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Abstract
Over the past decade, various properties of the irrational factor function I(n) =Q

p⌫ ||n p1/⌫ and strong restrictive factor function R(n) =
Q

p⌫ ||n p⌫�1 have been
investigated by several authors. This study led to a generalization to a class of
arithmetic functions associated to elements of PSL2(Z). In the present paper, we
study the possible influence of the eigenvalues of an element A of PSL2(Z) on
the behavior of the associated arithmetic function fA(n) =

Q
p⌫kn pA(⌫), where

A(z) = (az+b)/(cz+d) is the linear fractional transformation induced by the matrix
A. In particular, we obtain results on the local density of eigenvalues through their
natural connection to a particular surface.

1. Introduction and Statement of Results

There has been recent interest in examining the behavior of the arithmetic functions
fA(n) defined on natural numbers n in terms of the action of a matrix A in PSL2(Z).
Given an element

A =


a b
c d

�
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of PSL2(Z), one may consider the linear fractional transformation induced by A,

A(z) =
az + b

cz + d
,

and define the arithmetic function given for each positive integer n by

fA(n) =
Y

p⌫kn
pA(⌫).

These functions generalize the two arithmetic functions

I(n) =
Y

p⌫ ||n
p1/⌫

and
R(n) =

Y
p⌫ ||n

p⌫�1,

which were introduced by Atanassov in [2] and [3]. These multiplicative functions
satisfy the inequality

I(n)R(n)2 � n,

for each n � 1, with equality if and only if n is square-free. If S(n) denotes the
square-free part of n and if n is k-power free, then S(n) satisfies the inequalities

S(n) � n1/(k�1)

and
I(n) � S(n)1/(k�1) � n1/(k�1)2 .

On the other hand, if n is k-power full, then S(n) satisfies the inequality

I(n)  S(n)1/k.

In this fashion, I(n) roughly measures how far a given integer n is away from being
either k-power free or k-power full.

In [11], two of the authors more fully develop this measure by studying weighted
combinations I(n)↵R(n)� for real-valued ↵ and �. In [10], Panaitopol showed that

1X
n=1

1
I(n)R(n)'(n)

< e2.

He further proved that the arithmetic function

G(n) =
nY

⌫=1

I(⌫)1/n
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satisfies the inequalities
n

e7
< G(n) < n,

for each n � 1. Alkan and two of the authors [1] established an asymptotic formula
for G(n) and proved that the sequence {G(n)/n}n�1 is convergent. They further
obtained results that show that I(n) is very regular on average. Further improve-
ments have recently been obtained by Koninck and Kátai [7]. Asymptotic formulas
for certain weighted real moments of R(n) were obtained in [9].

In the above more general setting, one realizes I(n) and R(n) as fA1(n) and
fA2(n), respectively, with

A1 =


0 1
1 0

�

and
A2 =


1 �1
0 1

�
.

Results on averages of fA(n) have recently been established in [12]. That work
generalizes I(n) and R(n) to a class of elements of PSL2(Z) and explores some of
the properties of these maps.

For each given matrix A and a positive real number x, we define the weighted
average

MA(x) =
X

1nx

⇣
1� n

x

⌘
fA(n).

We also consider �+
A and ��A, the positive and negative real eigenvalues of A, re-

spectively. Thus, �+
A and ��A are solutions of the quadratic equation

�2 � tr(A)� + det(A) = 0,

with

�+
A =

a + d +
p

(a + d)2 + 4
2

(1)

and

��A =
a + d�

p
(a + d)2 + 4
2

. (2)

Furthermore, �+
A and ��A satisfy the inequalities ��A < 0 < �+

A and the identity
�+

A��A = �1.
In the present paper, for a large Q and a much larger x, we consider the following

subset of PSL2(Z):

A(Q,x) =
⇢

A =


a b
c d

�
: 1  a, b, c, d  Q, ad� bc = �1,

✓
�+

A

Q
,Q��A,

log MA(x)
log x

◆
2 S

�
,
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Figure 1: The surface S.

where the surface S is given by

S = {(x, y, z) 2 R3 : 1 < x, z < 2, xy = �1}.

(See Figure 1.)
The map

 Q,x : A(Q,x) �! S,

defined by

 Q,x(A) =
✓

�+
A

Q
,Q��A,

log MA(x)
log x

◆
,

associates to each matrix A 2 A(Q,x) a unique point on S. In the first and second
coordinates of such a point on S, the eigenvalues �+

A and ��A of A are normalized,
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as �+
A is divided by Q and ��A is multiplied by Q. Furthermore, �+

A is close to a+d,
which can be 2Q at most. It follows that �+

A/Q < 2, with very few exceptions.
For the sake of simplicity, we restrict our attention to the case when �+

A/Q is in
the interval (1, 2) and leave to the reader to make the adaptation to the case when
�+

A/Q is in the interval (0, 1), as the two cases are similar.
In the third coordinate of such a point on S, we observe that for any A with

positive entries, fA(n) � 1 for all n. It follows that MA(x) > x/2. Hence,

log MA(x)
log x

> 1� log 2
log x

.

Finally, for simplicity’s sake, we consider only the case when z is in the interval
(1, 2). In like manner, one can study the case when z is in the interval (2,1).

In the present paper, our purpose is to investigate the possible influence of
the eigenvalues �+

A and ��A of A on the behavior of the associated arithmetic
function fA(n). We seek to understand the joint distribution of �+

A, ��A, and
(log MA(x))/ log x, that is to say, the image of  Q,x on S. More precisely, for
a given point (↵,�1/↵,�) on S we consider, for each small � > 0, the neighborhood
V↵,�,� of (↵,�1/↵,�) in S given by

V↵,�,� = {(x, y, z) 2 S : |x� ↵| < �, |z � �| < �}.

We would like to estimate the number of matrices A in A(Q,x) for which  Q,x(A)
lies in V↵,�,�. We expect the number of such matrices to grow like a constant times
�2Q2 as Q and x tend to infinity, with x much larger than Q, while � > 0 is kept
fixed. This leads us to consider the limit of the ratio

#{ �1
Q,x(V↵,�,�)}
�2Q2

=
#{A 2 A(Q,x) :  Q,x(A) 2 V↵,�,�}

�2Q2
,

as x approaches infinity and then Q approaches infinity. Lastly, we take the limit
of this expression as � ! 0+.

Our main result can be summarized as follows.

Theorem. Fix a point (↵,�1/↵,�) 2 S, where ↵ and � are real numbers such that
1 < ↵,� < 2. Then we have

lim
�!0

lim
Q!1

lim
x!1

#{A 2 A(Q,x) :  Q,x(A) 2 V↵,�,�}
�2Q2

=

8<
:

24
⇡2

✓
� � ↵

� � 1

◆
, if � � ↵;

0, if � < ↵.

Thus, the images via  Q,x of almost all matrices A lie on the part of the surface S
where z � x, depicted in blue in Figure 1. If we fix two points P1 = (↵1,�1/↵1,�1)
and P2 = (↵2,�1/↵2,�2) on that part of the surface S and compare the local
densities of the points in  Q,x (A(Q,x)) around P1 and respectively P2, as a direct
consequence of our theorem we deduce the following corollary.
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Corollary. Let ↵j and �j be real numbers such that 1 < ↵j < �j < 2 for j 2 {1, 2}.
Then we have

lim
�!0

lim
Q!1

lim
x!1

#{A 2 A(Q,x) :  Q,x(A) 2 V↵1,�1,�}
#{A 2 A(Q,x) :  Q,x(A) 2 V↵2,�2,�}

=
(�1 � ↵1)(�2 � 1)
(�2 � ↵2)(�1 � 1)

.

2. Proof of the Theorem

We begin the proof by fixing an ↵ and � in the interval (1, 2) and a � > 0 small
enough so that ↵ and � belong to the interval (1 + �, 2� �). We also consider the
set of matrices

D↵,�,�,Q,x =
⇢

a b
c d

�
2 A(Q,x) : 1  a, b, c  d  Q, ad� bc = �1,

(↵� �)Q  a + d  (↵ + �)Q,

(� � 1� �)d < b < (� � 1 + �)d
�

.

The cardinality of D↵,�,�,Q,x is given by

#D↵,�,�,Q,x =
X

1dQ

X
1cd

gcd(c,d)=1

#{(a, b) : 1  a, b  d, ad� bc = �1,

(↵� �)Q  a + d  (↵ + �)Q,

(� � 1� �)d < b < (� � 1 + �)d}
=

X
1dQ

X
1cd

gcd(c,d)=1
(↵��)Qd+(cc̄�1)/d(↵+�)Q

(��1��)d<c̄<(��1+�)d

1.

(3)

Here, c̄ is used to denote the unique multiplicative inverse of c modulo d in the
interval [1, d]. The second step in (3) follows from the fact that the conditions
1  b  d and ad � bc = �1 force b to equal c̄. Hence, a is uniquely determined
and given by a = (bc� 1)/d. Furthermore, the contribution of the terms in (3) for
which d < (↵ � �)Q/2 is zero. Indeed, since a  d, we see that if d < (↵ � �)Q/2,
then a + d < (↵� �)Q.

Hence, setting q = d, x = c and y = c̄, we obtain #D↵,�,Q in the form

#D↵,�,�,Q,x =
X

(↵��)Q/2qQ

#{(x, y) 2 ⌦↵,�,�,Q,q \ Z2 : xy ⌘ 1 (mod q)}, (4)

where
⌦↵,�,�,Q,q = {(u, v) 2 R2 : 1  u, v  q, (↵� �)qQ� q2  uv  (↵ + �)qQ� q2,

(� � 1� �)q  v  (� � 1 + �)q}.
(5)
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We estimate the summand in (4) by using a lemma due to Boca and Gologan [5].

Lemma 1 (Lemma 2.3 from [5]). Assume that q � 1 and h are two integers,
that I and J are intervals of length less than q, and that f : I ⇥ J ! R is a C1

function. Then for any integer T > 1 and any ✏ > 0, we have
X

a2I,b2J
ab⌘h (mod q)

gcd(b,q)=1

f(a, b) =
�(q)
q2

ZZ
I⇥J

f(x, y) dx dy + E ,

with

E = O✏

✓
T 2kfk1q1/2+✏ gcd(h, q)1/2 + Tkrfk1q3/2+✏ gcd(h, q)1/2+

krfk1|I||J |
T

◆
,

where �(q) is the Euler totient function, kfk1 and krfk1 denote the sup-norm of
f and |@f/@x|+ |@f/@y| on the region I ⇥ J , respectively.

We break the region ⌦↵,�,�,Q,q into squares of side length L = [Q⌘] for some
0 < ⌘ < 1, and denote by Ij those squares lying entirely within ⌦↵,�,�,Q,q and
Bi those squares which intersect both ⌦↵,�,�,Q,q and its complement in R2, where
1  j  n and 1  i  m for some natural numbers n and m. We have

#{(u, v) 2 ⌦↵,�,�,Q,q : ab ⌘ 1 (mod q)} =
X

1jn

#{(u, v) 2 Ij : ab ⌘ 1 (mod q)}

+
X

1im

#{(u, v) 2 Bi \ ⌦↵,�,�,Q,q :

ab ⌘ 1 (mod q)}.

By Lemma 1, each of the summands on the right-hand side above is equal to

�(q)
q2

L2 + O✏(q1/2+✏).

If we take ⌦0 to be the subset of ⌦↵,�,�,Q,q formed by removing from ⌦↵,�,�,Q,q

an L
p

2-width neighborhood of the boundary of ⌦↵,�,�,Q,q, then we find that ⌦0 ⇢S
Ij ⇢ ⌦↵,�,�,Q,q and

Area(⌦↵,�,�,Q,q)�Area(⌦0) = O(qL).

Hence,
Area

⇣[
Ij

⌘
= Area(⌦↵,�,�,Q,q) + O(QL).

Since

Area
⇣[

Ij

⌘
=

X
1jn

#{(u, v) 2 Ij : ab ⌘ 1 (mod q)}

= n
�(q)
q2

L2 + O✏(nq1/2+✏),
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we have
nL2 = Area(⌦↵,�,�,Q,q) + O(QL),

and in particular

n = O

✓
Q2

L2

◆
.

Thus,

X
1jn

#{(u, v) 2 Ij : ab ⌘ 1 (mod q)} = n
�(q)
q2

L2 + O✏(nq1/2+✏)

=
�(q)
q2

(Area(⌦↵,�,�,Q,q) + O(QL))

+ O✏

✓
Q2

L2
q1/2+✏

◆

=
�(q)
q2

Area(⌦↵,�,�,Q,q) + O(L)

+ O✏

✓
Q5/2+✏

L2

◆
.

Similarly, we find that m = O(Q/L) and

0 
X

1im

#{(u, v) 2 Bi \ ⌦↵,�,�,Q,q : ab ⌘ 1 (mod q)}


X

1im

#{(u, v) 2 Bi : ab ⌘ 1 (mod q)}

= m
�(q)
q2

L2 + O✏(mq1/2+✏) = O(L) + O✏

✓
Q3/2+✏

L

◆
.

Taking ⌘ = 5/6, we have

#{(u, v) 2 ⌦↵,�,�,Q,q : ab ⌘ 1 (mod q)} =
�(q)
q2

Area(⌦↵,�,�,Q,q) + O✏(Q5/6+✏).

Thus,
#D↵,�,�,Q,x = M + E, (6)

where
M =

X
(↵��)Q/2qQ

�(q)
q2

Area(⌦↵,�,�,Q,q), (7)

and
E =

X
(↵��)Q/2qQ

E↵,�,�,Q,q = O✏(Q11/6+✏). (8)
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To examine the main term M in (7), we recall from the definition of the set ⌦↵,�,�,Q,q

in (5) that
(↵� �)qQ� q2  uv  (↵ + �)qQ� q2.

We first note that when ↵ > � and � is small enough, all the areas Area(⌦↵,�,�,Q,q)
are zero for all values of q. Indeed, if ↵ > � and (u, v) 2 Area(⌦↵,�,�,Q,q), then

(↵� 1� �)q2  (↵� �)qQ� q2  uv  qv  (� � 1 + �)q2.

This shows that for � > 0 small enough, all of the sets Area(⌦↵,�,�,Q,q) are empty. In
what follows we will restrict to the case ↵ < �. From the position of the hyperbolas
uv = (↵� �)qQ� q2 and uv = (↵ + �)qQ� q2, the horizontal lines v = (p� 1� �)q
and v = (p � 1 + �)q, and their points of intersection with the boundary of the
square [1, q]⇥ [1, q], we find that

⌦↵,�,�,Q,q = L \ ([1, q]⇥ [1, q]),

where L is the “parallelogram shaped” region that lies between the hyperbolas and
horizontal lines.

It is easy to see that if q < (↵ � �)Q/(� + �), then L lies completely outside
the square [1, q] ⇥ [1, q]. Furthermore, one can verify that if (↵ � �)Q/(↵ + �) 
q  (↵ + �)Q/(� � �), then L intersects the square [1, q] ⇥ [1, q] but does not lie
entirely inside it. This forces L to lie close enough to the boundary of the square
[1, q]⇥ [1, q], so that the total contribution of these values of q to the main term M
is negligible. Hence, we are left with the sum

X
(↵+�)Q/(���)qQ

�(q)
q2

Area(L). (9)

Here, Area(L) is asymptotic to the area of the parallelogram. That is, if � is small
enough, then we have

Area(L) ⇠ 2�q

(↵ + �)qQ� q2

(� � 1)q
� (↵� �)qQ� q2

(� � 1)q

�
= 2�q

✓
2�Q
� � 1

◆

=
4�2qQ

� � 1
,

(10)

as Q!1. Inserting (10) into (9), we obtain

M ⇠ 4�2Q

� � 1

X
(↵+�)Q/(���)qQ

�(q)
q

. (11)

We estimate the summation in (11) by employing the following result from [4].
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Lemma 2 (Lemma 2.3 from [4]). Suppose that a and b are two real numbers
such that 0 < a < b, q 2 N⇤ and f is a piecewise C1 function defined on [a, b]. Then
we have

X
a<qb

�(q)
q

f(q) =
1

⇣(2)

bZ
a

f(x) dx + O

0
@log b

0
@kfk1 +

bZ
a

|f 0(x)| dx

1
A

1
A .

Applying Lemma 2, we get

X
(↵+�)Q/(���)qQ

�(q)
q

=
1

⇣(2)

QZ
(↵+�)Q/(���)

dt + O(log Q). (12)

Then inserting (12) into (11), we find that

M

�2Q2
! 4

(� � 1)⇣(2)

✓
1� ↵

�

◆
, (13)

as Q!1 first and then followed by � ! 0.
Next, we consider the set of matrices

C↵,�,�,Q,x =
⇢

a b
c d

�
2 A(Q,x) : 1  a, b, d  c  Q, ad� bc = �1,

(↵� �)Q  a + d  (↵ + �)Q,

(� � 1� �)c  a  (� � 1 + �)c
�

.

Estimating the cardinality of C↵,�,�,Q,x in a similar fashion to that in (3), we write

#C↵,�,�,Q,x =
X

1cQ

X
1dc

gcd(c,d)=1
(↵��)Qc�d̄+d(↵+�)Q
(���)cc�d̄(��1+�)c

1.

(14)

The equality in (14) follows by noticing that the conditions 1  a  c and ad�bc =
�1 force a to equal c � d̄, where d̄ is the multiplicative inverse of d modulo c
in the interval [1, c]. Furthermore, let us note in (14) that the terms for which
c < (↵� �)Q/2 have no contribution to the sum. Indeed, the inequality (↵� �)Q 
c� d̄ + d implies (↵� �)Q < 2q. Hence, setting q = c, x = d and y = d̄, we obtain
#C↵,�,�,Q,x in the form

#C↵,�,�,Q,x =
X

(↵��)Q/2qQ

#{(x, y) 2 �↵,�,�,Q,q \ Z2 : xy ⌘ 1 (mod q)}, (15)



INTEGERS: 14 (2014) 11

where

�↵,�,�,Q,q = {(u, v) 2 R2 : 1  u, v  q,

(↵� �)Q� q  u� v  (↵ + �)Q� q,

(2� � � �)q  v  (2� � + �)q}.
(16)

Applying Lemma 1 as before, we obtain

#{(x, y) 2 �↵,�,�,Q,q \ Z2 : xy ⌘ 1 (mod q)} =
�(q)
q2

Area(�↵,�,�,Q,q)

+ E0↵,�,�,Q,q,
(17)

where
E0↵,�,�,Q,q = O✏(Q5/6+✏). (18)

Then inserting (17) and (18) into (15), we get

#C↵,�,�,Q,x = M 0 + E0, (19)

where
M 0 =

X
(↵��)Q/2qQ

�(q)
q2

Area(�↵,�,�,Q,q) (20)

and
E0 =

X
(↵��)Q/2qQ

E0↵,�,�,Q,q = O✏(Q11/6+✏). (21)

From the definition of the set �↵,�,�,Q,q in (16), we see that

�↵,�,�,Q,q = M \ ([1, q]⇥ [1, q]),

where M is the parallelogram that lies between the slant lines v = u+ q� (↵+ �)Q
and v = u+q�(↵��)Q and the horizontal lines v = (2����)q and v = (2��+�)q.
First, we observe that if ↵ > �, then for � small enough all parallelograms M lie
outside the square [1, q] ⇥ [1, q]. In this situation, the sets �↵,�,�,Q,q are empty.
Hence, the main term M 0 is zero.

In what follows, we consider the case when ↵ < �. If q < (↵ � �)Q/(� + �),
then the parallelograms M still lie outside the square [1, q]⇥ [1, q]. Hence, we may
restrict to the interval [(↵� �)Q/(� + �), Q].

Next, if q belongs to the interval [(↵� �)Q/(� + �), (↵ + �)Q/(� � �)], then M
intersects the square [1, q]⇥ [1, q] but is not entirely contained in it. This forces M
to lie close to the boundary of the square [1, q]⇥ [1, q], so that all those values of q
satisfying this property have negligible contribution to the main term M 0.

Hence, we may restrict the summation over q to the interval [(↵+�)Q/(���), Q].
For all such values of q, we see thatM is entirely contained in the square [1, q]⇥[1, q]
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and its area is equal to exactly 4�2qQ. Hence, the main term in (20) is given by

M 0 =
X

(↵+�)Q/(���)qQ

�(q)
q2

Area(�↵,�,�,Q,q) = 4�2Q
X

(↵+�)Q/(���)qQ

�(q)
q

. (22)

Using Lemma 2, we find that

X
(↵+�)Q/(���)qQ

�(q)
q

=
Q

⇣(2)

✓
1� ↵ + �

� � �

◆
+ O(log q). (23)

Then inserting (23) into (22), we see that

M 0

�2Q2
! 4

⇣(2)

✓
1� ↵ + �

� � �

◆
, (24)

as Q!1 first and then followed by � ! 0.
On combining the above estimates for #D↵,�,�,Q,x and #C↵,�,�,Q,x when � is

larger than ↵ and recalling that both quantities are zero when � is less than ↵, we
deduce that

lim
�!0

lim
Q!1

lim
x!1

#D↵,�,�,Q,x + #C↵,�,�,Q,x

�2Q2
=

8>><
>>:

4
✓

1� ↵

�

◆

(� � 1)⇣(2)
+

4
✓

1� ↵

�

◆

⇣(2)
, if ↵  �;

0, if ↵ < �;

=

8<
:

4
⇣(2)

✓
� � ↵

� � 1

◆
, if ↵  �;

0, if ↵ > �.
(25)

We have the following result, which is essentially Theorem 1.1 from [12].

Lemma 3. Given a matrix
A =


a b
c d

�

of determinant �1 with a, b, c, d � 1, there are positive real-valued constants KA

and c0 such that

MA(x)=KAx1+(a+b)/(c+d)+OA(x1/2+(a+b)/(c+d) exp{�c0(log x)3/5(log log x)�1/5}).

For the sake of completeness, we outline a sketch of the proof of Lemma 3.
Consider the Dirichlet series

FA(s) =
1X

n=1

fA(n)
ns

.
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One can show that FA(s) converges in the half plane <s = � > 1 + (a + b)/(c + d)
and has an Euler product in that region. Write

FA(s) =
⇣(s� (a + b)/(c + d))

⇣(2s� 2(a + b)/(c + d))
TA(s).

Furthermore, one can show that ⇣(2s � 2(a + b)/(c + d))�1TA(s) is analytic on a
larger half-plane � > �0. Hence, FA(s) is meromorphic there with a simple pole at
s = 1 + (a + b)/(c + d).

Next, we utilize a variant of Perron’s formula and write

X
nx

⇣
1� n

x

⌘
fA(n) =

1
2⇡i

Z c+i1

c�i1

⇣(s� (a + b)/(c + d))
⇣(2s� 2(a + b)/(c + d))

TA(s)
xs

s(s + 1)
ds,

where 1+(a+ b)/(c+d) < c  5/4+(a+ b)/(c+d). We need to apply the zero-free
region for ⇣(s) due to Korobov [8] and Vinogradov [14] in the region

� � 1� c0(log t)�2/3(log log t)�1/3

for t � t0, in which
1

|⇣(s)| = O((log t)2/3(log log t)1/3).

(See the end-of-chapter notes for Chapter 6 in Titchmarsh’s classical book [13]; see,
also, Chapters 2 and 5 in Walfisz’s book [15].) We then fix 0 < U < T  x, let
⌫ = 1/2 + (a + b)/(c + d) and

⌘ = ⌫ � c0(log U)�2/3(log log U)�1/3,

and deform the path of integration into the union of the line segments
8>>>>>>>>><
>>>>>>>>>:

�1, �9 : s = c + it, if |t| � T ;

�2, �8 : s = � ± iT, if ⌫  �  c;

�3, �7 : s = ⌫ + it, if U  |t|  T ;

�4, �6 : s = � ± iU, if ⌘  �  ⌫;

�5 : s = ⌘ + it, if |t|  U.

Here, we note that the integrand is analytic on and within this modified contour.
Hence, by the residue theorem

MA(x) =
1

(1 + (a + b)/(c + d))(2 + (a + b)/(c + d))⇣(2)
TA

✓
1 +

a + b

c + d

◆

⇥ x1+(a+b)/(c+d) +
9X

k=1

Jk,
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with the main term coming from the residue at the simple pole at s = 1 + (a +
b)/(c + d). Note that we will take

KA =
1

(1 + (a + b)/(c + d))(2 + (a + b)/(c + d))⇣(2)
TA

✓
1 +

a + b

c + d

◆

in the statement of the lemma.
We estimate the integral along our modified contour and make use of the well-

known bounds

|⇣(� + it)| =

8>>><
>>>:

O(t(1��)/2), if 0  �  1 and |t| � 1;

O(log t), if 1  �  2;

O(1), if � � 2.

(See Theorem 1.9 in Ivić’s classical book [6].) Upon collecting all estimates, we have
the statement of the lemma.

Lemma 3 shows us that

log MA(x)
log x

⇠ 1 +
a + b

c + d
,

as x!1. Since
a + b

c + d
=

a

c
� det(A)

c(c + d)
=

b

d
+

det(A)
d(c + d)

,

when d > c we see that ���� log MA(x)
log x

� b

d

���� = O

✓
1
d2

◆
,

as x!1. When c > d, we have���� log MA(x)
log x

� a

c

���� = O

✓
1
c2

◆
,

as x!1.
We partitionA(Q,x) into two subsets, according to whether 1  max(c, d) 

p
Q

or max(c, d) >
p

Q. There are at most O(Q3/2) matrices of the first type, and for
the second type we have O(1/d2) = O(1/Q) and O(1/c2) = O(1/Q) when d > c
and c > d, respectively, as Q!1.

We note that the � in our definitions of D↵,�,�,Q,x and C↵,�,�,Q,x should be re-
placed by an expression of the form �+�E(Q), where the function �E(Q) = O(1/Q),
but in what follows we let Q tend to infinity before letting � tend to zero, so in our
case we may replace one by the other.

Since 1 + (a + b)/(c + d) < � + � < 2, we find that a < c, and similarly b  d. So
the conditions a, b  d and a, b  c in D↵,�,�,Q,x and C↵,�,�,Q,x are satisfied. Thus,
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lim
x!1

����#D↵,�,�,Q,x + #C↵,�,�,Q,x

�2Q2
� #{A 2 A(Q, x) :  Q,x(A) 2 V↵,�,�}

�2Q2

���� = O

✓
1

�2
p

Q

◆

as Q!1. Upon combining this with (25), the theorem is proved.
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