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Abstract
Let A be a finite or infinite matrix with integer entries and only finitely many
nonzero entries in each row. Then A is image partition regular (over N) provided
whenever N is finitely colored, there must exist ~x with entries from N (and the same
number of entries as A has columns) such that the entries of A~x are the same color.

Let k 2 N and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0}. Let B(~a) denote
an infinite matrix consisting of all rows whose nonzero entries are a1, a2, . . . , ak in
order, each occurring once, and for m � k, Bm(~a) is a matrix with m columns and
all rows whose nonzero entries are a1, a2, . . . , ak in order, each occurring once. Also

define M(~a) =
✓

I
B(~a)

◆
and Mm(~a) =

✓
Im

Bm(~a)

◆
, where I is the !⇥! identity

matrix and Im is the m⇥m identity matrix. We provide a simple characterization
of those sequences ~a with the property that for su�ciently large m, Mm(~a) is image
partition regular. We also provide a simple characterization of those sequences ~a
such that M(~a) is image partition regular in the special case where there is a fixed
� 2 N such that each ai is either a power of � or the negative of a power of �.

1This author acknowledges support from NSERC Discovery grant 228064.
2This author acknowledges support received from the National Science Foundation (USA) under

grant DMS-1160566.
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1. Introduction

In this paper, N = {1, 2, . . .} denotes the set of natural numbers. We have indicated
the notion of image partition regularity in the abstract. A historically older notion
is that of kernel partition regularity (which is often referred to as simply “partition
regularity” in the literature).

Definition 1.1. Let A be a finite or infinite matrix with integer entries and only
finitely many nonzero entries in each row. Then A is kernel partition regular (over
N) provided whenever N is finitely colored, there must exist a monochromatic ~x
with the same number of entries as A has rows such that A~x = ~0.

Kernel partition regularity for finite matrices was characterized by Rado in 1933
[8] in terms of a computable condition known as the columns condition.

Definition 1.2. A finite integer-valued u ⇥ v-matrix A satisfies the columns con-
dition if and only if there is some m 2 N such that the set {1, 2, . . . , v} of column
indices can be partitioned as {1, 2, . . . , v} = I1 [ . . . [ Im such that

(i) the sum of all columns with indices in I1 add up to the zero vector, and

(ii) for j = 2, 3, . . . ,m, the sum of all columns with indices in Ij is a rational
linear combination of all columns with indices in I1 [ . . . [ Ij�1.

Theorem 1.3 (Rado’s Theorem). Let A be a finite integer-valued matrix. The
matrix A is kernel partition regular if and only if it satisfies the columns condition.

Proof. [8, Satz IV].

A motivation explicitly stated in [8] for the study of kernel partition regularity
was van der Waerden’s Theorem [12], which says that for any � 2 N, if N is finitely
colored, there must be a length � monochromatic arithmetic progression. The fact
that the following matrix is kernel partition regular establishes the length 4 version
of van der Waerden’s Theorem, with the added conclusion that the increment is the
same color as the terms of the sequence.

0
@ 1 �2 1 0 0

0 1 �2 1 0
1 �1 0 0 1

1
A

This matrix satisfies the columns condition with I1 = {1, 2, 3, 4} and I2 = {5}.
(Any three of the first four columns are linearly independent and so span Q3.) One

might think that the fact that
✓

1 �2 1 0
0 1 �2 1

◆
satisfies the columns condition

(with I1 = {1, 2, 3, 4}) would su�ce for the length 4 version of van der Waerden’s
Theorem, but its kernel includes any constant sequence.
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In 1973 Deuber [1] used the notion of (m,p, c)-sets to prove Rado’s Conjecture
[8], namely that if a subset of N contains a kernel of each kernel partition regular
matrix, and it is partitioned into finitely many sets, then one of those sets would
also contain a kernel of each kernel partition regular matrix. Deuber’s (m,p, c)-sets
are images of certain image partition regular matrices, a fact which he established
in [1, Satz 3.1].

Definition 1.4. Let A be a finite or infinite matrix with integer entries and only
finitely many nonzero entries in each row. Then A is image partition regular (over
N) provided whenever N is finitely colored, there must exist ~x with entries from N
(and the same number of entries as A has columns) such that the entries of A~x are
monochromatic. (That is to say, all entries of A~x are the same color.)

It takes a small amount of thought to come up with kernel partition regular
matrices establishing the validity of van der Waerden’s Theorem. By contrast,
the length 4 version, and the strengthened length 4 version with the increment the
same color, are given by the image partition regularity of the following two matrices,
which require no thought to produce:

0
BB@

1 0
1 1
1 2
1 3

1
CCA

0
BBBB@

0 1
1 0
1 1
1 2
1 3

1
CCCCA .

In spite of the utility of image partition regular matrices and the ease of stating
natural problems using them, they were not characterized until 1993 in [5]. Two
of these characterizations were in terms of the kernel partition regularity of related
matrices. In a special case with which we are concerned in this paper, namely
determining the image partition regularity of Mm(~a), there is a very simply stated
relationship between image and kernel partition regularity. Given n 2 N, we denote
the n⇥ n identity matrix by In.

Lemma 1.5. Let u, v 2 N and let M be a u⇥ v matrix with entries from Z. Then

the (u+v)⇥v matrix
✓

Iv

M

◆
is image partition regular if and only if the u⇥(u+v)

matrix
�

M �Iu

�
is kernel partition regular.

Proof. Let ~x 2 Nv. Then
✓

Iv

M

◆
~x =

✓
~x

M~x

◆
and

�
M �Iu

�✓ ~x
M~x

◆
= ~0 .
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The corresponding infinite version of Lemma 1.5 is also valid, but not of much
interest since there are no known characterizations of either image or kernel partition
regularity of infinite matrices.

Definition 1.6. Let k 2 N and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0}.
Let B(~a) denote an infinite matrix consisting of all rows whose nonzero entries are
a1, a2, . . . , ak in order, each occurring once, and for m � k, Bm(~a) is a matrix
with m columns and all rows whose nonzero entries are a1, a2, . . . , ak in order, each

occurring once. Also define M(~a) =
✓

I
B(~a)

◆
and Mm(~a) =

✓
Im

Bm(~a)

◆
, where

I is the ! ⇥ ! identity matrix and Im is the m⇥m identity matrix.

There are quite a few partial results about image partition regularity of infinite
matrices. See the survey [4, Section 6] or [2] for a discussion of several of them.
What is probably the most general known class of infinite image partition regular
matrices are the Milliken-Taylor matrices.

Definition 1.7. (1) Let n 2 N and let~b = hb1, b2, . . . , bni be a sequence in Z\{0}.
The compressed form c(~b) of ~b is the sequence ~a obtained from ~b by deleting
all but one occurrence of adjacent repeated terms.

(2) Let k 2 N and let ~a = ha1, a2, . . . , aki be a sequence in Z\{0} with no adjacent
repeated terms (so that ~a = c(~a)). Then MT (~a) is a matrix with all rows with
finitely many nonzero entries such that, if ~b is in order the nonzero entries of
a row, then c(~b) = ~a.

For example, c(h1, 1, 1, 3,�2,�2, 1, 2, 2, 3, 3,�2i) = h1, 3,�2, 1, 2, 3,�2i. Of
course, there are infinitely many matrices fitting the definition of MT (~a), since
any permutation of the rows of such a matrix is another such a matrix. (A similar
situation applies to the matrices B(~a) and M(~a) defined in Definition 1.6.)

Theorem 1.8 (Milliken-Taylor). Let k 2 N and let ~a = ha1, a2, . . . , aki be a
sequence in Z \ {0} with no adjacent repeated terms and ak > 0. Then MT (~a) is
image partition regular.

Proof. This follows easily from [7, Theorem 2.2] or [11, Lemma 2.2]. For the details
see [6, Corollary 17.33]. (There the entries are assumed to come from N but that
has no e↵ect on the proof.)

It is easy to see that the requirement that ak > 0 in Theorem 1.8 is necessary.
Indeed, if ak < 0, there is no sequence ~x = hxni1n=1 in N with all entries of MT (~a)
in N. (Suppose one has such and let m =

Pk�1
i=1 aixi. If m  0 then

Pk
i=1 aixi

is a negative entry of MT (~a)~x. Otherwise m +
Pk+m

i=k akxi is a negative entry of
MT (~a)~x.)
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Moreover, it is an immediate consequence of Theorem 1.8 that if k 2 N and
~a = ha1, a2, . . . , aki is a sequence in Z \ {0} with ak > 0, then B(~a) is image
partition regular. For example, if ~a = h�1,�1, 2, 3,�2,�2, 4, 4i then all of the rows
of B(~a) are rows of MT (h�1, 2, 3,�2, 4i).

In this paper we investigate the question of when we can add the requirement
that whenever N is finitely colored, not only do we get some ~x 2 N! with the
entries of B(~a)~x monochromatic, but the entries of ~x are also the same color as
the entries of B(~x). That is, we investigate when M(~a) is image partition regular.
Note that for ~a = h1i Theorem 1.8 is the Finite Sums Theorem [3], while for
~a = ha1, a2, . . . , aki = h1, 1, . . . , 1i with M(~a)~x we consider only k-term sums.

In Section 2, we obtain a complete answer to this question in the event that there
is some � 2 N such that each at is a power of � or the negative of a power of � (and
we conjecture that the same answer holds in general).

In Section 3 we address the analogous question for the finite versions of the same
question. We show that if k 2 N, k � 2, ~a = ha1, a2, . . . , aki is a sequence in Z\{0},
and m � 2k � 2, then Mm(~a) is image partition regular if and only if one of (1)
a1 = 1, (2) ak = 1, (3) a1 + a2 + . . . + ak = 1, or (4) a1 + a2 + . . . + ak = 0. We also
show that the bound m � 2k � 2 is best possible.

2. The Infinite Version

The Finite Sums Theorem [3] is the case ~a = h1i of Theorem 1.8. As an immediate
consequence of this theorem we have the following.

Theorem 2.1. Let k 2 N and let ~a = h1, 1, . . . , 1i be the all ones sequence of length
k. Then M(~a) is image partition regular.

By a theorem of Rado [9, Lemma page 932] we know also that for the sequence
~a = h�1, 1i the matrix M(~a) is image partition regular.

It is trivial that if a1 + a2 + . . . + ak = 1, then M(~a) is image partition regular
since then any constant sequence ~x = hxti1t=1 satisfies M(~a)~x is monochromatic.

In this section we prove the following theorem, which extends these results.

Theorem 2.2. Let k 2 N, let � 2 N \ {1}, and let ~a = ha1, a2, . . . , aki be a
sequence such that for each t 2 {1, 2, . . . , k}, there is some � 2 ! such that at = ��

or at = ���. Then M(~a) is image partition regular if and only if one of

(1) a1 + a2 + . . . + ak = 0 and ak = 1;

(2) a1 + a2 + . . . + ak = 1; or

(3) a1 = a2 = . . . = ak = 1.
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We let ! = {0, 1, 2, . . .} = N[ {0}. For a set X, let Pf (X) be the set of all finite
nonempty subsets of X.

Definition 2.3. Let p 2 N\{1}. We define the support function suppp : N ! Pf (!)
by, for x 2 N, suppp(x) is the set of locations of nonzero digits in the base p
expansion of x. And we define the function ⌘p,x : suppp(x) ! {1, 2, . . . , p � 1} by
x =

P
i2suppp(x) ⌘p,x(i)pi.

Lemma 2.4. Let k 2 N, and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0} such
that a1 + a2 + . . . + ak 6= 1. There is a 2-coloring ' of N such that there do not
exist b 2 N and ~x = hxti1t=1 such that M(~a)~x is monochromatic with respect to ',
and some k terms of ~x are equal to b.

Proof. If a1+a2+. . .+ak  0, then there is no b 2 N such that (a1+a2+. . .+ak)b 2
N, so assume that a1 + a2 + . . . + ak = S � 2. Define ' : N ! {0, 1} by '(x) = 0 if
and only if there is some i 2 ! such that S2i  x < S2i+1. Given b 2 N, pick j 2 !
such that Sj  b < Sj+1. Then Sj+1  (a1 + a2 + . . . + ak)b < Sj+2.

Lemma 2.5. Let k 2 N, and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0} such
that a1 + a2 + . . . + ak 6= 1. If M(~a) is image partition regular, then ak = 1.

Proof. Pick a 2-coloring ' of N as guaranteed by Lemma 2.4 and pick p 2 N such
that p > max

�
|at| : t 2 {1, 2, . . . , k}

 
. Let  be a finite coloring of N with the

property that for x, y 2 N,  (x) =  (y) if and only if

(1) '(x) = '(y);

(2) max suppp(x) ⌘ max suppp(y) (mod 5);

(3) ⌘p,x

�
max suppp(x)

�
= ⌘p,y

�
max suppp(y)

�
; and

(4) ⌘p,x

�
max suppp(x)� 1

�
= ⌘p,y

�
max suppp(y)� 1

�
.

Requirements (3) and (4) say that if  (x) =  (y), then the two most significant
digits in the base p expansions of x and y agree.

Pick ~x = hxti1t=1 such that the entries of M(~a)~x are monochromatic with respect
to  . By Lemma 2.4, ~x does not have any k terms equal. So by thinning the
sequence we can assume that for each t 2 N, max suppp(t) < max suppp(t + 1).
For each t 2 N, let mt = max suppp(t). Then by requirement (2) of the coloring,
we have for each t that mt+1 � mt + 5. Note that, since the sequence hxti1t=1 is
increasing, we trivially have that ak > 0.

Pick u 2 {1, 2, . . . , p � 1} and v 2 {0, 1, . . . , p � 1} such that for each t 2 N,
⌘p,xt(mt) = u and ⌘p,xt(mt� 1) = v. Then for each t 2 N, xt = upmt + vpmt�1 + yt

for some yt 2 {0, 1, . . . , pmt�1 � 1}.
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Note that
Pk�1

t=1 |at|xt <
Pk�1

t=1 pmt+2 < pmk�2 because mk�1 + 2 < mk � 2.
Therefore,

(⇤) � pmk�2 <
Pk�1

t=1 atxt < pmk�2

and in particular

pmk � pmk�2  akxk � pmk�2 <
Pk

t=1 atxt < akxk + pmk�2 < pmk+1 + pmk�2 .

Consequently, mk � 1  max suppp(
Pk

t=1 atxt)  mk + 1. Therefore, since
 (
Pk

t=1 atxt) =  (xk), we must have that max suppp(
Pk

t=1 atxt) = mk.
Case 1. akvpmk�1 + akyk +

Pk�1
t=1 atxt � 0. Then

Pk
t=1 atxt = akupmk + akvpmk�1 + akyk +

Pk�1
t=1 atxt

and, using (⇤),

0  akvpmk�1 + akyk +
Pk�1

t=1 atxt < pmk+1 + pmk + pmk�2

so there exist some z and w with 0  z < p + 1 and 0  w < pmk such that
akvpmk�1 + akyk +

Pk�1
t=1 atxt = zpmk + w.

Then
Pk

t=1 atxt = (aku + z)pmk + w. And since max suppp(
Pk

t=1 atxt) = mk,
we have that aku+ z < p. Consequently aku+ z = u so (ak� 1)u+ z = 0 so ak = 1
as claimed.

Case 2. akvpmk�1+akyk+
Pk�1

t=1 atxt < 0. In this case, we must have v = 0, since
otherwise akvpmk�1 +akyk +

Pk�1
t=1 atxt > pmk�1�pmk�2 > 0. Also, akyk  pmk�2

since otherwise akyk +
Pk�1

t=1 atxt > 0. Now
Pk

t=1 atxt = akupmk + akyk +
Pk�1

t=1 atxt = akupmk � |akyk +
Pk�1

t=1 atxt| .

Since |akyk +
Pk�1

t=1 atxt| < 2pmk�2, the digit in position mk � 1 of
Pk

t=1 atxt is
p� 1 6= 0 = v, a contradiction.

Lemma 2.6. Let k 2 N and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0}. If
M(~a) is image partition regular, then

(1) a1 + a2 + . . . + ak = 0 and ak = 1;

(2) a1 + a2 + . . . + ak = 1; or

(3) a1 = ak = 1.

Proof. If a1 + a2 + . . . + ak = 1, we are done, so assume that a1 + a2 + . . . + ak 6= 1.
Then by Lemma 2.5, we have ak = 1. Pick a coloring ' of N as guaranteed by
Lemma 2.4.

Pick a prime p >
Pk

t=1 |at|. Let  be a finite coloring of N with the property
that for x, y 2 N,  (x) =  (y) if and only if
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(1) '(x) = '(y) and

(2) ⌘p,x

�
min suppp(x)

�
= ⌘p,y

�
min suppp(y)

�
.

Pick ~x = hxti1t=1 such that the entries of M(~a)~x are monochromatic with respect
to  . By Lemma 2.4 we have that ~x does not have any k terms equal. So by
thinning the sequence we may presume that either

(a) there is some m 2 ! such that for each t 2 N, min suppp(xt) = m or

(b) for each t 2 N, min suppp(xt) < min suppp(xt+1).

Let v = ⌘p,x1

�
min suppp(x1)

�
, the constant value of the least significant digit in

the base p expansion of xt.
In case (a), the digit in position m of

Pk
t=1 atxt is congruent to v

Pk
t=1 at

(mod p). If
Pk

t=1 at 6= 0, this says that v
Pk

t=1 at ⌘ v (mod p), so that
Pk

t=1 at = 1,
which we have forbidden. Therefore

Pk
t=1 at 6= 0 and conclusion (1) holds.

In case (b), the rightmost nonzero digit in the base p expansion ofPk
t=1 atxt is congruent to a1v (mod p) so a1v ⌘ v (mod p) and thus conclusion

(3) holds.

Lemma 2.7. Let k 2 N, and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0}. If
one of the following holds, then M(~a) is image partition regular

(1) a1 + a2 + . . . + ak = 0 and ak = 1;

(2) a1 + a2 + . . . + ak = 1; or

(3) a1 = a2 = . . . = ak = 1.

Proof. We only have to consider case (1), as case (2) is trivial, and case (3) follows
by Theorem 2.1. Let r 2 N be fixed and let ' : N ! {1, 2, . . . , r} be an arbitrary
coloring. We induce another coloring '0 : [N]k ! {1, 2, . . . , r + 1} of k-tuples by

'0({z1, z2, . . . , zk}<) = '(
Pk

i=1 aizi),

whenever
Pk

i=1 aizi > 0. If
Pk

i=1 aizi < 0, let '0({z1, z2, . . . , zk}<) = r + 1.
By Ramsey’s Theorem [10] there exists an infinite set Y ✓ N such that [Y ]k is

colored monochromatically by '0, say in color g. With ak = 1 we have g < r + 1.
Let hyti1t=1 enumerate Y in increasing order. For j = 1, 2, . . ., set

xj =
Pk�1

i=1 aiyi + akyk+j�1.

For j = 1, 2, . . ., by choice of the coloring '0 we infer

'(xj) = '0({y1, . . . , yk�1, yk+j�1}<) = g.
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Fix any positive integers j1 < j2 < . . . < jk. With ak = 1 and
Pk

i=1 ai = 0 we
obtainPk

i=1 aixji =
Pk

i=1 ai(
Pk�1

�=1 a�y�) +
Pk

i=1 aiakyk+ji�1 =
Pk

i=1 aiyk+ji�1.

As '0({yk+j1�1, yk+j2�1, . . . , yk+jk�1}<) = '(
Pk

i=1 aiyk+ji�1) = g, we infer that
'(
Pk

i=1 aixji) = '(xj1) = '(xj2) = . . . = '(xjk), i.e., M(~a) is image partition
regular.

Lemma 2.8. Let � 2 N \ {1}. Let k 2 N, let ~a = ha1, a2, . . . , aki be a sequence
in Z \ {0}, and assume that a1 + a2 + . . . + ak /2 {0, 1}. Let M = M(~a). There
is a finite coloring of N such that there is no ~x = hxti1t=1 such that for all t, s 2
N, min supp�(xt) = min supp�(xs) and M~x is monochromatic with respect to this
coloring.

Proof. Pick ⌧ 2 N, distinct primes p1, p2, . . . , p⌧ , and ↵(1),↵(2), . . . ,↵(⌧) 2 N such
that � =

Q⌧
i=1 p↵(i)

i . Let a =
Pk

t=1 at, let

� = 1+ max({t 2 N : (9i 2 {1, 2, . . . , ⌧}) (pt
i divides a)} [

[{t 2 N : (9i 2 {1, 2, . . . , ⌧}) (pt
i divides a� 1)})

and let m = � + max
�
↵(i) : i 2 {1, 2, . . . , ⌧}

 
.

For x 2 N, let q(x) = min supp�(x). Let ⌫ be a finite coloring of N so that
for x, y 2 N, ⌫(x) = ⌫(y) if and only if q(x) ⌘ q(y) (mod m) and x/�q(x) ⌘
y/�q(y) (mod �m). Thus ⌫ has m(�m � 1) color classes. Suppose that we have
~x = hxti1t=1 such that for all t, s 2 N, q(xt) = q(xs) and M~x is monochromatic with
respect to ⌫. Let q be the constant value of q(xt).

Pick b 2 {0, 1, . . . ,�m � 1} and for each t 2 N pick ct 2 ! such that xt/�q =
ct�m + b. Then each xt = ct�m+q + b�q, and since q(xt) = q, we have that � does
not divide b. Pick i 2 {1, 2, . . . , ⌧} and � 2 {0, 1, . . . ,↵(i)� 1} such that p�

i divides
b and p�+1

i does not divide b.
Pick z 2 Z and d 2 {0, 1, . . . ,�m� 1} such that a = z�m +d. Then

Pk
t=1 atxt =

(
Pk

t=1 atct + zb)�m+q + db�q. Since m > �, d 6= 0.
Case 1. � divides db. Let r be the largest integer such that �r divides db and

let s be the largest integer such that ps
i divides d. Then s < � since otherwise we

would have p�
i divides a. Also ps+�

i is the largest power of pi which divides bd so
r  s + � < m. Thus q(

Pk
i=1 atxt) = r + q 6⌘ q (mod m), a contradiction.

Case 2. � does not divide db. Then q(
Pk

t=1 atxt) = q and

(
Pk

t=1 atxt)/�q = (
Pk

t=1 atct + zb)�m + db .

Therefore db ⌘ b (mod �m) so �m divides (d � 1)b. Let s be the largest integer
such that ps

i divides d � 1. Then s < � since otherwise we would have p�
i divides

a � 1. Also ps+�
i is the largest power of pi which divides (d � 1)b so m  s + �, a

contradiction.
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Convention 2.9. For the rest of this section we will assume that we have a fixed
� 2 N \ {1}, a fixed k 2 N, and a fixed sequence ~a = ha1, a2, . . . , aki in Z \ {0} such
that for each t, either at or �at is a non-negative power of �.

Definition 2.10. (1) For each t 2 {1, 2, . . . , k}, let �(t) 2 ! such that either
at = ��(t) or at = ���(t).

(2) Let µ = max(
�
2�(t) + 1 : t 2 {1, 2, . . . , k}

 
[ {�}).

(3) Let x, y 2 N. Then x >> y if and only if max supp�(y)+µ+2 < min supp�(x).

Definition 2.11. (1) A digit block in the base � expansion of an integer x is
a maximal set of consecutive occurrences of the same digit located between
min supp�(x) and max supp�(x).

(2) For each j 2 {1, 2, . . . , µ}, define gj : N ! ! by gj(x) the number of digit
blocks in the base � expansion of x of length congruent to j (mod µ).

For example, if � = 5 and x = 322200004231100332000000, then there are five
digit blocks of length 1, three of length 2, and one each of length 3 and 4. (We do
not count 000000.)

Lemma 2.12. Assume that x >> y.

(1) If the length of the rightmost digit blocks of x and y are both 1, the least
significant nonzero digit of both x and y is v 2 {1, 2, . . . ,� � 1} and the digit
of the next to rightmost digit blocks in both x and y is w 6= v� 1, then for all
j 2 {1, 2, . . . , µ}, gj(x� y) = gj(x + y).

(2) If the length of the rightmost digit blocks of x and y are both 1, the least signif-
icant nonzero digit of both x and y is v 2 {1, 2, . . . ,��1}, the digit of the next
to rightmost digit blocks in both x and y is v�1, and the lengths of the next to
rightmost digit blocks of x and y are congruent to � 2 {1, 2, . . . , µ} (mod µ),
then

(a) if � = 1, then g1(x� y) = g1(x + y)� 4, g2(x� y) = g2(x + y) + 2, and
for all j 2 {3, 4, . . . , µ}, gj(x� y) = gj(x + y);

(b) if � = µ, then gµ(x� y) = gµ(x + y)� 2 and for all
j 2 {1, 2, . . . , µ� 1}, gj(x� y) = gj(x + y); and

(c) if � /2 {1, µ}, then g1(x� y) = g1(x + y)� 2, g�(x� y) = g�(x + y)� 2,
g�+1(x� y) = g�+1(x+ y)+2 and for all j 2 {1, 2, . . . , µ} \ {1,�,�+1},
gj(x� y) = gj(x + y).

(3) If the lengths of the rightmost digit blocks of x and y are both congruent to
2 (mod µ), then g1(x� y) = g1(x+ y)+ 4, g2(x� y) = g2(x+ y)� 2, and for
all j 2 {3, 4, . . . , µ}, gj(x� y) = gj(x + y).
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(4) If the lengths of the rightmost digit blocks of x and y are both bigger than
1 but congruent to 1 (mod µ), then gµ(x � y) = gµ(x + y) + 2 and for all
j 2 {1, 2, . . . , µ� 1}, gj(x� y) = gj(x + y).

(5) If � 2 {3, 4, . . . , µ} and the lengths of the rightmost digit blocks of x and y are
both congruent to � (mod µ), then g1(x�y) = g1(x+y)+2, g�(x�y) = g�(x+
y)�2, g��1(x�y) = g��1(x+y)+2, and for all j 2 {1, 2, . . . , µ}\{1,�,�+1},
gj(x� y) = gj(x + y).

Proof. The block of 0’s between max supp�(y) and min supp�(x) in x + y becomes
a block of � � 1’s in the same location and of the same length in x � y. And any
block of v’s in y above the rightmost two blocks becomes a block of � � 1 � v’s
in x� y. The adjustments in each case come from observing what happens to the
rightmost one or two digit blocks of x and the rightmost one or two digit blocks of
y when y is subtracted from x.

Lemma 2.13. Assume that a1 = ak = 1 and it is not the case that a1 = a2 = . . . =
ak = 1. Let M = M(~a). Let ' be a coloring of N (with (k� 1)µ color classes) such
that for x and y in N, '(x) = '(y) if and only if gj(x) ⌘ gj(y) (mod k � 1) for
each j 2 {1, 2, . . . , µ}. There does not exist ~x = hxti1t=1 such that for each t 2 N,
xt+1 >> xt and M~x is monochromatic with respect to '.

Proof. Suppose we have such an ~x. By thinning the sequence we may suppose that
we have ⇢ and � in {1, 2, . . . , µ} such that for all t 2 N, max supp�(xt) ⌘ � (mod µ)
and min supp�(xt) ⌘ ⇢ (mod µ).

Define for j 2 {1, 2, . . . , µ},

yj = |{t 2 {1, 2, . . . , k � 1} : ⇢+ �(t + 1)� �� �(t)� 1 ⌘ j (mod µ)}| .

Then yj is the number of blocks of 0’s of length congruent to j (mod µ) that are
introduced between ��(t+1)xt+1 and ��(t)xt for t 2 {1, 2, . . . , k}.

We now show

(⇤⇤) it is not the case that yj ⌘ 0 (mod k � 1) for each j 2 {1, 2, . . . , µ} .

To see this, suppose that yj ⌘ 0 (mod k � 1) for each j 2 {1, 2, . . . , µ}. Pick
j 2 {1, 2, . . . , µ} such that j ⌘ ⇢ + �(2) � � � �(1) � 1 (mod µ). Then yj > 0 so
yj = k�1. Therefore for t 2 {2, 3, . . . , k�1}, �(t+1)��(t) ⌘ �(2)��(1) (mod µ).
We claim that each �(t) = 0, so that a1 = a2 = . . . = ak = 1, which we have
forbidden.

Suppose then that t is the largest in {1, 2, . . . , k} such that �(t) 6= 0 and note
that t /2 {1, k}. Then 0 � �(t) ⌘ �(2) � 0 (mod µ) so �(t) + �(2) ⌘ 0 (mod µ)
while 0 < �(t) + �(2) < µ, a contradiction. Thus (⇤⇤) has been established.
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We start with the case where a1, a2, . . . , ak > 0. Then for each j 2 {1, 2, . . . , µ},

gj(
Pk

t=1 atxt) =
Pk

t=1 gj(xt) + yj and gj(
Pk

t=1 atxt) ⌘ gj(xk) (mod k � 1)

so Pk�1
t=1 gj(xt) + yj ⌘ 0 (mod k � 1) .

Since also gj(xt) ⌘ gj(xs) (mod k � 1) for t, s 2 {1, 2, . . . , k}, we have each yj ⌘
0 (mod k � 1), contradicting (⇤⇤).

Next assume that at least one of a1, a2, . . . , ak is negative. By thinning we may
further suppose that for all t, s 2 N,

(1) the length of the rightmost digit blocks of xt and xs are congruent (mod µ);

(2) the length of the next to rightmost digit blocks of xt and xs are congruent
(mod µ);

(3) the length of the rightmost digit block of xt is 1 if and only if the length of
the rightmost digit block of xs is 1;

(4) the least significant digits of xt and xs are equal; and

(5) the digits of the next to rightmost digit blocks of xt and xs are equal.

Pick m 2 ! and 0 = �(0) < ↵(1) < �(1) < . . . < ↵(m) < �(m) < ↵(m + 1) = k
such that for i 2 {0, 1, . . . ,m}, if �(i) < t  ↵(i + 1), then at = ��(t), and for
i 2 {1, 2, . . . ,m}, if ↵(i) < t  �(i), then at = ���(t). Then 1  2m + 1  k. As at
least one ai is negative, we must have m � 1.

Now
Pk

t=1 atxt =
Pm

i=1

�
(
P↵(i+1)

t=�(i)+1 �
�(t)xt)� (

P�(i)
t=↵(i)+1 �

�(t)xt)
�

+
P↵(1)

t=1 �
�(t)xt .

For each i 2 {1, 2, . . . ,m} and each j 2 {1, 2, . . . , µ} let

wi,j = gj

�
(
P↵(i+1)

t=�(i)+1 �
�(t)xt)� (

P�(i)
t=↵(i)+1 �

�(t)xt)
�

�gj

�
(
P↵(i+1)

t=�(i)+1 �
�(t)xt) + (

P�(i)
t=↵(i)+1 �

�(t)xt)
�

and for j 2 {1, 2, . . . , µ}, let zj =
Pm

i=1 wi,j . Note that zj is the total change in gj

going from
Pk

t=1 �
�(t)xt (wherein the minus signs are ignored) to

Pk
t=1 atxt.

For j 2 {1, 2, . . . , µ}, let

vj = |{t 2 {1, 2, . . . ,m� 1} : ⇢+ �(↵(i) + 1)� �� �
�
↵(i)

�
� 1 ⌘ j (mod µ)}| .

Note that vj is the number of blocks of 0’s of length congruent to j (mod µ)
between terms of the form ��(↵(i))x↵(i) and ��(↵(i)+1)x↵(i)+1. Here ��(↵(i))x↵(i) is
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the largest term in (
P↵(i)

t=�(i�1)+1 �
�(t)xt)+ (

P�(i�1)
t=↵(i�1)+1 �

�(t)xt) if i > 1 and is the

largest term in
P↵(1)

t=1 �
�(t)xt if i = 1. Moreover ��(↵(i)+1)x↵(i)+1 is the smallest

term in (
P↵(i+1)

t=�(i)+1 �
�(t)xt) + (

P�(i)
t=↵(i)+1 �

�(t)xt).
Then for each j 2 {1, 2, . . . , µ},
Pk

t=1 gj(xt) + yj = gj(
Pk

t=1 �
�(t)xt)

=
Pm

i=1 gj

�
(
P↵(i+1)

t=�(i)+1 �
�(t)xt) + (

P�(i)
t=↵(i)+1 �

�(t)xt)
�

+
gj(

P↵(1)
t=1 �

�(t)xt) + vj .

So for each j 2 {1, 2, . . . , µ},

gj(
Pk

t=1 atxt) =
Pm

i=1 gj

�
(
P↵(i+1)

t=�(i)+1 �
�(t)xt)� (

P�(i)
t=↵(i)+1 �

�(t)xt)
�

+
gj(

P↵(1)
t=1 �

�(t)xt) + vj

=
Pm

i=1 wi,j +Pm
i=1 gj

�
(
P↵(i+1)

t=�(i)+1 �
�(t)xt) + (

P�(i)
t=↵(i)+1 �

�(t)xt)
�

+
gj(

P↵(1)
t=1 �

�(t)xt) + vj

= zj +
Pk

t=1 gj(xt) + yj .

Since gj(
Pk

t=1 atxt) ⌘ gj(xk) (mod k� 1) we have that 0 ⌘ zj +
Pk�1

t=1 gj(xt) +
yj (mod k� 1) and since gj(xt) ⌘ gj(xs) (mod k� 1) when t, s 2 {1, 2, . . . , k� 1},
we have for each j 2 {1, 2, . . . , µ} that yj + zj ⌘ 0 (mod k � 1).

Notice also that for each j 2 {1, 2, . . . , µ} and each i, i0 2 {1, 2, . . . ,m}, wi,j =
wi0,j . (This is because the lengths and digits of the two rightmost digit blocks of x
are not a↵ected when x is multiplied by a power of � and so the relevant case of
Lemma 2.12 is the same for both.)

To complete the proof we will show that for each j 2 {1, 2, . . . , µ},

zj ⌘ 0 (mod k � 1) ,

and therefore for each j 2 {1, 2, . . . , µ}, yj ⌘ 0 (mod k � 1), contradicting (⇤⇤).
Now for t, s 2 {1, 2, . . . , k}, xt and xs satisfy the same one of the cases described

in Lemma 2.12. If that is case (1), i.e., if the length of the rightmost digit block
of xt is 1, the least significant nonzero digit of xt is v 2 {1, 2, . . . ,� � 1}, and the
digit of the next to rightmost digit block in xt is w 6= v � 1, then we have that
wi,j = 0 for each i 2 {1, 2, . . . ,m} and each j 2 {1, 2, . . . , µ} so that zj = 0 for each
j 2 {1, 2, . . . , µ}.

If that case is any of the other cases described in Lemma 2.12, then we have
that for each i 2 {1, 2, . . . ,m},

Pµ
j=1 wi,j = �2 or for each i 2 {1, 2, . . . ,m},Pµ

j=1 wi,j = 2. Thus
Pµ

j=1 zj =
Pµ

j=1

Pm
i=1 wi,j =

Pm
i=1

Pµ
j=1 wi,j = �2m or

Pµ
j=1 zj = 2m.
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Therefore
Pµ

j=1 yj +
Pµ

j=1 zj = k � 1 +
Pµ

j=1 zj ⌘ 2m (mod k � 1) or
Pµ

j=1 yj +Pµ
j=1 zj ⌘ �2m (mod k � 1). Since also

Pµ
j=1 yj +

Pµ
j=1 zj =

Pµ
j=1(yj + zj) ⌘

0 (mod k � 1) we conclude that 2m = k � 1. In each of cases (2), (3), (4), or (5)
of Lemma 2.12 and each j 2 {1, 2, . . . , µ} we have that zj is an even multiple of m,
and thus zj ⌘ 0 (mod k � 1) as claimed.

For the statement of the main theorem we restate our standing hypotheses.

Theorem 2.2. Let k 2 N, let � 2 N\{1}, and let ~a = ha1, a2, . . . , aki be a sequence
such that for each t 2 {1, 2, . . . , k}, there is some � 2 ! such that at = �� or
at = ���. Then M(~a) is image partition regular if and only if one of

(1) a1 + a2 + . . . + ak = 0 and ak = 1;

(2) a1 + a2 + . . . + ak = 1; or

(3) a1 = a2 = . . . = ak = 1.

Proof. The su�ciency is Lemma 2.7. For the necessity, by Lemma 2.6 we have one
of

(1) a1 + a2 + . . . + ak = 0 and ak = 1;

(2) a1 + a2 + . . . + ak = 1; or

(3) a1 = ak = 1.

If (1) or (2) holds, we are done. So assume that (3) holds and a1 + a2 + . . . + ak /2
{0, 1}. Let M = M(~a). Let ' be the coloring of N in Lemma 2.13 and let ⌫
be a coloring of N as guaranteed by Lemma 2.8. Define a coloring  of N such
that  (x) =  (y) if and only if '(x) = '(y) and ⌫(x) = ⌫(y). Suppose we have
a sequence ~x = hxti1t=1 such that M~x is monochromatic with respect to  . By
thinning we may suppose that either for all t, s 2 N, min supp�(xt) = min supp�(xs),
or for all t 2 N, xt+1 >> xt. The first assumption contradicts Lemma 2.8. By
Lemma 2.13, we must have that a1 = a2 = . . . = ak = 1.

We state now the natural conjecture.

Conjecture 2.14. Let k 2 N and let ~a = ha1, a2, . . . , aki be a sequence in Z \ {0}.
Then M(~a) is image partition regular if and only if one of

(1) a1 + a2 + . . . + ak = 0 and ak = 1;

(2) a1 + a2 + . . . + ak = 1; or

(3) a1 = a2 = . . . = ak = 1.
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3. The Finite Version

Recall that if k,m 2 N with m � k and ~a = ha1, a2, . . . , aki is a sequence in Z\{0},
then Mm(~a) is a

✓✓
m
k

◆
+ m

◆
⇥ m matrix with all rows of 0’s and 1’s with a

single 1 as well as all rows whose nonzero entries are a1, a2, . . . , ak in order.
Of course, as with the infinite version, there are many choices (obtained by

permuting rows) for what one calls Mm(~a). The following is a reasonable choice for
M4(h�2, 3i).

0
BBBBBBBBBBBBBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
�2 3 0 0
�2 0 3 0
�2 0 0 3
0 �2 3 0
0 �2 0 3
0 0 �2 3

1
CCCCCCCCCCCCCCA

Lemma 1.5 provides a computable way of verifying when Mm(~a) is image parti-
tion regular. Recall that In is the n⇥n identity matrix. Since Mm(~a) includes all of

the rows of Im, it is trivial that
✓

Im

Mm(~a)

◆
is image partition regular if and only

if Mm(~a) is image partition regular. Consequently, we have that Mm(~a) is image
partition regular if and only if

�
Mm(~a) �In

�
is kernel partition regular where

n =
✓

m
k

◆
+ m.

Lemma 3.1. Let k,m 2 N with m � k and let ~a = ha1, a2, . . . , aki be a sequence
in Z \ {0}. Then Mm(~a) is image partition regular if one of

(1) a1 = 1;

(2) ak = 1;

(3) a1 + a2 + . . . + ak = 1; or

(4) a1 + a2 + . . . + ak = 0.

Proof. In cases (3) and (4) it is immediate that
�

Mm(~a) �In

�
satisfies the

columns condition where n =
✓

m
k

◆
+m. (In case (3) take I1 = {1, 2, . . . ,m+n}.

In case (4), take I1 = {1, 2, . . . ,m}.)
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It is not hard to show that
�

Mm(~a) �In

�
satisfies the columns condition in

cases (1) and (2), but it is much easier to note that if p = max{|a1|,
|a2|, . . . , |ak|}, then, for any (m,p, 1)-set X in N, there is an ~x such that all en-
tries of Mm(~a)~x are contained in X, so Mm(~a) is image partition regular by [1, Satz
3.1].

Alternatively, this follows easily from any of several characterizations in [6, The-
orem 15.24].

We shall show that for su�ciently large m (and not all that large as such things
go) the conditions of Lemma 3.1 do characterize the image partition regularity of
Mm(~a). If k = 1 it is trivial that for all m � 1, Mm(~a) is image partition regular if
and only if a1 = 1. And if k = 2 it is at least routine to verify that for all m � 2,
Mm(~a) is image partition regular if and only if a1 = 1, a2 = 1, a1 + a2 = 1, or
a1 + a2 = 0.

Theorem 3.2. Let m,k 2 N with k � 3 and let ha1, a2, . . . , aki be a sequence in
Z \ {0}. Assume that m � 2k � 2. Then Mm(~a) is image partition regular if and
only if one of

(1) a1 = 1;

(2) ak = 1;

(3) a1 + a2 + . . . + ak = 1; or

(4) a1 + a2 + . . . + ak = 0.

Proof. The su�ciency is Lemma 3.1.
For the necessity, let B = Bm(~a) and denote the columns of B by ~c1,~c2, . . . ,~cm.

Then
Mm(~a) =

✓
Im

B

◆

and Mm(~a) is image partition regular so by Lemma 1.5
�

B �In

�
is kernel par-

tition regular and therefore satisfies the columns condition, where n =
✓

m
k

◆
. In

particular, there is a set J1 of columns in
�

B �In

�
summing to ~0.

Let J = J1 \ {1, 2, . . . ,m} and note that
P

t2J ~ct is a vector all of whose entries
are 0 or 1. Let r = |J | and let J = {t1, t2, . . . , tr}<. Let D = ( ~ct1 ~ct2 . . . ~ctr ).
Thus all rows of D sum to 0 or 1. Let g = t1 and h = tr.
Case 1. r � k. Then ( a1 a2 . . . ak 0 0 . . . 0 ) is a row of D. (Or, if
r = k, ( a1 a2 . . . ak ) is a row of D.) So (3) or (4) holds.
Case 2. r  k � 1.
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Case 2(a). g  m�r�k+2. Then |{g+1, g+2, . . . ,m}\J | = m�g�(r�1) � k�1
so ( a1 0 0 . . . 0 ) is a row of D (because there is room in the omitted columns
to put a2, a3, . . . , ak) and thus a1 = 1.
Case 2(b). h � r + k� 1. Then |{1, 2, . . . , h� 1} \ J | = h� 1� (r� 1) � k� 1 so
( 0 0 . . . 0 ak ) is a row of D so ak = 1.
Case 2(c). g � m� r � k + 3 and h  r + k � 2. Note that g � m� r � k + 3 �
(2k � 2) � (k � 1) � k + 3 = 2 and h  r + k � 2  2k � 3  m � 1. We
also note that we cannot have r = 1. For if so, we would have g = h and thus
m� 1� k + 3  g = h  1 + k � 2 so m  2k � 3, a contradiction.
Case 2(c)(i). h > g + r � 1. We claim that in this case ( ag 0 0 . . . 0 ),
( 0 0 . . . 0 ah�r+1 ), and ( ag 0 . . . 0 ah�r+1 ) are all rows of D. This
will be a contradiction since it forces ag = ah�r+1 = 1 and ag + ah�r+1 = 0.

Now m � 2k � 2 � k + r � 1 so (m � g) � (r � 1) � k � g. Consequently
|{g + 1, g + 2, . . . ,m} \ J | � k� g, so there is room in the omitted columns above g
to put ag+1, ag+2, . . . , ak, and thus ( ag 0 0 . . . 0 ) is a row of D.

Next |{1, 2, . . . , h�1}\J | = h�r, so there is room in the omitted columns below
h to put a1, a2, . . . , ah�r, and thus ( 0 0 . . . 0 ah�r+1 ) is a row of D.

Finally (for this case) |{g+1, g+2, . . . , h�1}\J | = (h�1�g)�(r�2) > h�r�g, so
there is room in the omitted columns between g and h to put ag+1, ag+2, . . . , ah�r.
Also, m � k + r � 2 so |{h + 1, h + 2, . . . ,m}| = m � h � k � h + r � 1, so
there is room in the omitted columns above h to put ah�r+2, ah�r+3, . . . , ak. Thus
( ag 0 . . . 0 ah�r+1 ) is a row of D.
Case 2(c)(ii). h = g + r � 1. Then J = {g, g + 1, . . . , g + r � 1}. Assume first
that r � 3. We have that m � k + r � 1 = k + h� g so

|{h + 1, h + 2, . . . ,m}| � k � g

so there is room above h to put ag+1, ag+2, . . . , ak and thus ( ag 0 . . . 0 ),
( ag�1 ag 0 . . . 0 ), and ( ag ag+1 0 . . . 0 ) are all rows of D. Thus
ag = 1 and ag�1 = ag+1 = �1. If r � 3, then ( ag�1 ag ag+1 0 . . . 0 ) is a
row of D while ag�1 + ag + ag+1 = �1, a contradiction.

Therefore, r = 2. Now we will assume that m � k + 2. (Since m � 2k � 2, this
automatically holds unless k = 3 and m = 4.) Then

|{h + 1, h + 2, . . . ,m}| = m� h � k + 2� h = k � g + 1,

so there is room above h for ag, ag+1, . . . , ak and thus ( ag 0 ), ( ag�1 0 ), and
( ag�1 ag ) are all rows of D, which is impossible.

Finally (for the whole proof) assume k = 3 and m = 4. We have

B = B4(~a) =

0
BB@

a1 a2 a3 0
a1 a2 0 a3

a1 0 a2 a3

0 a1 a2 a3

1
CCA .
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Since, as we saw at the start of case 2(c), g � 2 and h  m� 1, we must have that
J = {2, 3}. We then have that each of a2 + a3, a2, and a1 + a2 are in {0, 1} and
a2 6= 0 so we must have that a2 = 1 and a1 = a3 = �1 and thus

�
B �I4

�
=

0
BB@

�1 1 �1 0 �1 0 0 0
�1 1 0 �1 0 �1 0 0
�1 0 1 �1 0 0 �1 0
0 �1 1 �1 0 0 0 �1

1
CCA .

The only set of columns of this matrix that sum to ~0 is J1 = {2, 3, 6, 7}. The span
of these four columns is

W =

8>><
>>:

0
BB@

x1

x2

x3

x4

1
CCA : x4 = �x1

9>>=
>>;

and as columns 1, 4, 5, and 8 have no positive entries, no sum of these remaining
columns is in W .

From the characterizations of Theorems 2.2 and 3.2 we see that it is easy to
produce examples of sequences ~a such that Mm(~a) is image partition regular for all
su�ciently large m but M(~a) is not image partition regular.

We conclude by showing that the bound of Theorem 3.2 is best possible.

Theorem 3.3. Let k 2 N with k � 3, let m = 2k�3, let a1 and ak be any elements
of Z \ {0} and let a2 = a3 = . . . = ak�1 = 1. Then Mm(~a) is image partition
regular.

Proof. Let B = Bm(~a) and let n =
✓

m
k

◆
. Then Mm(~a) =

✓
Im

B

◆
so by Lemma

1.5 it su�ces to show that E =
�

B �In

�
satisfies the columns condition. Denote

the columns of E by ~c1,~c2, . . . ,~cm+n.
For j 2 {1, 2, . . . , k � 2}, let f(j) = k � 2 + j. Let

I1 = {f(1)} [ {m + t : t 2 {1, 2, . . . , n} and bt,f(1) 6= 0} .

Given j 2 {2, 3, . . . , k � 2} let

Ij = {f(j)} [ {m + t : t 2 {1, 2, . . . , n} , bt,f(j) 6= 0 ,
and (8i 2 {1, 2, . . . , j � 1})(bt,f(i) = 0)} .

Let Ik�1 = {1, 2, . . . ,m + n} \
Sk�2

j=1 Ij . We shall show that {I1, I2, . . . , Ik�1} is as
required to show that E satisfies the columns condition.

First, since there are only k�2 columns in front of column f(1) = k�1, ak does
not occur in column f(1). And, since there are only k � 2 columns after column
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f(1), a1 does not occur in column f(1). Therefore,
P

i2I1
~ci = ~0. Also, since each

row of B has k � 3 zeroes we have that
�
m + t : t 2 {1, 2, . . . , n}

 
✓
Sk�2

j=1 Ij

so {~ci : i 2
Sk�2

j=1 Ij} spans Qn and in particular
P

i2Ik�1
~ci is in this span.

Thus it remains only to show that for j 2 {2, 3, . . . , k�2},
P

i2Ij
~ci is in the span

of {~ci : i 2
Sj�1

s=1 Is}. To this end, let j 2 {2, 3, . . . , k � 2} and let ~dj =
P

i2Ij
~ci. It

su�ces to show that ~dj is in the span of

{~cm+t : t 2 {1, 2, . . . , n} and (9i 2 {1, 2, . . . , j � 1})(bt,f(i) 6= 0} .

For this, we need to show that if t 2 {1, 2, . . . , n} and dj(t) 6= 0, then (9i 2
{1, 2, . . . , j � 1})(bt,f(i) 6= 0). Then, letting

L = {t 2 {1, 2, . . . , n} : dj(t) 6= 0} ,

we have ~dj =
P

t2L dj(t)~cm+t and {m+t : t 2 L} ✓
Sj�1

s=1 Is. So let t 2 {1, 2, . . . , n},
assume that dj(t) 6= 0, and suppose that

(8i 2 {1, 2, . . . , j � 1})(bt,f(i) = 0) .

Then m + t 2 Ij so it must be that bt,f(j) 6= 1. And since f(j) � k, this says that
bt,f(j) = ak. Since bt,k�1 = bt,k = . . . = bt,f(j�1) = 0, there are at most k � 2
nonzero entries in row t before column f(j) so bt,f(j) 6= ak. This contradiction
completes the proof.
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