EIGENVALUES AND ARITHMETIC FUNCTIONS ON PSL $\mathbf{I}_{\mathbf{2}}(\mathbb{Z})$

Andrew Ledoan
Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee
andrew-ledoan@utc.edu
Paul Spiegelhalter
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois spiegel3@illinois.edu

Alexandru Zaharescu
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois
zaharesc@illinois.edu

Received: 11/26/12, Revised: 5/14/13, Accepted: 2/13/14, Published: 3/7/14

Abstract

Over the past decade, various properties of the irrational factor function $I(n)=$ $\prod_{p^{\nu} \| n} p^{1 / \nu}$ and strong restrictive factor function $R(n)=\prod_{p^{\nu}| | n} p^{\nu-1}$ have been investigated by several authors. This study led to a generalization to a class of arithmetic functions associated to elements of $\mathrm{PSL}_{2}(\mathbb{Z})$. In the present paper, we study the possible influence of the eigenvalues of an element A of $\mathrm{PSL}_{2}(\mathbb{Z})$ on the behavior of the associated arithmetic function $f_{A}(n)=\prod_{p^{\nu} \| n} p^{A(\nu)}$, where $A(z)=(a z+b) /(c z+d)$ is the linear fractional transformation induced by the matrix A. In particular, we obtain results on the local density of eigenvalues through their natural connection to a particular surface.

1. Introduction and Statement of Results

There has been recent interest in examining the behavior of the arithmetic functions $f_{A}(n)$ defined on natural numbers n in terms of the action of a matrix A in $\mathrm{PSL}_{2}(\mathbb{Z})$. Given an element

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

of $\mathrm{PSL}_{2}(\mathbb{Z})$, one may consider the linear fractional transformation induced by A,

$$
A(z)=\frac{a z+b}{c z+d}
$$

and define the arithmetic function given for each positive integer n by

$$
f_{A}(n)=\prod_{p^{\nu} \| n} p^{A(\nu)}
$$

These functions generalize the two arithmetic functions

$$
I(n)=\prod_{p^{\nu} \| n} p^{1 / \nu}
$$

and

$$
R(n)=\prod_{p^{\nu} \| n} p^{\nu-1}
$$

which were introduced by Atanassov in [2] and [3]. These multiplicative functions satisfy the inequality

$$
I(n) R(n)^{2} \geq n
$$

for each $n \geq 1$, with equality if and only if n is square-free. If $S(n)$ denotes the square-free part of n and if n is k-power free, then $S(n)$ satisfies the inequalities

$$
S(n) \geq n^{1 /(k-1)}
$$

and

$$
I(n) \geq S(n)^{1 /(k-1)} \geq n^{1 /(k-1)^{2}}
$$

On the other hand, if n is k-power full, then $S(n)$ satisfies the inequality

$$
I(n) \leq S(n)^{1 / k}
$$

In this fashion, $I(n)$ roughly measures how far a given integer n is away from being either k-power free or k-power full.

In [11], two of the authors more fully develop this measure by studying weighted combinations $I(n)^{\alpha} R(n)^{\beta}$ for real-valued α and β. In [10], Panaitopol showed that

$$
\sum_{n=1}^{\infty} \frac{1}{I(n) R(n) \varphi(n)}<e^{2}
$$

He further proved that the arithmetic function

$$
G(n)=\prod_{\nu=1}^{n} I(\nu)^{1 / n}
$$

satisfies the inequalities

$$
\frac{n}{e^{7}}<G(n)<n
$$

for each $n \geq 1$. Alkan and two of the authors [1] established an asymptotic formula for $G(n)$ and proved that the sequence $\{G(n) / n\}_{n \geq 1}$ is convergent. They further obtained results that show that $I(n)$ is very regular on average. Further improvements have recently been obtained by Koninck and Kátai [7]. Asymptotic formulas for certain weighted real moments of $R(n)$ were obtained in [9].

In the above more general setting, one realizes $I(n)$ and $R(n)$ as $f_{A_{1}}(n)$ and $f_{A_{2}}(n)$, respectively, with

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and

$$
A_{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

Results on averages of $f_{A}(n)$ have recently been established in [12]. That work generalizes $I(n)$ and $R(n)$ to a class of elements of $\mathrm{PSL}_{2}(\mathbb{Z})$ and explores some of the properties of these maps.

For each given matrix A and a positive real number x, we define the weighted average

$$
M_{A}(x)=\sum_{1 \leq n \leq x}\left(1-\frac{n}{x}\right) f_{A}(n)
$$

We also consider λ_{A}^{+}and λ_{A}^{-}, the positive and negative real eigenvalues of A, respectively. Thus, λ_{A}^{+}and λ_{A}^{-}are solutions of the quadratic equation

$$
\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0
$$

with

$$
\begin{equation*}
\lambda_{A}^{+}=\frac{a+d+\sqrt{(a+d)^{2}+4}}{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{A}^{-}=\frac{a+d-\sqrt{(a+d)^{2}+4}}{2} \tag{2}
\end{equation*}
$$

Furthermore, λ_{A}^{+}and λ_{A}^{-}satisfy the inequalities $\lambda_{A}^{-}<0<\lambda_{A}^{+}$and the identity $\lambda_{A}^{+} \lambda_{A}^{-}=-1$.

In the present paper, for a large Q and a much larger x, we consider the following subset of $\mathrm{PSL}_{2}(\mathbb{Z})$:

$$
\begin{aligned}
& \mathcal{A}(Q, x)=\left\{A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: 1 \leq a, b, c, d \leq Q, a d-b c=-1\right. \\
&\left.\left(\frac{\lambda_{A}^{+}}{Q}, Q \lambda_{A}^{-}, \frac{\log M_{A}(x)}{\log x}\right) \in \mathcal{S}\right\}
\end{aligned}
$$

Figure 1: The surface \mathcal{S}.
where the surface \mathcal{S} is given by

$$
\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: 1<x, z<2, x y=-1\right\}
$$

(See Figure 1.)
The map

$$
\Psi_{Q, x}: \mathcal{A}(Q, x) \longrightarrow \mathcal{S}
$$

defined by

$$
\Psi_{Q, x}(A)=\left(\frac{\lambda_{A}^{+}}{Q}, Q \lambda_{A}^{-}, \frac{\log M_{A}(x)}{\log x}\right)
$$

associates to each matrix $A \in \mathcal{A}(Q, x)$ a unique point on \mathcal{S}. In the first and second coordinates of such a point on \mathcal{S}, the eigenvalues λ_{A}^{+}and λ_{A}^{-}of A are normalized,
as λ_{A}^{+}is divided by Q and λ_{A}^{-}is multiplied by Q. Furthermore, λ_{A}^{+}is close to $a+d$, which can be $2 Q$ at most. It follows that $\lambda_{A}^{+} / Q<2$, with very few exceptions.

For the sake of simplicity, we restrict our attention to the case when λ_{A}^{+} / Q is in the interval $(1,2)$ and leave to the reader to make the adaptation to the case when λ_{A}^{+} / Q is in the interval $(0,1)$, as the two cases are similar.

In the third coordinate of such a point on \mathcal{S}, we observe that for any A with positive entries, $f_{A}(n) \geq 1$ for all n. It follows that $M_{A}(x)>x / 2$. Hence,

$$
\frac{\log M_{A}(x)}{\log x}>1-\frac{\log 2}{\log x}
$$

Finally, for simplicity's sake, we consider only the case when z is in the interval $(1,2)$. In like manner, one can study the case when z is in the interval $(2, \infty)$.

In the present paper, our purpose is to investigate the possible influence of the eigenvalues λ_{A}^{+}and λ_{A}^{-}of A on the behavior of the associated arithmetic function $f_{A}(n)$. We seek to understand the joint distribution of $\lambda_{A}^{+}, \lambda_{A}^{-}$, and $\left(\log M_{A}(x)\right) / \log x$, that is to say, the image of $\Psi_{Q, x}$ on \mathcal{S}. More precisely, for a given point $(\alpha,-1 / \alpha, \beta)$ on \mathcal{S} we consider, for each small $\delta>0$, the neighborhood $\mathcal{V}_{\alpha, \beta, \delta}$ of $(\alpha,-1 / \alpha, \beta)$ in \mathcal{S} given by

$$
\mathcal{V}_{\alpha, \beta, \delta}=\{(x, y, z) \in \mathcal{S}:|x-\alpha|<\delta,|z-\beta|<\delta\}
$$

We would like to estimate the number of matrices A in $\mathcal{A}(Q, x)$ for which $\Psi_{Q, x}(A)$ lies in $\mathcal{V}_{\alpha, \beta, \delta}$. We expect the number of such matrices to grow like a constant times $\delta^{2} Q^{2}$ as Q and x tend to infinity, with x much larger than Q, while $\delta>0$ is kept fixed. This leads us to consider the limit of the ratio

$$
\frac{\#\left\{\Psi_{Q, x}^{-1}\left(\mathcal{V}_{\alpha, \beta, \delta}\right)\right\}}{\delta^{2} Q^{2}}=\frac{\#\left\{A \in \mathcal{A}(Q, x): \Psi_{Q, x}(A) \in \mathcal{V}_{\alpha, \beta, \delta}\right\}}{\delta^{2} Q^{2}}
$$

as x approaches infinity and then Q approaches infinity. Lastly, we take the limit of this expression as $\delta \rightarrow 0^{+}$.

Our main result can be summarized as follows.
Theorem. Fix a point $(\alpha,-1 / \alpha, \beta) \in \mathcal{S}$, where α and β are real numbers such that $1<\alpha, \beta<2$. Then we have
$\lim _{\delta \rightarrow 0} \lim _{Q \rightarrow \infty} \lim _{x \rightarrow \infty} \frac{\#\left\{A \in \mathcal{A}(Q, x): \Psi_{Q, x}(A) \in \mathcal{V}_{\alpha, \beta, \delta}\right\}}{\delta^{2} Q^{2}}= \begin{cases}\frac{24}{\pi^{2}}\left(\frac{\beta-\alpha}{\beta-1}\right), & \text { if } \beta \geq \alpha ; \\ 0, & \text { if } \beta<\alpha .\end{cases}$
Thus, the images via $\Psi_{Q, x}$ of almost all matrices A lie on the part of the surface \mathcal{S} where $z \geq x$, depicted in blue in Figure 1. If we fix two points $P_{1}=\left(\alpha_{1},-1 / \alpha_{1}, \beta_{1}\right)$ and $P_{2}=\left(\alpha_{2},-1 / \alpha_{2}, \beta_{2}\right)$ on that part of the surface \mathcal{S} and compare the local densities of the points in $\Psi_{Q, x}(\mathcal{A}(Q, x))$ around P_{1} and respectively P_{2}, as a direct consequence of our theorem we deduce the following corollary.

Corollary. Let α_{j} and β_{j} be real numbers such that $1<\alpha_{j}<\beta_{j}<2$ for $j \in\{1,2\}$.
Then we have

$$
\lim _{\delta \rightarrow 0} \lim _{Q \rightarrow \infty} \lim _{x \rightarrow \infty} \frac{\#\left\{A \in \mathcal{A}(Q, x): \Psi_{Q, x}(A) \in \mathcal{V}_{\alpha_{1}, \beta_{1}, \delta}\right\}}{\#\left\{A \in \mathcal{A}(Q, x): \Psi_{Q, x}(A) \in \mathcal{V}_{\alpha_{2}, \beta_{2}, \delta}\right\}}=\frac{\left(\beta_{1}-\alpha_{1}\right)\left(\beta_{2}-1\right)}{\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{1}-1\right)}
$$

2. Proof of the Theorem

We begin the proof by fixing an α and β in the interval $(1,2)$ and a $\delta>0$ small enough so that α and β belong to the interval $(1+\delta, 2-\delta)$. We also consider the set of matrices

$$
\begin{aligned}
\mathcal{D}_{\alpha, \beta, \delta, Q, x}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathcal{A}(Q, x):\right. & 1 \leq a, b, c \leq d \leq Q, a d-b c=-1 \\
& (\alpha-\delta) Q \leq a+d \leq(\alpha+\delta) Q \\
& (\beta-1-\delta) d<b<(\beta-1+\delta) d\}
\end{aligned}
$$

The cardinality of $\mathcal{D}_{\alpha, \beta, \delta, Q, x}$ is given by

$$
\begin{aligned}
& \# \mathcal{D}_{\alpha, \beta, \delta, Q, x}=\sum_{1 \leq d \leq Q} \sum_{\substack{1 \leq c \leq d \\
\operatorname{gcd}(c, d)=1}} \#\{(a, b): 1 \leq a, b \leq d, a d-b c=-1, \\
& (\alpha-\delta) Q \leq a+d \leq(\alpha+\delta) Q, \\
& (\beta-1-\delta) d<b<(\beta-1+\delta) d\} \\
& =\sum_{1 \leq d \leq Q} \sum_{\substack{1 \leq c \leq d \\
\operatorname{gcd}(c, \bar{d})=1 \\
(\alpha-\delta) Q \leq d+c \bar{c}-1) / d \leq(\alpha+\delta) Q \\
(\beta-1-\delta) d<\bar{c}<(\beta-1+\delta) d}} 1 .
\end{aligned}
$$

Here, \bar{c} is used to denote the unique multiplicative inverse of c modulo d in the interval $[1, d]$. The second step in (3) follows from the fact that the conditions $1 \leq b \leq d$ and $a d-b c=-1$ force b to equal \bar{c}. Hence, a is uniquely determined and given by $a=(b c-1) / d$. Furthermore, the contribution of the terms in (3) for which $d<(\alpha-\delta) Q / 2$ is zero. Indeed, since $a \leq d$, we see that if $d<(\alpha-\delta) Q / 2$, then $a+d<(\alpha-\delta) Q$.

Hence, setting $q=d, x=c$ and $y=\bar{c}$, we obtain $\# \mathcal{D}_{\alpha, \delta, Q}$ in the form

$$
\begin{equation*}
\# \mathcal{D}_{\alpha, \beta, \delta, Q, x}=\sum_{(\alpha-\delta) Q / 2 \leq q \leq Q} \#\left\{(x, y) \in \Omega_{\alpha, \beta, \delta, Q, q} \cap \mathbb{Z}^{2}: x y \equiv 1(\bmod q)\right\} \tag{4}
\end{equation*}
$$

where

$$
\begin{gather*}
\Omega_{\alpha, \beta, \delta, Q, q}=\left\{(u, v) \in \mathbb{R}^{2}: 1 \leq u, v \leq q,(\alpha-\delta) q Q-q^{2} \leq u v \leq(\alpha+\delta) q Q-q^{2},\right. \\
 \tag{5}\\
(\beta-1-\delta) q \leq v \leq(\beta-1+\delta) q\}
\end{gather*}
$$

We estimate the summand in (4) by using a lemma due to Boca and Gologan [5].
Lemma 1 (Lemma 2.3 from [5]). Assume that $q \geq 1$ and h are two integers, that \mathcal{I} and \mathcal{J} are intervals of length less than q, and that $f: \mathcal{I} \times \mathcal{J} \rightarrow \mathbb{R}$ is a C^{1} function. Then for any integer $T>1$ and any $\epsilon>0$, we have

$$
\sum_{\substack{a \in \mathcal{I}, b \in \mathcal{J} \\ a b \equiv h(\bmod q) \\ \operatorname{gcd}(b, q)=1}} f(a, b)=\frac{\phi(q)}{q^{2}} \iint_{\mathcal{I} \times \mathcal{J}} f(x, y) d x d y+\mathcal{E}
$$

with
$\mathcal{E}=O_{\epsilon}\left(T^{2}\|f\|_{\infty} q^{1 / 2+\epsilon} \operatorname{gcd}(h, q)^{1 / 2}+T\|\nabla f\|_{\infty} q^{3 / 2+\epsilon} \operatorname{gcd}(h, q)^{1 / 2}+\frac{\|\nabla f\|_{\infty}|\mathcal{I} \| \mathcal{J}|}{T}\right)$,
where $\phi(q)$ is the Euler totient function, $\|f\|_{\infty}$ and $\|\nabla f\|_{\infty}$ denote the sup-norm of f and $|\partial f / \partial x|+|\partial f / \partial y|$ on the region $\mathcal{I} \times \mathcal{J}$, respectively.

We break the region $\Omega_{\alpha, \beta, \delta, Q, q}$ into squares of side length $L=\left[Q^{\eta}\right]$ for some $0<\eta<1$, and denote by I_{j} those squares lying entirely within $\Omega_{\alpha, \beta, \delta, Q, q}$ and B_{i} those squares which intersect both $\Omega_{\alpha, \beta, \delta, Q, q}$ and its complement in \mathbb{R}^{2}, where $1 \leq j \leq n$ and $1 \leq i \leq m$ for some natural numbers n and m. We have

$$
\begin{aligned}
& \#\left\{(u, v) \in \Omega_{\alpha, \beta, \delta, Q, q}: a b \equiv 1(\bmod q)\right\}= \sum_{1 \leq j \leq n} \#\left\{(u, v) \in I_{j}: a b \equiv 1(\bmod q)\right\} \\
&+\sum_{1 \leq i \leq m} \#\left\{(u, v) \in B_{i} \cap \Omega_{\alpha, \beta, \delta, Q, q}:\right. \\
&a b \equiv 1(\bmod q)\}
\end{aligned}
$$

By Lemma 1, each of the summands on the right-hand side above is equal to

$$
\frac{\phi(q)}{q^{2}} L^{2}+O_{\epsilon}\left(q^{1 / 2+\epsilon}\right)
$$

If we take Ω^{\prime} to be the subset of $\Omega_{\alpha, \beta, \delta, Q, q}$ formed by removing from $\Omega_{\alpha, \beta, \delta, Q, q}$ an $L \sqrt{2}$-width neighborhood of the boundary of $\Omega_{\alpha, \beta, \delta, Q, q}$, then we find that $\Omega^{\prime} \subset$ $\bigcup I_{j} \subset \Omega_{\alpha, \beta, \delta, Q, q}$ and

$$
\operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)-\operatorname{Area}\left(\Omega^{\prime}\right)=O(q L)
$$

Hence,

$$
\operatorname{Area}\left(\bigcup I_{j}\right)=\operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)+O(Q L)
$$

Since

$$
\text { Area } \begin{aligned}
\left(\bigcup I_{j}\right) & =\sum_{1 \leq j \leq n} \#\left\{(u, v) \in I_{j}: a b \equiv 1(\bmod q)\right\} \\
& =n \frac{\phi(q)}{q^{2}} L^{2}+O_{\epsilon}\left(n q^{1 / 2+\epsilon}\right)
\end{aligned}
$$

we have

$$
n L^{2}=\operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)+O(Q L)
$$

and in particular

$$
n=O\left(\frac{Q^{2}}{L^{2}}\right)
$$

Thus,

$$
\begin{aligned}
\sum_{1 \leq j \leq n} \#\left\{(u, v) \in I_{j}: a b \equiv 1(\bmod q)\right\}= & n \frac{\phi(q)}{q^{2}} L^{2}+O_{\epsilon}\left(n q^{1 / 2+\epsilon}\right) \\
= & \frac{\phi(q)}{q^{2}}\left(\operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)+O(Q L)\right) \\
& +O_{\epsilon}\left(\frac{Q^{2}}{L^{2}} q^{1 / 2+\epsilon}\right) \\
= & \frac{\phi(q)}{q^{2}} \operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)+O(L) \\
& +O_{\epsilon}\left(\frac{Q^{5 / 2+\epsilon}}{L^{2}}\right)
\end{aligned}
$$

Similarly, we find that $m=O(Q / L)$ and

$$
\begin{aligned}
0 & \leq \sum_{1 \leq i \leq m} \#\left\{(u, v) \in B_{i} \cap \Omega_{\alpha, \beta, \delta, Q, q}: a b \equiv 1(\bmod q)\right\} \\
& \leq \sum_{1 \leq i \leq m} \#\left\{(u, v) \in B_{i}: a b \equiv 1(\bmod q)\right\} \\
& =m \frac{\phi(q)}{q^{2}} L^{2}+O_{\epsilon}\left(m q^{1 / 2+\epsilon}\right)=O(L)+O_{\epsilon}\left(\frac{Q^{3 / 2+\epsilon}}{L}\right) .
\end{aligned}
$$

Taking $\eta=5 / 6$, we have

$$
\#\left\{(u, v) \in \Omega_{\alpha, \beta, \delta, Q, q}: a b \equiv 1(\bmod q)\right\}=\frac{\phi(q)}{q^{2}} \operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)+O_{\epsilon}\left(Q^{5 / 6+\epsilon}\right)
$$

Thus,

$$
\begin{equation*}
\# \mathcal{D}_{\alpha, \beta, \delta, Q, x}=M+E \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\sum_{(\alpha-\delta) Q / 2 \leq q \leq Q} \frac{\phi(q)}{q^{2}} \operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right), \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
E=\sum_{(\alpha-\delta) Q / 2 \leq q \leq Q} E_{\alpha, \beta, \delta, Q, q}=O_{\epsilon}\left(Q^{11 / 6+\epsilon}\right) \tag{8}
\end{equation*}
$$

To examine the main term M in (7), we recall from the definition of the set $\Omega_{\alpha, \beta, \delta, Q, q}$ in (5) that

$$
(\alpha-\delta) q Q-q^{2} \leq u v \leq(\alpha+\delta) q Q-q^{2}
$$

We first note that when $\alpha>\beta$ and δ is small enough, all the areas Area $\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)$ are zero for all values of q. Indeed, if $\alpha>\beta$ and $(u, v) \in \operatorname{Area}\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)$, then

$$
(\alpha-1-\delta) q^{2} \leq(\alpha-\delta) q Q-q^{2} \leq u v \leq q v \leq(\beta-1+\delta) q^{2}
$$

This shows that for $\delta>0$ small enough, all of the sets Area $\left(\Omega_{\alpha, \beta, \delta, Q, q}\right)$ are empty. In what follows we will restrict to the case $\alpha<\beta$. From the position of the hyperbolas $u v=(\alpha-\delta) q Q-q^{2}$ and $u v=(\alpha+\delta) q Q-q^{2}$, the horizontal lines $v=(p-1-\delta) q$ and $v=(p-1+\delta) q$, and their points of intersection with the boundary of the square $[1, q] \times[1, q]$, we find that

$$
\Omega_{\alpha, \beta, \delta, Q, q}=\mathcal{L} \cap([1, q] \times[1, q])
$$

where \mathcal{L} is the "parallelogram shaped" region that lies between the hyperbolas and horizontal lines.

It is easy to see that if $q<(\alpha-\delta) Q /(\beta+\delta)$, then \mathcal{L} lies completely outside the square $[1, q] \times[1, q]$. Furthermore, one can verify that if $(\alpha-\delta) Q /(\alpha+\delta) \leq$ $q \leq(\alpha+\delta) Q /(\beta-\delta)$, then \mathcal{L} intersects the square $[1, q] \times[1, q]$ but does not lie entirely inside it. This forces \mathcal{L} to lie close enough to the boundary of the square $[1, q] \times[1, q]$, so that the total contribution of these values of q to the main term M is negligible. Hence, we are left with the sum

$$
\begin{equation*}
\sum_{(\alpha+\delta) Q /(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q^{2}} \operatorname{Area}(\mathcal{L}) \tag{9}
\end{equation*}
$$

Here, $\operatorname{Area}(\mathcal{L})$ is asymptotic to the area of the parallelogram. That is, if δ is small enough, then we have

$$
\begin{align*}
\operatorname{Area}(\mathcal{L}) \sim 2 \delta q\left[\frac{(\alpha+\delta) q Q-q^{2}}{(\beta-1) q}-\frac{(\alpha-\delta) q Q-q^{2}}{(\beta-1) q}\right] & =2 \delta q\left(\frac{2 \delta Q}{\beta-1}\right) \\
& =\frac{4 \delta^{2} q Q}{\beta-1} \tag{10}
\end{align*}
$$

as $Q \rightarrow \infty$. Inserting (10) into (9), we obtain

$$
\begin{equation*}
M \sim \frac{4 \delta^{2} Q}{\beta-1} \sum_{(\alpha+\delta) Q /(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q} \tag{11}
\end{equation*}
$$

We estimate the summation in (11) by employing the following result from [4].

Lemma 2 (Lemma 2.3 from [4]). Suppose that a and b are two real numbers such that $0<a<b, q \in \mathbb{N}^{*}$ and f is a piecewise C^{1} function defined on $[a, b]$. Then we have

$$
\sum_{a<q \leq b} \frac{\phi(q)}{q} f(q)=\frac{1}{\zeta(2)} \int_{a}^{b} f(x) d x+O\left(\log b\left(\|f\|_{\infty}+\int_{a}^{b}\left|f^{\prime}(x)\right| d x\right)\right)
$$

Applying Lemma 2, we get

$$
\begin{equation*}
\sum_{(\alpha+\delta) Q /(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q}=\frac{1}{\zeta(2)} \int_{(\alpha+\delta) Q /(\beta-\delta)}^{Q} d t+O(\log Q) \tag{12}
\end{equation*}
$$

Then inserting (12) into (11), we find that

$$
\begin{equation*}
\frac{M}{\delta^{2} Q^{2}} \rightarrow \frac{4}{(\beta-1) \zeta(2)}\left(1-\frac{\alpha}{\beta}\right) \tag{13}
\end{equation*}
$$

as $Q \rightarrow \infty$ first and then followed by $\delta \rightarrow 0$.
Next, we consider the set of matrices

$$
\begin{aligned}
\mathcal{C}_{\alpha, \beta, \delta, Q, x}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathcal{A}(Q, x): 1\right. & \leq a, b, d \leq c \leq Q, a d-b c=-1 \\
& (\alpha-\delta) Q \leq a+d \leq(\alpha+\delta) Q \\
& (\beta-1-\delta) c \leq a \leq(\beta-1+\delta) c\}
\end{aligned}
$$

Estimating the cardinality of $\mathcal{C}_{\alpha, \delta, \delta, Q, x}$ in a similar fashion to that in (3), we write

$$
\begin{equation*}
\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}=\sum_{1 \leq c \leq Q} \sum_{\substack{1 \leq d \leq c \\ \operatorname{gcd}(c, \bar{d}=1 \\(\alpha-\delta) Q \leq c-\bar{d}+d \leq(\alpha+\delta) Q \\(\beta-\delta) c \leq c-\bar{d} \leq(\beta-1+\delta) c}} 1 . \tag{14}
\end{equation*}
$$

The equality in (14) follows by noticing that the conditions $1 \leq a \leq c$ and $a d-b c=$ -1 force a to equal $c-\bar{d}$, where \bar{d} is the multiplicative inverse of d modulo c in the interval $[1, c]$. Furthermore, let us note in (14) that the terms for which $c<(\alpha-\delta) Q / 2$ have no contribution to the sum. Indeed, the inequality $(\alpha-\delta) Q \leq$ $c-\bar{d}+d$ implies $(\alpha-\delta) Q<2 q$. Hence, setting $q=c, x=d$ and $y=\bar{d}$, we obtain $\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}$ in the form

$$
\begin{equation*}
\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}=\sum_{(\alpha-\delta) Q / 2 \leq q \leq Q} \#\left\{(x, y) \in \Gamma_{\alpha, \beta, \delta, Q, q} \cap \mathbb{Z}^{2}: x y \equiv 1(\bmod q)\right\} \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
\Gamma_{\alpha, \beta, \delta, Q, q}=\left\{(u, v) \in \mathbb{R}^{2}:\right. & 1 \leq u, v \leq q \\
& (\alpha-\delta) Q-q \leq u-v \leq(\alpha+\delta) Q-q \tag{16}\\
& (2-\beta-\delta) q \leq v \leq(2-\beta+\delta) q\}
\end{align*}
$$

Applying Lemma 1 as before, we obtain

$$
\begin{align*}
\#\left\{(x, y) \in \Gamma_{\alpha, \beta, \delta, Q, q} \cap \mathbb{Z}^{2}: x y \equiv 1(\bmod q)\right\}= & \frac{\phi(q)}{q^{2}} \operatorname{Area}\left(\Gamma_{\alpha, \beta, \delta, Q, q}\right) \tag{17}\\
& +E_{\alpha, \beta, \delta, Q, q}^{\prime}
\end{align*}
$$

where

$$
\begin{equation*}
E_{\alpha, \beta, \delta, Q, q}^{\prime}=O_{\epsilon}\left(Q^{5 / 6+\epsilon}\right) \tag{18}
\end{equation*}
$$

Then inserting (17) and (18) into (15), we get

$$
\begin{equation*}
\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}=M^{\prime}+E^{\prime} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
M^{\prime}=\sum_{(\alpha-\delta) Q / 2 \leq q \leq Q} \frac{\phi(q)}{q^{2}} \operatorname{Area}\left(\Gamma_{\alpha, \beta, \delta, Q, q}\right) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\prime}=\sum_{(\alpha-\delta) Q / 2 \leq q \leq Q} E_{\alpha, \beta, \delta, Q, q}^{\prime}=O_{\epsilon}\left(Q^{11 / 6+\epsilon}\right) \tag{21}
\end{equation*}
$$

From the definition of the set $\Gamma_{\alpha, \beta, \delta, Q, q}$ in (16), we see that

$$
\Gamma_{\alpha, \beta, \delta, Q, q}=\mathcal{M} \cap([1, q] \times[1, q])
$$

where \mathcal{M} is the parallelogram that lies between the slant lines $v=u+q-(\alpha+\delta) Q$ and $v=u+q-(\alpha-\delta) Q$ and the horizontal lines $v=(2-\beta-\delta) q$ and $v=(2-\beta+\delta) q$. First, we observe that if $\alpha>\beta$, then for δ small enough all parallelograms \mathcal{M} lie outside the square $[1, q] \times[1, q]$. In this situation, the sets $\Gamma_{\alpha, \beta, \delta, Q, q}$ are empty. Hence, the main term M^{\prime} is zero.

In what follows, we consider the case when $\alpha<\beta$. If $q<(\alpha-\delta) Q /(\beta+\delta)$, then the parallelograms \mathcal{M} still lie outside the square $[1, q] \times[1, q]$. Hence, we may restrict to the interval $[(\alpha-\delta) Q /(\beta+\delta), Q]$.

Next, if q belongs to the interval $[(\alpha-\delta) Q /(\beta+\delta),(\alpha+\delta) Q /(\beta-\delta)]$, then \mathcal{M} intersects the square $[1, q] \times[1, q]$ but is not entirely contained in it. This forces \mathcal{M} to lie close to the boundary of the square $[1, q] \times[1, q]$, so that all those values of q satisfying this property have negligible contribution to the main term M^{\prime}.

Hence, we may restrict the summation over q to the interval $[(\alpha+\delta) Q /(\beta-\delta), Q]$. For all such values of q, we see that \mathcal{M} is entirely contained in the square $[1, q] \times[1, q]$
and its area is equal to exactly $4 \delta^{2} q Q$. Hence, the main term in (20) is given by

$$
\begin{equation*}
M^{\prime}=\sum_{(\alpha+\delta) Q /(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q^{2}} \operatorname{Area}\left(\Gamma_{\alpha, \beta, \delta, Q, q}\right)=4 \delta^{2} Q \sum_{(\alpha+\delta) Q /(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q} \tag{22}
\end{equation*}
$$

Using Lemma 2, we find that

$$
\begin{equation*}
\sum_{(\alpha+\delta) Q /(\beta-\delta) \leq q \leq Q} \frac{\phi(q)}{q}=\frac{Q}{\zeta(2)}\left(1-\frac{\alpha+\delta}{\beta-\delta}\right)+O(\log q) \tag{23}
\end{equation*}
$$

Then inserting (23) into (22), we see that

$$
\begin{equation*}
\frac{M^{\prime}}{\delta^{2} Q^{2}} \rightarrow \frac{4}{\zeta(2)}\left(1-\frac{\alpha+\delta}{\beta-\delta}\right) \tag{24}
\end{equation*}
$$

as $Q \rightarrow \infty$ first and then followed by $\delta \rightarrow 0$.
On combining the above estimates for $\# \mathcal{D}_{\alpha, \beta, \delta, Q, x}$ and $\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}$ when β is larger than α and recalling that both quantities are zero when β is less than α, we deduce that
$\begin{aligned} \lim _{\delta \rightarrow 0} \lim _{Q \rightarrow \infty} \lim _{x \rightarrow \infty} \frac{\# \mathcal{D}_{\alpha, \beta, \delta, Q, x}+\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}}{\delta^{2} Q^{2}} & = \begin{cases}\frac{4\left(1-\frac{\alpha}{\beta}\right)}{(\beta-1) \zeta(2)}+\frac{4\left(1-\frac{\alpha}{\beta}\right)}{\zeta(2)}, & \text { if } \alpha \leq \beta ; \\ 0, & \text { if } \alpha<\beta ;\end{cases} \\ & = \begin{cases}\frac{4}{\zeta(2)}\left(\frac{\beta-\alpha}{\beta-1}\right), & \text { if } \alpha \leq \beta ; \\ 0, & \text { if } \alpha>\beta .\end{cases} \end{aligned}$

We have the following result, which is essentially Theorem 1.1 from [12].
Lemma 3. Given a matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

of determinant -1 with $a, b, c, d \geq 1$, there are positive real-valued constants K_{A} and c^{\prime} such that

$$
M_{A}(x)=K_{A} x^{1+(a+b) /(c+d)}+O_{A}\left(x^{1 / 2+(a+b) /(c+d)} \exp \left\{-c^{\prime}(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right\}\right) .
$$

For the sake of completeness, we outline a sketch of the proof of Lemma 3. Consider the Dirichlet series

$$
F_{A}(s)=\sum_{n=1}^{\infty} \frac{f_{A}(n)}{n^{s}}
$$

One can show that $F_{A}(s)$ converges in the half plane $\Re s=\sigma>1+(a+b) /(c+d)$ and has an Euler product in that region. Write

$$
F_{A}(s)=\frac{\zeta(s-(a+b) /(c+d))}{\zeta(2 s-2(a+b) /(c+d))} T_{A}(s)
$$

Furthermore, one can show that $\zeta(2 s-2(a+b) /(c+d))^{-1} T_{A}(s)$ is analytic on a larger half-plane $\sigma>\sigma_{0}$. Hence, $F_{A}(s)$ is meromorphic there with a simple pole at $s=1+(a+b) /(c+d)$.

Next, we utilize a variant of Perron's formula and write

$$
\sum_{n \leq x}\left(1-\frac{n}{x}\right) f_{A}(n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta(s-(a+b) /(c+d))}{\zeta(2 s-2(a+b) /(c+d))} T_{A}(s) \frac{x^{s}}{s(s+1)} d s
$$

where $1+(a+b) /(c+d)<c \leq 5 / 4+(a+b) /(c+d)$. We need to apply the zero-free region for $\zeta(s)$ due to Korobov [8] and Vinogradov [14] in the region

$$
\sigma \geq 1-c_{0}(\log t)^{-2 / 3}(\log \log t)^{-1 / 3}
$$

for $t \geq t_{0}$, in which

$$
\frac{1}{|\zeta(s)|}=O\left((\log t)^{2 / 3}(\log \log t)^{1 / 3}\right)
$$

(See the end-of-chapter notes for Chapter 6 in Titchmarsh's classical book [13]; see, also, Chapters 2 and 5 in Walfisz's book [15].) We then fix $0<U<T \leq x$, let $\nu=1 / 2+(a+b) /(c+d)$ and

$$
\eta=\nu-c_{0}(\log U)^{-2 / 3}(\log \log U)^{-1 / 3}
$$

and deform the path of integration into the union of the line segments

$$
\begin{cases}\gamma_{1}, \gamma_{9}: s=c+i t, & \text { if }|t| \geq T \\ \gamma_{2}, \gamma_{8}: s=\sigma \pm i T, & \text { if } \nu \leq \sigma \leq c \\ \gamma_{3}, \gamma_{7}: s=\nu+i t, & \text { if } U \leq|t| \leq T \\ \gamma_{4}, \gamma_{6}: s=\sigma \pm i U, & \text { if } \eta \leq \sigma \leq \nu \\ \gamma_{5}: s=\eta+i t, & \text { if }|t| \leq U\end{cases}
$$

Here, we note that the integrand is analytic on and within this modified contour. Hence, by the residue theorem

$$
\begin{aligned}
M_{A}(x)=\frac{1}{(1+(a+b) /(c+d))(2+(a+b) /(c+d)) \zeta(2)} & T_{A}\left(1+\frac{a+b}{c+d}\right) \\
& \times x^{1+(a+b) /(c+d)}+\sum_{k=1}^{9} J_{k}
\end{aligned}
$$

with the main term coming from the residue at the simple pole at $s=1+(a+$ b) $/(c+d)$. Note that we will take

$$
K_{A}=\frac{1}{(1+(a+b) /(c+d))(2+(a+b) /(c+d)) \zeta(2)} T_{A}\left(1+\frac{a+b}{c+d}\right)
$$

in the statement of the lemma.
We estimate the integral along our modified contour and make use of the wellknown bounds

$$
|\zeta(\sigma+i t)|= \begin{cases}O\left(t^{(1-\sigma) / 2}\right), & \text { if } 0 \leq \sigma \leq 1 \text { and }|t| \geq 1 \\ O(\log t), & \text { if } 1 \leq \sigma \leq 2 \\ O(1), & \text { if } \sigma \geq 2\end{cases}
$$

(See Theorem 1.9 in Ivić's classical book [6].) Upon collecting all estimates, we have the statement of the lemma.

Lemma 3 shows us that

$$
\frac{\log M_{A}(x)}{\log x} \sim 1+\frac{a+b}{c+d}
$$

as $x \rightarrow \infty$. Since

$$
\frac{a+b}{c+d}=\frac{a}{c}-\frac{\operatorname{det}(A)}{c(c+d)}=\frac{b}{d}+\frac{\operatorname{det}(A)}{d(c+d)}
$$

when $d>c$ we see that

$$
\left|\frac{\log M_{A}(x)}{\log x}-\frac{b}{d}\right|=O\left(\frac{1}{d^{2}}\right)
$$

as $x \rightarrow \infty$. When $c>d$, we have

$$
\left|\frac{\log M_{A}(x)}{\log x}-\frac{a}{c}\right|=O\left(\frac{1}{c^{2}}\right)
$$

as $x \rightarrow \infty$.
We partition $\mathcal{A}(Q, x)$ into two subsets, according to whether $1 \leq \max (c, d) \leq \sqrt{Q}$ or $\max (c, d)>\sqrt{Q}$. There are at most $O\left(Q^{3 / 2}\right)$ matrices of the first type, and for the second type we have $O\left(1 / d^{2}\right)=O(1 / Q)$ and $O\left(1 / c^{2}\right)=O(1 / Q)$ when $d>c$ and $c>d$, respectively, as $Q \rightarrow \infty$.

We note that the δ in our definitions of $\mathcal{D}_{\alpha, \beta, \delta, Q, x}$ and $\mathcal{C}_{\alpha, \beta, \delta, Q, x}$ should be replaced by an expression of the form $\delta+\delta_{E}(Q)$, where the function $\delta_{E}(Q)=O(1 / Q)$, but in what follows we let Q tend to infinity before letting δ tend to zero, so in our case we may replace one by the other.

Since $1+(a+b) /(c+d)<\beta+\delta<2$, we find that $a<c$, and similarly $b \leq d$. So the conditions $a, b \leq d$ and $a, b \leq c$ in $\mathcal{D}_{\alpha, \beta, \delta, Q, x}$ and $\mathcal{C}_{\alpha, \beta, \delta, Q, x}$ are satisfied. Thus,

$$
\lim _{x \rightarrow \infty}\left|\frac{\# \mathcal{D}_{\alpha, \beta, \delta, Q, x}+\# \mathcal{C}_{\alpha, \beta, \delta, Q, x}}{\delta^{2} Q^{2}}-\frac{\#\left\{A \in \mathcal{A}(Q, x): \Psi_{Q, x}(A) \in \mathcal{V}_{\alpha, \beta, \delta}\right\}}{\delta^{2} Q^{2}}\right|=O\left(\frac{1}{\delta^{2} \sqrt{Q}}\right)
$$

as $Q \rightarrow \infty$. Upon combining this with (25), the theorem is proved.

Acknowledgment. The second author acknowledges support from National Science Foundation grant DMS 0838434 "EMSW21MCTP: Research Experience for Graduate Students."

References

[1] E. Alkan, A. H. Ledoan and A. Zaharescu, Asymptotic behavior of the irrational factor, Acta Math. Hungar. 121 (2008), no. 3, 293-305.
[2] K. T. Atanassov, Irrational factor: definition, properties and problems, Notes Number Theory Discrete Math. 2 (1996), no. 3, 42-44.
[3] K. T. Atanassov, Restrictive factor: definition, properties and problems, Notes Number Theory and Discrete Math. 8 (2002), no. 4, 117-119.
[4] F. P. Boca, C. Cobeli, and A. Zaharescu, Distribution of lattice points visible from the origin, Commun. Math. Phys. 213 (2000), 433-470.
[5] F. Boca and R. Gologan, On the distribution of the free path length of the linear flow in a honeycomb, Ann. Inst. Fourier 59 (2009), no. 3, 1043-1075.
[6] A. Ivić, The Riemann zeta-function. The theory of the Riemann zeta-function with applications, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1985.
[7] J.-M. De Koninck and I. Kátai, On the asymptotic value of the irrational factor, Ann. Sci. Math. Quebec 35 (2011), no. 1, 117-121.
[8] N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk, 13 (1958), no. 4 (82), 185-192.
[9] A. H. Ledoan and A. Zaharescu, Real moments of the restrictive factor, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 4, 559-566.
[10] L. Panaitopol, Properties of the Atanassov functions, Adv. Stud. Contemp. Math. (Kyungshang) 8 (2004), no. 1, 55-58.
[11] P. Spiegelhalter and A. Zaharescu, Strong and weak Atanassov pairs, Proc. Jangjeon Math. Soc. 14 (2011), no. 3, 355-361.
[12] P. Spiegelhalter and A. Zaharescu, A class of arithmetic functions on $\mathrm{PSL}_{2}(\mathbb{Z})$, B. Korean Math. Soc. 50 (2013), no. 2, 611-626.
[13] E. C. Titchmarsh, The theory of the Riemann zeta-function, Second edition (Revised by D. R. Heath-Brown), The Clarendon Press, Oxford University Press, New York, 1986.
[14] I. M. Vinogradov, A new estimate of the function $\zeta(1+i t)$, Izv. Akad. Nauk SSSR. Ser. Mat., 22 (1958), 161-164.
[15] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutsche Verlag der Wissenschaften, Berlin, 1963.

