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Abstract
We calculate the least significant p-ary digits of certain Lucas numbers Vn =
Vn(P,Q) with V0 = 2, V1 = P and Vn = PVn�1 � QVn�2 for n � 2. We base
our study on an observation regarding these numbers: as m increases, more and
more p-adic digits match in Vkpm with integer k � 1. We use multisection identities
for generating functions and derive congruences for the underlying sequences.

1. Introduction

Let n and k be positive integers, and p be a prime, and let ⌫p(k) denote the highest
power of p dividing k, i.e., the p-adic order of k.

The sequences Un = Un(P,Q) with U0 = 0, U1 = 1 and Un = PUn�1 �QUn�2

and Vn = Vn(P,Q) with V0 = 2, V1 = P and Vn = PVn�1 � QVn�2 for n � 2 are
called Lucas (or Lucas and companion Lucas, respectively) sequences associated
with the pair (P,Q) (cf. [7]), with Un and Vn considered the generalization of the
original Fibonacci and Lucas sequences, i.e., Fn = U(1,�1) and Ln = V (1,�1),
respectively. Usually, we use the short notations Un and Vn except if explicitly
specifying the parameters might be helpful. The corresponding generating functions
are

U(x) =
1X

n=0

Unxn =
x

1� Px + Qx2

and

V (x) =
1X

n=0

Vnxn =
2� Px

1� Px + Qx2
.

We define the characteristic polynomial x2 � Px + Q = 0 associated with the
Lucas sequences Un and Vn, n � 0. Its discriminant is D = D(P,Q) = P 2 � 4Q. If
p � 3 and p - PQD then we define the function  (p) =  (p, P,Q) = p�

⇣
D
p

⌘
where
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⇣
D
p

⌘
is the Legendre symbol (cf. [7]), i.e., it is 1 if D is a quadratic residue modulo

p and �1 otherwise. We define the rank of apparition (or Fibonacci entry point or
restricted or fundamental period modulo n) ⇢(n) = ⇢(n, P,Q) of integer n � 2 for
the Lucas sequence Uk(P,Q), k � 0: if there exists m � 1 such that n divides Um

then ⇢(n) is the smallest such m (cf. [7]). Since Q = �1, by observation (IV.19)
in [7] we know that ⇢(p) exists for every odd prime p. The same applies to p = 2
by fact (IV.18) in [7] and all prime powers by fact (IV.20), i.e., ⇢(pe) exists for any
integer e � 1. The determination of the exact power of ⌫p(F⇢(pe)) is discussed in
[3] and that of ⌫p(U⇢(pe)(P,Q)) in terms of ⌫p(U⇢(p)(P,Q)) follows by (IV.20). By
(IV.29) we also know that

n | Um if and only if ⇢(n) | m. (1.1)

We define the modulo p period (cf. [2]) or Pisano period modulo p, ⇡(p) =
⇡(p, P,Q), as the smallest m so that Un+m(P,Q) ⌘ Un(P,Q) (mod p) for every
n � 0. It is known that ⇢(p) | ⇡(p).

We will use a basic relation among the members of a Lucas sequence

V2n = V 2
n � 2Qn. (1.2)

We also rely on fact (IV.10) in [7], which provides the identity

2n�1Vn = Pn +
✓

n

2

◆
Pn�2D +

✓
n

4

◆
Pn�4D2 + . . . (1.3)

and its companion identity

2n�1Un =
✓

n

1

◆
Pn�1 +

✓
n

3

◆
Pn�3D +

✓
n

5

◆
Pn�5D2 + . . . . (1.4)

Our main goal is to prove that as m increases, more and more p-adic digits
match in Vkpm for di↵erent integers k � 1, and establish the rate at which these
digits match. Similar investigations have been done for the Stirling numbers of the
second kind in [4] and [5], and Motzkin numbers in [6]. In Section 2 we state the
main Theorems 4, 5, 7, and 10. Their proofs are included in Section 3.

2. Main Results

In [8], an application of p-Honda sequences is mentioned in Section 3.4. It can be
summarized as follows.

Proposition 1 (Beukers). Let M be a d ⇥ d matrix with integer coe�cients.
Define an = Tr(Mn) and

Z(p) = {a/b : a 2 Z, 0 6= b 2 N, and b prime to p}.
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Then for any prime p, the sequence an, n � 1, is a p-Honda sequence with

am ⌘ am/p (mod mZ(p)) if p | m. (2.1)

Corollary 2. The Lucas sequence

L0 = 2, L1 = 1, Ln+1 = Ln + Ln�1 (n � 1),

is a p-Honda sequence for any prime p.

We can easily extend this result and its proof (cf. [8]) for the general Lucas
sequence Vn(P,Q), n � 0.

Corollary 3. The Lucas sequence Vn(P,Q) with

V0 = 2, V1 = P, Vn+1 = PVn �QVn�1 (n � 1),

is a p-Honda sequence for any prime p.

The following theorem follows by Corollary 3 and congruence (2.1) after setting
m = kpn+1.

Theorem 4. For integers n � 0 and k � 1, we have that

⌫p(Vkpn+1(P,Q)� Vkpn(P,Q)) � n + 1.

The main goal of this paper is to find cases with Q = �1 when Theorem 4 can
be strengthened and the exact order ⌫p(Vkpn+1(P,�1) � Vkpn(P,�1)) and its con-
gruential form can be determined. The results in this direction are summarized in
Theorems 5 and 10, which deal with the p-adic orders and high power modulus con-
gruences of the di↵erences, in particular for p = 2. Theorem 10 extends Theorem 5
from k = 1 to other values and presents the cases in their congruential forms. We
combine their proofs in Section 3.

Theorem 5. For the Lucas sequence Vk = Vk(P,�1), k � 0, we set rm(p) =
⌫p(Vpm+1 � Vpm), em(p) = ⌫p(Up(Vpm+1 ,�1)) and em(2) = ⌫2(U2(V2m+1 , 1). Let
D = P 2 + 4 be the discriminant of the sequence.

For p � 3 odd and m � 0 we get

Vkpm+1 � Vkpm

Vpm+1 � Vpm
⌘ kUk(Vpm+1(P,�1),�1) mod prm(p), (2.2)

while for p = 2 and m � 1 we get

Vk2m+1 � Vk2m

V2m+1 � V2m
⌘ kUk(V2m+1(P,�1), 1) mod 2rm(2). (2.3)
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For any prime p � 2, if p - D then em(p) = 0 for all integers m � 0. In this case,
if p � 3 then

⌫p(Vpm+1 � Vpn) = m� 1 + ⌫p(Vp2 � Vp), for m � 1, (2.4)

and if p | P holds too then

⌫p(Vpm+1 � Vpm) = m + ⌫p(P );

while if p = 2 then

⌫2(V2m+1 � V2m) = m� 1 + ⌫2(V4 � V2) = m + 1, for m � 1. (2.5)

If p � 3 is an odd prime and p | D then em(p) = 1 for all m � 0. If m � 1 then

rm(p) > 2 = 1 + em(p), (2.6)

thus 2rm(p) > rm(p) + 1 + em(p) = rm(p) + 2, and

⌫p(Vpm+1 � Vpm) = 2(m� 1) + ⌫p(Vp2 � Vp). (2.7)

If p = 2 and 2 | D, i.e., 2 | P , then em(2) = 1 for all m � 0. If m � 2 then
rm(2) > 2, and

⌫2(V2m+1 � V2m) = 2(m� 2) + ⌫2(V8 � V4) = 2(m� 1 + ⌫2(P )) + �4-P . (2.8)

Remark 6. In Theorem 5 we need the smallest m that guarantees

rm(p) > 1 + em(p) (2.9)

and thus, the applicability of (2.2) and (2.3) with k = p. By Theorem 4, we
immediately get that r2(p) � 3, hence, m � 2 will be su�ciently large in Theorem 5,
however, if p - D then r1(p) � 2 > 1 + e1(p) = 1 and m = 1 su�ces. If p | D then
we have two cases. If p = 2 then it is easy to find examples when the smallest m
is 2, e.g., if P = 2. However, we could not find any such case when p � 3, and in
fact, m = 1 is su�ciently large. It turns out that if p2 | D = P 2 +4 then r0(p) � 2,
which makes r1(p) � 4 > 1 + e1(p). It also appears that if we replace p2 | D with
p | D and even if r0(p) = ⌫p(Vp � V1) = 1, these assumptions already imply that
r1(p) = ⌫p(Vp2 � Vp) � 3 > 1 + e1(p). Thus, clearly m = 1 is su�cient in (2.7) of
Theorem 5 as stated in Theorem 7.

Theorem 7. With the notation of Theorem 5, if p � 3 and p2 | D then r0(p) � 2
and r1(p) � 4 > 1 + e1(p). If p | D then r1(p) � 3 > 1 + e1(p) = 2. On the other
hand, if p - D then r1(p) � 2 > 1 + e1(p) = 1. In each case, m = 1 is su�ciently
large in Theorem 5. If p = 2 then m = 2 is required exactly if ⌫2(P ) = 1.
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Remark 8. According to Theorem 5, if p = 2 or p � 3 with p | P then the p-adic
orders can be determined without calculating any value of the Lucas sequence.

Remark 9. There are two frequently occurring cases. If r0(p) = ⌫p(Vp � V1) = 1
and e0(p) = ⌫p(Up(Vp,�1)) = 0 then (2.4) implies that

⌫p(Vpn+1 � Vpn) = n + 1, for n � 0 (2.10)

with r0(p) = 1 taking care of the case n = 0.
If r1(p) = ⌫p(Vp2 � Vp) = 3 (cf. Theorem 7), and e1(p) = ⌫p(Up(Vp2 ,�1)) = 1

then the inequality (2.6) is satisfied, and (2.7) implies that

⌫p(Vpn+1 � Vpn) = 2n + 1, for n � 1. (2.11)

Example 1. With P = 1 (and Q = �1) we work with the original Lucas and
Fibonacci sequences. If p = 5 then ⇢(5) = 5, and we get that r0(5) = 1, r1(5) = 3,
e0(5) = e1(5) = 1, and ⌫5(V5n+1 � V5n) = 2n + 1 for n � 0, in fact, it follows by
(2.11) for n � 1 and by r0(5) = 1 for n = 0.

Theorem 10. With the notations of Theorem 5, for k � 1 we get the following
congruences and consequently, the appropriate p-adic orders.

If p � 3 and p | D then with m � 1, we have that

Vkpm+1�Vkpm ⌘

8>>><
>>>:

k221�k (mod p�1)P k�1p2m�2(Vp2 � Vp) mod p2m�1+⌫p(Vp2�Vp),

if gcd(k, p) = 1,
p2m(Vp2 � Vp) mod p2m+1+⌫p(Vp2�Vp),

if k = p,

with the convention that 0  a (mod b) < b.
If p � 3, p - D, and p - P then for m � 1, we get that

Vkpm+1 � Vkpm⌘

8>>>>>>><
>>>>>>>:

pm�1(Vp2 � Vp)kUk(Vpm+1 ,�1)
⇣

D
p

⌘m�1
mod pm+⌫p(Vp2�Vp),

if gcd(k, p) = 1 and

gcd(k, (p, Vpm+1 ,�1)) = 1,

pm(Vp2 � Vp)
⇣

D
p

⌘m
mod pm+1+⌫p(Vp2�Vp),

if k = p.

If p � 3, p - D, and p | P then for m � 1, we have that

Vkpm+1 � Vkpm ⌘

8>>><
>>>:

pm�1(Vp2 � Vp)kUk(Vpm+1 ,�1) mod pm+⌫p(Vp2�Vp),

if gcd(k, p) = 1 and k odd,

pm(Vp2 � Vp) mod pm+1+⌫p(Vp2�Vp),

if k = p.
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If p = 2 and p | D, i.e., p | P , then with k � 1 odd and m � s � 2, we have that

Vk2m+1 � Vk2m ⌘ 22(m�s)(V2s+1 � V2s)kUk(V2m+1 , 1) mod 22(m�s�1+rs(2)).

If p = 2, p - D, and gcd(k, 6) = 1 then for m � s � 1, we get

Vk2m+1 � Vk2m ⌘ (�2)m�s(V2s+1 � V2s)kUk(V2m+1 , 1) mod 2m+s+1.

Remark 11. In the congruences of Theorem 10, the di↵erence between the p-
adic order of the right-hand side quantity and that of the modulus is 1 for p � 3,
rs(2)� 2 = 2s� 4 + 2⌫2(P ) + �4-P � 2s� 1 � 3 if p = 2 | P (by (3.21)), and s � 1
if p = 2 - P .

3. Proofs

Proof of Corollary 3. We apply Proposition 1 to the matrix M =
✓

P �Q
1 0

◆
.

The characteristic polynomial of M is x2 � Px + Q, hence M2 � PM + Q = 0
by the Hamilton–Cayley theorem. We deduce Mn+2 = PMn+1 � QMn (n � 0).
Since Tr(M0) = Tr(I2) = 2 and Tr(M) = P , this proves that Vn = Tr(Mn) is the
mentioned Lucas sequence.

In the proofs of the main theorems we need some auxiliary results. The first
result is due to Lehmer, cf. Theorem 1.6 in [1]. We need only its version stated as
part of the facts (IV.20) and (IV.7) in [7].

Theorem 12. Let e � 1, and let pe be the exact power of p dividing Uk. If p - r
and f � 0 then pe+f divides Ukrpf . Moreover, if p - Q and pe 6= 2, then pe+f is the
exact power of p dividing Ukrpf .

From now on we focus on the cases with Q = �1 only (although a subcase with
p = 2 will require the use of Uk with Q = 1).

Theorem 13. If P is odd and k is an odd multiple of 3 then we have that
⌫2 (Uk(V2m+1(P,�1), 1)) = m + 3, for all m � 0.

If P is odd then U2(V2m+1(P,�1), 1) = V2m+1(P,�1) ⌘ �1 (mod 2m+2)
for all m � 0, while if P is even then ⌫2 (U2(V2m+1(P,�1), 1)� 2) =
⌫2 (V2m+1(P,�1)� 2) = 2(m � 1 + ⌫2(P )) + ⌫2(V2(P,�1) + 2) � 2(m + ⌫2(P ))
for all m � 1, and thus, U2(V2m+1(P,�1), 1) ⌘ 2 (mod 22(m+⌫2(P ))) for all m � 0.

For an odd prime p, if p | P , k � 2 even, and gcd(k, p) = 1 then we have that
⌫p

�
Uk(Vpm+1(P,�1),�1)

�
= m + 1 + ⌫p(P ), for all m � 0.

Proof of Theorem 13. For any odd P and with Vk = Vk(P,�1), we get that V 2
2 �1 =

(P 2 + 2)2 � 1 ⌘ 8 mod 16, and thus, ⌫2(V 2
2 � 1) = 3. By induction we can prove
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that ⌫2(V 2
2m+1 � 1) = m + 3 for any m � 0. In fact, we just demonstrated the case

with m = 0. For the inductive step with m � 0, we use identity (1.2):

V 2
2m+2 � 1 = (V 2

2m+1 � 2)2 � 1 = (V 2
2m+1 � 1)(V 2

2m+1 � 3),

hence, ⌫2(V 2
2m+2 � 1) = m + 4 by the inductive hypothesis.

We note that U3(P, 1) = P 2 � 1. Since U3(V2m+1 , 1) = V 2
2m+1 � 1, it now follows

that ⌫2(U3(V2m+1 , 1)) = ⌫2(V 2
2m+1 � 1) = m + 3 > 1, and by Theorem 12 we derive

that ⌫2(U3r(V2m+1 , 1)) = m + 3 for p - r.
Similarly to the above steps, we can also prove that ⌫2(V2m+1 + 1) = m + 2 with

Vk = Vk(P,�1) for any m � 0 and odd P by induction. We have ⌫2(V2 + 1) = 2
for m = 0 since with V1 = P = 4k ± 1 we get that V2 + 1 = P 2 + 3 ⌘ 4 (mod 8).
For the inductive step with m � 0, we use identity (1.2) again: V2m+2 + 1 =
(V 2

2m+1 � 2) + 1 = V 2
2m+1 � 1, and since ⌫2(V 2

2m+1 � 1) = m + 3 as we have just
seen it, we obtain that ⌫2(V2m+2 + 1) = m + 3; hence, V2m+2 ⌘ �1 (mod 2m+3).
On the other hand, if P is even then we prove that ⌫2 (U2(V2m+1(P,�1), 1)� 2) =
⌫2 (V2m+1(P,�1)� 2) = 2(m � 1 + ⌫2(P )) + ⌫2(V2(P,�1) + 2) � 2(m + ⌫2(P ))
for m � 1, and thus, U2(V2m+1(P,�1), 1) ⌘ 2 (mod 22(m+⌫2(P ))) by induction on
m � 0. Indeed, ⌫2(P ) � 1 and V2 = P 2 + 2 ⌘ 2 (mod 22⌫2(P )) when m = 0, and
by identity (1.2) we have for m � 0 that

V2m+2 � 2 = (V 2
2m+1 � 2)� 2 = (V2m+1 � 2)(V2m+1 + 2),

hence, by the case m = 0 and the inductive hypothesis, ⌫2(V2m+2 � 2) = 2(m +
⌫2(P )) + ⌫2(V2(P,�1) + 2) � 2(m + 1 + ⌫2(P )).

For an odd prime p with p | P , gcd(k, p) = 1, and k � 2 even, we first observe
that (1.3) implies that ⌫p(Vpm+1) = m + 1 + ⌫p(P ) for all m � 0. By (IV.19) in [7]
we know that p | Uk(Vpm+1 ,�1) exactly if k is even. Moreover, by Theorem 12, we
also know that ⌫p(Uk(Vpm+1 ,�1)) = ⌫p(U2(Vpm+1 ,�1)) = m + 1 + ⌫p(P ) as long as
gcd(k, p) = 1, since U2(Vpm+1 ,�1) = Vpm+1 .

Now we present the combined proof of Theorems 5 and 10.

Proof of Theorems 5 and 10. We will prove the congruences (2.2) and (2.3) that
in turn, will imply the identities (2.4), (2.5), (2.7), (2.8), and the congruences in
Theorem 10.

We need some preparation. First we observe that with Uk = Uk(P,�1)
1X

n=1

nUnxn = xU 0(x) = x
(1� Px� x2)� x(�P � 2x)

(1� Px� x2)2
=

x(1 + x2)
(1� Px� x2)2

. (3.1)

By a multisection identity [2], we get that with Vk = Vk(P,�1)
1X

k=0

Vknxk =
2� Vnx

1� Vnx + (�1)nx2
. (3.2)
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Now we assume that p � 3 and n is odd. By (3.2), we get that
1X

k=0

Vknxk =
2� Vnx

1� Vnx� x2
.

We apply this with n = pm+1 and n = pm and, after normalizing by the factor
Vpm+1 � Vpm , we derive for the normalized di↵erence that

Wm(x) =
1X

k=0

Vkpm+1 � Vkpm

Vpm+1 � Vpm
xk =

1
Vpm+1 � Vpm

✓
2� Vpm+1x

1� Vpm+1x� x2
� 2� Vpmx

1� Vpmx� x2

◆

=
x + x3

(1� Vpm+1x� x2)(1� Vpmx� x2)
.

It implies that

Wm(x) =
x(1 + x2)

(1� Vpm+1x� x2)2
(3.3)

�
✓

x(1 + x2)
(1� Vpm+1x� x2)2

� x(1 + x2)
(1� Vpm+1x� x2)(1� Vpmx� x2)

◆
. (3.4)

The term on the right-hand side of (3.3) corresponds to the generating functionP1
k=0 kUk(Vpm+1 ,�1)xk by identity (3.1), while the other terms, i.e., those in (3.4),

contribute

� x(1 + x2)
(1� Vpmx� x2)� (1� Vpm+1x� x2)
(1� Vpm+1x� x2)2(1� Vpmx� x2)

= �x2(1 + x2)(Vpm+1 � Vpm)
1

(1� Vpm+1x� x2)2(1� Vpmx� x2)

with terms that are multiples of Vpm+1 � Vpm with p-adic order of at least
⌫p(Vpm+1 � Vpm). Thus, by (3.3) and (3.4) we obtain (2.2).

The case with p = 2 is slightly di↵erent. We need the corresponding generating
function for Uk = Uk(P, 1) (rather than for Uk(P,�1))

U(x) =
1X

n=0

Unxn =
x

1� Px + x2

and thus,
1X

n=1

nUnxn = xU 0(x) = x
(1� Px + x2)� x(�P + 2x)

(1� Px + x2)2
=

x(1� x2)
(1� Px + x2)2

. (3.5)

Also, the multisection identity (3.2) yields that
1X

k=0

Vknxk =
2� Vnx

1� Vnx + x2
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with Vk = Vk(P,�1) and n even. We apply this with n = 2m+1 and n = 2m,m � 1,
and, after normalizing by the factor V2m+1 � V2m , we derive for the normalized
di↵erence that

Wm(x) =
1X

k=0

Vk2m+1 � Vk2m

V2m+1 � V2m
xk =

1
V2m+1 � V2m

✓
2� V2m+1x

1� V2m+1x + x2
� 2� V2mx

1� V2mx + x2

◆

(3.6)

=
x� x3

(1� V2m+1x + x2)(1� V2mx + x2)
.

Note that this is the reason for requiring m � 1 in Theorems 5 and 10 if p = 2.
Identity (3.6) implies that

Wm(x) =
x(1� x2)

(1� V2m+1x + x2)2
(3.7)

�
✓

x(1� x2)
(1� V2m+1x + x2)2

� x(1� x2)
(1� V2m+1x + x2)(1� V2mx + x2)

◆
. (3.8)

The term on the right-hand side of (3.7) corresponds to the generating functionP1
k=0 kUk(V2m+1 , 1)xk by identity (3.5), while the other terms, i.e., those in (3.8),

contribute

� x(1� x2)
(1� V2mx + x2)� (1� V2m+1x + x2)
(1� V2m+1x + x2)2(1� V2mx + x2)

= �x2(1� x2)(V2m+1 � V2m)
1

(1� V2m+1x + x2)2(1� V2mx + x2)

with terms that are multiples of V2m+1 � V2m with 2-adic order of at least
⌫2(V2m+1 � V2m). Thus, by (3.7) and (3.8), we obtain (2.3).

We are ready for the actual proof and start with the case when p is an odd prime.
Recall that we use the notation Vk = Vk(P,�1). The basic idea is to prove that

Vpm ⌘ P mod p for m � 0. (3.9)

To see this, we apply identity (1.3) modulo p with the setting n = pm and observe
that

�pm

i

�
⌘ 0 (mod p) for m � 1 and 1  i  pm � 1. It follows that

D0 = D(Vpm+1 ,�1) = V 2
pm+1 + 4 ⌘ P 2 + 4 = D(P,�1) mod p, (3.10)

and therefore,
p | D if and only if p | D0. (3.11)

Note that the companion identity (1.4) taken modulo p implies (cf. fact (IV.13) in
[7]) that for an odd prime p

Up ⌘
✓

D

p

◆
mod p. (3.12)
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After these preparatory steps, we proceed with the proofs in three cases.

Case 1: (p | D, p odd prime). First we assume that p | D = D(P,�1). Note
that in this case p � 5 since clearly, D = P 2 + 4 6⌘ 0 (mod 3). The proof is by
induction on m � 1. We set k = p in (2.2). If m = 1 then the statement follows by
inequality (2.6), which holds by Theorem 7. Here we also use identity (1.4), now
for Un(P 0,�1)

2n�1Un =
✓

n

1

◆
(P 0)n�1 +

✓
n

3

◆
(P 0)n�3D0 +

✓
n

5

◆
(P 0)n�5(D0)2 + . . . (3.13)

taken modulo p2, with n = p, P 0 = Vpm+1 ⌘ P (mod p) (by (3.9)), and p | D0.
Indeed, we obtain that

2p�1Up =
✓

p

1

◆
(P 0)p�1 +

✓
p

3

◆
(P 0)p�3D0 +

✓
p

5

◆
(P 0)p�5(D0)2 + · · · +

✓
p

p

◆
(D0)

p�1
2

and
Up(Vpm+1 ,�1) ⌘ pP p�1 ⌘ p mod p2

since
�p
3

�
D0,

�p
5

�
(D0)2, . . . ,

�p
p

�
(D0)

p�1
2 is divisible by p2 for every prime p � 5 and

m � 0; thus, em(p) = ⌫p(Up(Vpm+1 ,�1)) = 1 for p | D implies p - P . Theorem 7
yields (2.6) with m = 1. Since rm+1(p) > rm(p), the inequality (2.6) remains true
for all m � 2. If (2.7) holds with m � 1 then the above argument also guarantees
that it holds for m + 1, too. Note that we get that

pUp(Vpm+1 ,�1) ⌘ p2 mod p3 (3.14)

and similarly, for gcd(k, p) = 1 and with n = k in (3.13), we also obtain on the
right-hand side of (2.2) that for m � 0

kUk(Vpm+1 ,�1) ⌘ k221�k (mod p�1)P k�1 mod p.

Hence, for m � 1,

Vkpm+1�Vkpm ⌘

8>>><
>>>:

k221�k (mod p�1)P k�1p2m�2(Vp2 � Vp) mod p2m�1+⌫p(Vp2�Vp),

if gcd(k, p) = 1,
p2m(Vp2 � Vp) mod p2m+1+⌫p(Vp2�Vp),

if k = p,

and ⌫p

�
Vkpm+1 � Vkpm

�
= 2m� 2 + ⌫p(Vp2 � Vp) if gcd(k, p) = 1.

Case 2: (p - D, p odd prime). On the other hand, p - D = D(P,�1) implies
that p - Up(Vpm+1 ,�1). By (3.11) it follows that p - D0 = D(Vpm+1 ,�1).
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Case 2.1: (p - P). If p - P and thus, p - P 0 = Vpm+1 by (3.9), then
by p - P 0QD0 and ⇢(p, Vpm+1 ,�1) |  (p, Vpm+1 ,�1) = p �

⇣
D0

p

⌘
, we get that

gcd(p, ⇢(p, Vpm+1 ,�1)) = 1, which yields that p - Up(Vpm+1 ,�1) by (1.1). In fact,

Up(Vpm+1 ,�1) ⌘
✓

D0

p

◆
mod p (3.15)

by (3.12), hence em(p) = 0 for m � 0 and rm(p) � 2 > 1 + em(p), i.e., inequality
(2.9) holds for all m � 1. We note that for m � 0 we get that

⇣
D0

p

⌘
=

⇣
D
p

⌘
by

(3.10), too. In general, the congruences become more complicated if p - D. For
instance, we get that for m � 1

Vkpm+1 � Vkpm⌘

8>>>>>>><
>>>>>>>:

pm�1(Vp2 � Vp)kUk(Vpm+1 ,�1)
⇣

D
p

⌘m�1
mod pm+⌫p(Vp2�Vp),

if gcd(k, p) = 1 and

gcd(k, (p, Vpm+1 ,�1)) = 1,

pm(Vp2 � Vp)
⇣

D
p

⌘m
mod pm+1+⌫p(Vp2�Vp),

if k = p.

In fact, a little more can be said. If besides gcd(k, p) = 1 we have ⇢(p, Vpm+1 ,�1) - k
then the first congruence applies. On the other hand, if ⇢(p, Vpm+1 ,�1) | k then
⌫p(Uk(Vpm+1 ,�1)) seems to be increasing as m grows (and the fact that it is non-
decreasing for any even k follows by (1.4) and the first congruence with k = 1).
Now we derive only the lower bound ⌫p(Vkpm+1 � Vkpm) � m � 1 + ⌫p(Vp2 � Vp),
although it can be improved to ⌫p(Vkpm+1 � Vkpm) � 2m + a with some constant
a if ⌫p(Uk(Vpm+1 ,�1)) increases as m increases. Note, however, that checking a
condition that involves the rank of apparition is more di�cult than establishing
gcd(k, (p, Vpm+1 ,�1)) = 1.

Case 2.2: (p | P). If p | P and therefore, p | Vpm+1 = P 0 by (3.9) and D0 ⌘ 4
(mod p), which implies that

⇣
D0

p

⌘
= 1 for m � 0. Then, by fact (IV.19) in [7], we

get that p | Uk(Vpm+1 ,�1) exactly if k is even, hence p - Up(Vpm+1 ,�1). Note that
Up(Vpm+1 ,�1) ⌘

⇣
D0

p

⌘
⌘ 1 (mod p) by (3.12). In both cases, we have em(p) = 0

for all m � 0, and the result follows by the congruence (2.2) with k = p. In this
case, for m � 1 we obtain

Vkpm+1 � Vkpm ⌘

8>>><
>>>:

pm�1(Vp2 � Vp)kUk(Vpm+1 ,�1) mod pm+⌫p(Vp2�Vp),

if gcd(k, p) = 1 and k odd,

pm(Vp2 � Vp) mod pm+1+⌫k(Vp2�Vp),

if k = p.

If gcd(k, p) = 1 and k even, we get the lower bound ⌫p(Vkpm+1 � Vkpm) �
2(m� 1 + ⌫p(Vp2 � Vp)) = 2(m + ⌫p(P )) by Remark 16.
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Case 3: (p = 2). If p = 2 then, with a little extra work and Theorem 13, we can
improve the congruences by increasing the exponent of the powers in the modulus.
We have two cases.

Case 3.1: (2 | P). If 2 | P then V2m+1 ⌘ V2m ⌘ · · · ⌘ V2 = P 2�2Q ⌘ 2 mod 4
by repeated applications of the recurrence (1.2). It follows that U2(V2m+1 , 1) =
V2m+1 ⌘ 2 mod 4 which yields that em(2) = ⌫2(U2(V2m+1 , 1)) = 1 for all m � 0.
Note that (2.9) is satisfied for m � 2 since rm(2) � 3. Let k � 1 be an odd integer,
then for m � 2 we also get by (2.3) and Uk ⌘ k (mod 2) (cf. fact (IV.18) in [7])
that

⌫2(Vk2m+1 � Vk2m) = 2m� 4 + ⌫2(V8 � V4) = 2(m� 1 + ⌫2(P )) + �4-P .

In the last equation we use r2(2) = ⌫2(V8 � V4) as it is given in (3.21). In order to
obtain useful 2-adic congruences, we increase the exponent in the power of 2 in the
modulus of (2.3). With m � s � 2 and by repeated applications of (2.3) with k = 2
and Theorem 13, we obtain that

Vk2m+1 � Vk2m ⌘ 22(m�s)(V2s+1 � V2s)kUk(V2m+1 , 1) mod 22(m�s�1+rs(2)).

This guarantees a di↵erence of rs(2)� 2 = 2s� 4 + 2⌫2(P ) + �4-P � 2s� 1 � 3 by
(3.21) in the exponents of the powers of 2 in the modulus and the right-hand side
quantity.

Case 3.2: (2 - P). If 2 - P then 2 - D and V2m+1 ⌘ V2m ⌘ · · · ⌘ V1 = P ⌘ 1
(mod 2) by (1.2) as above. We get that U2(V2m+1 , 1) = V2m+1 ⌘ 1 (mod 2) and
em(2) = ⌫2(U2(V2m+1 , 1)) = 0 for all m � 0. By setting k = 2, the repeated
application of the congruence (2.3) yields the result (2.5). As in the case with
p � 3, the inequality (2.9) is true for m � 1. Note that r1(2) = 2 by (3.20). In
addition, by the congruence (2.3) it also follows that for any odd k which is not a
multiple of 3 and m � 1 that ⌫2(Vk2m+1�Vk2m) = m� 1+⌫2(V4�V2) and therefore,
⌫2(Vk2m+1 � Vk2m) = m + 1 by (3.20) (cf. proof of Theorem 7) since if P = 4k ± 1
then ⌫2(3 + P 2) = 2. Yet again, we increase the exponent in the power of 2 in
the modulus and get useful 2-adic congruences by setting m � s � 1 and applying
congruence (2.3) with k = 2 and Theorem 13. For any k such that gcd(k, 6) = 1,
we get that

Vk2m+1 � Vk2m ⌘ (�2)m�s(V2s+1 � V2s)kUk(V2m+1 , 1) mod 2m+s+1,

which guarantees a di↵erence of s � 1 in the exponents of the powers of 2 in the
modulus and the right-hand side quantity.

In fact, Uk is even exactly if k is a multiple of 3 by fact (IV.18) in [7]. However,
in this case ⌫2(Uk(V2m+1 , 1)) = m + 3 by Theorem 13, while rm(2) = m + 1, and
thus, we get only the lower bound ⌫2(Vk2m+1 � Vk2m) � 2(m + 1) for m � 1 by
(2.3) and similarly to the above derivations. Although, numerical evidence seems
to support the conjecture that equality holds.
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Remark 14. In some cases, the above calculations contain a factor Uk modulo a
high prime power with a large index k. The periodicity of the sequence might make
it easier to determine these factors.

We note that an alternative derivation of some part of the Case 3 of Theorem 5
follows by the following lemma which is of independent interest.

Lemma 15. If a > b � 1 are integers and Vk = Vk(P,�1), then V4a � V4b is
divisible by V2a � V2b. In fact,

V4a � V4b

V2a � V2b
= V2a + V2b,

and in the special case using a = k2m and b = k2m�1 with m � 1 and k � 1
integers, we have that

Vk2m+2 � Vk2m+1

Vk2m+1 � Vk2m
= (Vk2m � 1)(Vk2m + 2). (3.16)

Proof of Lemma 15. We use identity (1.2) and derive that V4a � V4b = (V 2
2a � 2)�

(V 2
2b � 2) = (V2a � V2b)(V2a + V2b). Furthermore, in the mentioned special case, we

have that Vk2m+1 + Vk2m = (V 2
k2m � 2) + Vk2m = (Vk2m � 1)(Vk2m + 2).

We use (3.16) in its equivalent form

Vk2m+2 � Vk2m+1 = (Vk2m+1 � Vk2m)(Vk2m � 1)(Vk2m + 2), (3.17)

which suggests a recurrence for the 2-adic order of Vk2m+2 �Vk2m+1 after the 2-adic
orders of the last two factors on the right-hand side are determined. For instance,
the Case 3.1 can be treated as follows. If p = 2, P even, and k � 1 odd, then we
set g4k = ⌫2(V4k � 2) and get that g4k = ⌫2(V 2

2k � 4) = ⌫2((V2k � 2)(V2k + 2)) � 3.
Identity (1.2) implies that

Vk2m+2 � 2 = V 2
k2m+1 � 4 = (Vk2m+1 � 2)(Vk2m+1 + 2)

= (Vk2m � 2)(Vk2m + 2)(Vk2m+1 + 2) = . . .

= (V4k � 2)
m+1Y
i=2

(Vk2i + 2),

and thus, ⌫2(Vk2m+2 � 2) � g4k � 3 for m � 0. It follows that ⌫2(Vk2m+2 + 2) = 2
and ⌫2(Vk2m+2 � 1) = 0. By repeated applications of (3.17), we get that
⌫2(Vk2m+2 � Vk2m+1) = 2(m � 1) + ⌫2(V8k � V4k) which completes the proof of
(2.8) with k = 1. (We note that for any odd k � 1, ⌫2(V8k � V4k) = ⌫2(V8 � V4) is
guaranteed by Theorem 5.)

We conclude with the proof of Theorem 7.
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Proof of Theorem 7. We start with the case of odd primes. By the application of
(1.3), it follows that Vp � V1 ⌘ P

�
(2p�1P )p�1 � 1

�
mod p2. Since p2 | D = P 2 + 4

implies that P 2 ⌘ �4 mod p2, we derive

(22(p�1)P 2)
p�1
2 � 1 ⌘ (�1)

p�1
2 2p(p�1) � 1 ⌘ 0 mod p2.

Note that P 2 ⌘ �4 mod p2 (or for that matter, already P 2 ⌘ �4 mod p) yields

that �4 is a quadratic residue modulo p, however,
⇣
�4
p

⌘
=

⇣
2
p

⌘2 ⇣
�1
p

⌘
= 1 only

if p ⌘ 1 mod 4. Hence, r0(p) = ⌫p(Vp � V1) � 2 and by the congruences (2.2) and
(3.14), we have that r1(p) � min{1 + e0(p) + r0(p), 2r0(p)} � 4 > 1 + e1(p).

Now we are ready to do the harder problem when we have only p | D. We use
(1.3) modulo p3 with n = p and n = p2, and get that

2p�1Vp ⌘ P p +
✓

p

2

◆
P p�2D mod p3 and 2p2�1Vp2 ⌘ P p2

mod p3. (3.18)

After some manipulations (in fact, after moving the powers of 2 to the right-hand
sides, then subtracting the former congruence from the latter one, and factoring
out 2p3�2p2+1P p�2), we get that in order to prove that r1(p) = ⌫p(Vp2 �Vp) � 3 we
need that

P 2
⇣
P p(p�1) � 2p(p�1)

⌘
� 2p(p�1)p

p� 1
2

D ⌘ 0 mod p3. (3.19)

Now we write P p�1 = 2p�1 +
�
P p�1 � 2p�1

�
, and thus,

P p(p�1) � 2p(p�1) =
�
2p�1 +

�
P p�1 � 2p�1

��p � 2p(p�1)

⌘ 2(p�1)2p
�
P p�1 � 2p�1

�
mod p3.

We will use the congruences 2p(p�1) ⌘ 1 mod p2 and 2(p�1)2 ⌘ 1 mod p, and
derive that, since p | D and p ⌘ 1 mod 4,

P p�1 = P 2 p�1
2 = (�4 + D)

p�1
2 ⌘ (�4)

p�1
2 + (�4)

p�3
2

p� 1
2

D mod p2,

hence, since p | D,

2(p�1)2
�
P p�1 � 2p�1

�
⌘ �2p�3 p� 1

2
D ⌘ �p� 1

8
D mod p2.

On the left-hand side of congruence (3.19) it follows that

�P 2p
p� 1

8
D � p

p� 1
2

D = �p
p� 1

8
D(P 2 + 4) = �p

p� 1
8

D2 ⌘ 0 mod p3.

If p - D then by Theorem 5, for all m � 1, we have rm(p) � 2 > 1 + em(p) since
em(p) = 0 by (3.15).
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If p = 2 then easy calculation shows that

V4 � V2 = P 2(3 + P 2). (3.20)

If 2 - P then since em(2) = 0 for m � 0 by Theorem 5, we derive that r1(2) =
⌫2(V4 � V2) = 2 > 1 + e1(2) and m = 1 su�ces.

If 2 | P then em(2) = 1 for m � 0, and m = 2 is necessary exactly if r1(2) = 2,
which happens exactly if ⌫2(P ) = 1 by (3.20). In fact, we can determine that

r2(2) = 2⌫2(P ) + 2 + �4-P � 5 (3.21)

since V8 � V4 = P 2(1 + P 2)(3 + P 2)(4 + P 2).

Remark 16. We note that if for some odd prime p we have p - D and p | P , then⇣
D0

p

⌘
= 1 by the arguments in the proof of Theorem 5, and in a similar fashion to the

derivation of (3.18) from (1.3), we obtain that Vp2�Vp ⌘ �2p3�p2�p+1pP (mod p3).
Therefore, r1(p) = ⌫p(Vp2 � Vp) = 2 if ⌫p(P ) = 1 and r1(p) = ⌫p(Vp2 � Vp) � 3,
otherwise, and it gives the minimum m = 1 or 0 so that rm(p) > 1+em(p). Similarly,
if ⌫p(P ) = 2 then r1(p) = 3 also follows. In fact, in general, Theorem 13 yields that
r1(p) = ⌫p(P ) + 1 by setting k = 2 with m = 0 and 1. Note that in order to have
a unified approach in Theorems 5 and 10, we didn’t separate the cases with m = 0
and 1.

Acknowledgment. The author wishes to thank Gregory P. Tollisen for his helpful
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