 3

n + 1 + j

◆
.

Summing both sides of equation (7) for all values of j yields

�27D(n) + 4D(n + 1) = � 2
3n + 2

✓
3n + 3
n + 1

◆
.

Thus, B(n) and D(n) satisfy the same recurrence equation and B(0) = D(0) = 1.
Hence B(n) = D(n) for all n � 0.
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