GENERALIZED GOLDEN RATIOS OVER INTEGER ALPHABETS

Simon Baker
School of Mathematics, University of Manchester, Manchester, United Kingdom
simon.baker@manchester.ac.uk

Received: 3/4/13, Revised: 11/22/13, Accepted: 2/6/14, Published: 3/24/14

Abstract

It is a well-known result that for $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ and $x \in\left(0, \frac{1}{\beta-1}\right)$, there exist uncountably many $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}$ such that $x=\sum_{i=1}^{\infty} \epsilon_{i} \beta^{-i}$. When $\beta \in\left(\frac{1+\sqrt{5}}{2}, 2\right]$ there exists $x \in\left(0, \frac{1}{\beta-1}\right)$ for which there exists a unique $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}$ such that $x=\sum_{i=1}^{\infty} \epsilon_{i} \beta^{-i}$. In this paper we consider the more general case when our sequences are elements of $\{0, \ldots, m\}^{\mathbb{N}}$. We show that an analogue of the golden ratio exists and give an explicit formula for it.

1. Introduction

Let $m \in \mathbb{N}, \beta \in(1, m+1]$ and $I_{\beta, m}=\left[0, \frac{m}{\beta-1}\right]$. Each $x \in I_{\beta, m}$ has an expansion of the form

$$
x=\sum_{i=1}^{\infty} \frac{\epsilon_{i}}{\beta^{i}},
$$

for some $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}$. We call such a sequence a β-expansion for x. Given $x \in I_{\beta, m}$ we denote the set of β-expansions for x by $\Sigma_{\beta, m}(x)$, i.e.,

$$
\Sigma_{\beta, m}(x)=\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}: \sum_{i=1}^{\infty} \frac{\epsilon_{i}}{\beta^{i}}=x\right\}
$$

In [6] the authors consider the case when $m=1$. They show that for $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ the set $\Sigma_{\beta, 1}(x)$ is uncountable for every $x \in\left(0, \frac{1}{\beta-1}\right)$. The endpoints of $\left[0, \frac{1}{\beta-1}\right]$ trivially have a unique β-expansion. In [5] it was shown that for $\beta \in\left(\frac{1+\sqrt{5}}{2}, 2\right.$] there exists $x \in\left(0, \frac{1}{\beta-1}\right)$ with a unique β-expansion.

Given $m \in \mathbb{N}$ we say that $\mathcal{G}(m) \in \mathbb{R}$ is a generalized golden ratio for m if: for $\beta \in(1, \mathcal{G}(m))$ the set $\Sigma_{\beta, m}(x)$ is uncountable for every $x \in\left(0, \frac{m}{\beta-1}\right)$, and for every $\beta \in(\mathcal{G}(m), m+1]$ there exists $x \in\left(0, \frac{m}{\beta-1}\right)$ for which $\left|\Sigma_{\beta, m}(x)\right|=1$.

In [11] the authors consider a similar setup. They consider the case where β expansions are elements of $\left\{a_{1}, a_{2}, a_{3}\right\}^{\mathbb{N}}$, for some $a_{1}, a_{2}, a_{3} \in \mathbb{R}$. They show that
for each ternary alphabet there exists a constant $G \in \mathbb{R}$, for which there exists nontrivial unique β-expansions if and only if $\beta>G$. Moreover they give an explicit formula for G.

Our main result is the following.
Theorem 1.1. For each $m \in \mathbb{N}$ a generalized golden ratio exists and is equal to:

$$
\mathcal{G}(m)=\left\{\begin{align*}
k+1 & \text { if } m=2 k \tag{1}\\
\frac{k+1+\sqrt{k^{2}+6 k+5}}{2} & \text { if } m=2 k+1
\end{align*}\right.
$$

Remark 1.2. $\mathcal{G}(m)$ is a Pisot number for all $m \in \mathbb{N}$. Recall a Pisot number is a real algebraic integer greater than 1 whose Galois conjugates are of modulus strictly less than 1.

In Section 6 we include a table of values for $\mathcal{G}(m)$. We prove Theorem 1.1 in section 3. In Section 4 we consider the set of numbers with unique β-expansion for $\beta \in(\mathcal{G}(m), m+1]$, and in section 5 we study the growth rate and dimension theory of the set of β-expansions for $\beta \in(1, \mathcal{G}(m))$.

2. Preliminaries

Before proving Theorem 1.1 we require the following preliminary results and theory. Let $m \in \mathbb{N}$ be fixed and $\beta \in(1, m+1]$. For each $i \in\{0, \ldots, m\}$ we fix $T_{\beta, i}(x)=$ $\beta x-i$. The proof of the following lemma is trivial and therefore omitted.

Lemma 2.1. The map $T_{\beta, i}$ satisfies the following:

- $T_{\beta, i}$ has a unique fixed point equal to $\frac{i}{\beta-1}$,
- $T_{\beta, i}(x)>x$ for all $x>\frac{i}{\beta-1}$,
- $T_{\beta, i}(x)<x$ for all $x<\frac{i}{\beta-1}$,
- $\left|T_{\beta, i}(x)-T_{\beta, i}\left(\frac{i}{\beta-1}\right)\right|=\beta\left|x-\frac{i}{\beta-1}\right|$, for all $x \in \mathbb{R}$. That is, $T_{\beta, i}$ scales the distance between the fixed point $\frac{i}{\beta-1}$ and an arbitrary number by a factor β.

Understanding where in $I_{\beta, m}$ these fixed points are will be important in our later analysis.

We let

$$
\begin{aligned}
\Omega_{\beta, m}(x)=\{ & \left(a_{i}\right)_{i=1}^{\infty} \in\left\{T_{\beta, 0}, \ldots, T_{\beta, m}\right\}^{\mathbb{N}}:\left(a_{n} \circ a_{n-1} \circ \cdots \circ a_{1}\right)(x) \in I_{\beta, m} \\
& \text { for all } n \in \mathbb{N}\} .
\end{aligned}
$$

Similarly we define

$$
\Omega_{\beta, m, n}(x)=\left\{\left(a_{i}\right)_{i=1}^{n} \in\left\{T_{\beta, 0}, \ldots, T_{\beta, m}\right\}^{n}:\left(a_{n} \circ a_{n-1} \circ \cdots \circ a_{1}\right)(x) \in I_{\beta, m}\right\} .
$$

Typically we will denote an element of $\Omega_{\beta, m, n}(x)$ or any finite sequence of maps by a. When we want to emphasise the length of a we will use the notation $a^{(n)}$. We also adopt the notation $a^{(n)}(x)$ to mean $\left(a_{n} \circ a_{n-1} \circ \cdots \circ a_{1}\right)(x)$.

Remark 2.2. It is important to note that if for some finite sequence of maps a we have $a(x) \notin I_{\beta, m}$. Then we cannot concatenate a by any finite sequence of maps b such that $b(a(x)) \in I_{\beta, m}$.

Remark 2.3. Let $\beta \in(1, m+1]$. For any $x \in I_{\beta, m}$ there always exists $i \in\{0, \ldots, m\}$ such that $T_{\beta, i}(x) \in I_{\beta, m}$. For $\beta>m+1$ such an i does not always exist.

Lemma 2.4. $\left|\Sigma_{\beta, m}(x)\right|=\left|\Omega_{\beta, m}(x)\right|$.
Proof. It is a simple exercise to show that

$$
\Sigma_{\beta, m}(x)=\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}: x-\sum_{i=1}^{n} \frac{\epsilon_{i}}{\beta^{i}} \in\left[0, \frac{m}{\beta^{n}(\beta-1)}\right] \text { for all } n \in \mathbb{N}\right\}
$$

Following [8] we observe that

$$
\begin{aligned}
\Sigma_{\beta, m}(x) & =\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}: x-\sum_{i=1}^{n} \frac{\epsilon_{i}}{\beta^{i}} \in\left[0, \frac{m}{\beta^{n}(\beta-1)}\right] \text { for all } n \in \mathbb{N}\right\} \\
& =\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}: \beta^{n} x-\sum_{i=1}^{n} \epsilon_{i} \beta^{n-i} \in I_{\beta, m} \text { for all } n \in \mathbb{N}\right\} \\
& =\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}:\left(T_{\beta, \epsilon_{n}} \circ \cdots \circ T_{\beta, \epsilon_{1}}\right)(x) \in I_{\beta, m} \text { for all } n \in \mathbb{N}\right\} .
\end{aligned}
$$

Our result follows immediately.
By Lemma 2.4 we can rephrase the definition of a generalized golden ratio in terms of the set $\Omega_{\beta, m}(x)$. This equivalent definition will be more suitable for our purposes. The set $\Omega_{\beta, m, n}(x)$ will be useful when we study the growth rate and dimension theory of the set of β-expansions.

Given $x \in I_{\beta, m}$ we can take i to be the first digit in a β-expansion for x if and only if $\beta x-i \in I_{\beta, m}$. This is equivalent to

$$
x \in\left[\frac{i}{\beta}, \frac{i \beta+m-i}{\beta(\beta-1)}\right] .
$$

As such we refer to the interval $\left[\frac{i}{\beta}, \frac{i \beta+m-i}{\beta(\beta-1)}\right]$ as the i-th digit interval. Generally speaking we can take i to be the j-th digit in a β-expansion for x if and only if
there exists $a \in \Omega_{\beta, m, j-1}(x)$ such that $a(x) \in\left[\frac{i}{\beta}, \frac{i \beta+m-i}{\beta(\beta-1)}\right]$. When x or an image of x is contained in the intersection of two digit intervals we have a choice of digit in our β-expansion. Generally speaking any two digit intervals may intersect for β sufficiently small, but for our purposes we need only consider the case when the i-th digit interval intersects the adjacent $(i-1)$-th or $(i+1)$-th digit intervals. Any intersection of this type is of the form

$$
\left[\frac{i}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right],
$$

for some $i \in\{1, \ldots, m\}$. In what follows we refer to the interval $\left[\frac{i}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right]$ as the i-th choice interval. Both $T_{\beta, i-1}$ and $T_{\beta, i}$ map the i-th choice interval into $I_{\beta, m}$. These intervals always exist and are nontrivial for $\beta \in(1, m+1)$.

Proposition 2.5. Suppose for any $x \in\left(0, \frac{m}{\beta-1}\right)$ there always exists a finite sequence of maps that map x into the interior of a choice interval. Then $\Omega_{\beta, m}(x)$ is uncountable.

The proof of this proposition is essentially contained in the proof of Theorem 1 in [17].

Proof. Let $x \in\left(0, \frac{m}{\beta-1}\right)$. Suppose there exists $n \in \mathbb{N}$ and $a \in \Omega_{\beta, m, n}(x)$ such that $a(x) \in\left(\frac{i}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right)$, for some $i \in\{1, \ldots, m\}$. As $a(x)$ is in the interior of a choice interval both $T_{\beta, i-1}(a(x)) \in\left(0, \frac{m}{\beta-1}\right)$, and $T_{\beta, i}(a(x)) \in\left(0, \frac{m}{\beta-1}\right)$. As such our hypothesis applies to both $T_{\beta, i-1}(a(x))$ and $T_{\beta, i}(a(x))$, and we can assert that there exists a finite sequence of maps that map these two distinct images of x into the interior of another choice interval. Repeating this procedure arbitrarily many times it is clear that $\Omega_{\beta, m}(x)$ is uncountable.

By Proposition 2.5, to prove Theorem 1.1 it suffices to show that for $\beta \in(1, \mathcal{G}(m))$ every $x \in\left(0, \frac{m}{\beta-1}\right)$ can be mapped into the interior of a choice interval, and for $\beta \in(\mathcal{G}(m), m+1]$ there exists $x \in\left(0, \frac{m}{\beta-1}\right)$ that never maps into a choice interval.

We define the switch region to be the interval

$$
\left[\frac{1}{\beta}, \frac{(m-1) \beta+1}{\beta(\beta-1)}\right] .
$$

The significance of this interval can be seen as follows. If x has a choice of digit in the j-th entry of a β-expansion then there exists $a \in \Omega_{\beta, m, j-1}(x)$ such that $a(x) \in$ $\left[\frac{1}{\beta}, \frac{(m-1) \beta+1}{\beta(\beta-1)}\right]$. The following lemmas are useful in understanding the dynamics of the maps $T_{\beta, i}$ around the switch region. Understanding these dynamics will be important in our proof of Theorem 1.1.
Lemma 2.6. For $\beta \in\left(1, \frac{m+\sqrt{m^{2}+4}}{2}\right)$ and $x \in\left(0, \frac{m}{\beta-1}\right)$ there exists a finite sequence of maps that map x into the interior of our switch region.

Proof. If x is contained within the interior of the switch region we are done. Let us suppose otherwise. By the monotonicity of the maps $T_{\beta, 0}$ and $T_{\beta, m}$ it suffices to show that

$$
T_{\beta, 0}\left(\frac{1}{\beta}\right)<\frac{(m-1) \beta+1}{\beta(\beta-1)} \text { and } T_{\beta, m}\left(\frac{(m-1) \beta+1}{\beta(\beta-1)}\right)>\frac{1}{\beta} .
$$

Both of these inequalities are equivalent to $\beta^{2}-m \beta-1<0$. Applying the quadratic formula we can conclude our result.

Remark 2.7. When $m=1$ the switch region is a choice interval. An application of Lemma 2.4, Proposition 2.5 and Lemma 2.6 yields the result stated in [6], i.e, for $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ and $x \in\left(0, \frac{1}{\beta-1}\right)$ the set $\Sigma_{\beta, 1}(x)$ is uncountable.

Lemma 2.8. For $\beta \in\left(1, \frac{m+2}{2}\right)$ every x in the interior of the switch region is contained in the interior of a choice interval.

Proof. It suffices to show that for each $i \in\{1,2, \ldots, m-1\}$ the $(i-1)$-th and $(i+1)$-th digit intervals intersect in a nontrivial interval. This is equivalent to

$$
\frac{i+1}{\beta}<\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)} .
$$

A simple manipulation yields that this is equivalent to $\beta<\frac{m+2}{2}$.
We refer the reader to Figure 1 for a diagram depicting the case where $\beta<\frac{m+2}{2}$. For $i \in\{1,2, \ldots, m-1\}$ and $\beta \geq \frac{m+2}{2}$ the interval

$$
\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}, \frac{i+1}{\beta}\right]
$$

is well defined. We refer to this interval as the i-th fixed digit interval. The significance of this interval is that if x is contained in the interior of the i-th fixed digit interval only $T_{\beta, i}$ maps x into $I_{\beta, m}$. Similarly we define the 0 -th fixed digit interval to be $\left[0, \frac{1}{\beta}\right]$ and the m-th fixed digit interval to be $\left[\frac{(m-1) \beta+1}{\beta(\beta-1)}, \frac{m}{\beta-1}\right]$. Understanding how the different $T_{\beta, i}$'s behave on these intervals will be important when it comes to constructing generalized golden ratios in the case where m is odd.

3. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1. For ease of exposition we reduce our analysis to two cases: when m is even and when m is odd.

Figure 1: The case where $\beta \in\left(1, \frac{m+2}{2}\right)$

3.1. Case Where m Is Even

In what follows we assume $m=2 k$ for some $k \in \mathbb{N}$.
Proposition 3.1. For $\beta \in(1, k+1)$ every $x \in\left(0, \frac{m}{\beta-1}\right)$ has uncountably many β-expansions.

Proof. By Lemma 2.4 and Proposition 2.5 it suffices to show that every $x \in\left(0, \frac{m}{\beta-1}\right)$ can be mapped into the interior of a choice interval. It is a simple exercise to show that $\frac{m+2}{2}<\frac{m+\sqrt{m^{2}+4}}{2}$ for all $m \in \mathbb{N}$. Therefore, for $\beta \in(1, k+1)$ we can apply Lemma 2.6 and conclude that there exists a sequence of maps that map x into the interior of the switch region. However, by Lemma 2.8 every number in the interior of our switch region is contained in the interior of a choice interval.

Proposition 3.2. For $\beta \in(k+1, m+1]$ there exists $x \in\left(0, \frac{m}{\beta-1}\right)$ with a unique β-expansion.

Proof. It suffices to show that there exists $x \in\left(0, \frac{m}{\beta-1}\right)$ that never maps into a choice interval. We will show that $\frac{k}{\beta-1}$ never maps into a choice interval. This number is contained in the k-th digit interval and is the fixed point under the map

Figure 2: A number with unique β-expansion for $\beta \in(k+1, m+1]$.
$T_{\beta, k}$. To show that it has a unique β-expansion it suffices to show that it is not contained within the $(k-1)$-th or $(k+1)$-th digit intervals. This is equivalent to

$$
\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}<\frac{k}{\beta-1}<\frac{k+1}{\beta} .
$$

Both of these inequalities are equivalent to $\beta>k+1$.
Figure 2 describes the construction of a number with unique β-expansion for $\beta \in(k+1, m+1]$. By Proposition 3.1 and Proposition 3.2 we can conclude Theorem 1.1 in the case where m is even.

3.2. Case Where m Is Odd

The analysis of the case where m is odd is somewhat more intricate. In what follows we assume $m=2 k+1$ for some $k \in \mathbb{N}$. Before finishing our proof of Theorem 1.1 we require the following technical results.

Lemma 3.3. For $\beta \in(1, k+2)$ the fixed point of $T_{\beta, i}$ is contained in the interior of the choice interval $\left[\frac{i}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right]$ for $i \in\{1, \ldots, k\}$, and in the interior of the choice interval $\left[\frac{i+1}{\beta}, \frac{i \beta+m-i}{\beta(\beta-1)}\right]$ for $i \in\{k+1, \ldots, m-1\}$.

Proof. Let $i \in\{1, \ldots, k\}$. To show that the fixed point $\frac{i}{\beta-1}$ is contained in the interior of the interval $\left[\frac{i}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right]$ it suffices to show that

$$
\frac{i}{\beta-1}<\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}
$$

This is equivalent to $\beta<m+1-i$; which for $\beta \in(1, k+2)$ is true for all $i \in\{1, \ldots, k\}$. The case where $i \in\{k+1, \ldots, m-1\}$ is proved similarly.

Corollary 3.4. For $\beta \in\left[\frac{2 k+3}{2}, k+2\right)$ the map $T_{\beta, i}$ satisfies: $T_{\beta, i}(x)-\frac{i}{\beta-1}=$ $\beta\left(x-\frac{i}{\beta-1}\right)$ for all x contained in the i-th fixed digit interval, for $i \in\{1, \ldots, k\}$, and $\frac{i}{\beta-1}-T_{\beta, i}(x)=\beta\left(\frac{i}{\beta-1}-x\right)$ for all x contained in the i-th fixed digit interval, for $i \in\{k+1, \ldots, m-1\}$.

Proof. Let $i \in\{1, \ldots, k\}$. By Lemma 3.3 the i-th fixed digit interval is to the right of the fixed point of $T_{\beta, i}$, and by Lemma 2.1 our result follows. The case where $i \in\{k+1, \ldots, m-1\}$ is proved similarly.

Lemma 3.5. Suppose $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$ and x is an element of the i-th fixed digit interval for some $i \in\{1, \ldots, m-1\}$. For $i \in\{1, \ldots, k\}$

$$
T_{\beta, i}(x)<\frac{k \beta+m-k}{\beta(\beta-1)}
$$

and for $i \in\{k+1, \ldots, m-1\}$

$$
T_{\beta, i}(x)>\frac{k+1}{\beta} .
$$

Proof. By the monotonicity of the maps $T_{\beta, i}$ it is sufficient to show that

$$
T_{\beta, i}\left(\frac{i+1}{\beta}\right)<\frac{k \beta+m-k}{\beta(\beta-1)},
$$

for $i \in\{1, \ldots, k\}$, and

$$
T_{\beta, i}\left(\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right)>\frac{k+1}{\beta}
$$

for $i \in\{k+1, \ldots, m-1\}$. Both of these inequalities are equivalent to $\beta^{2}-(k+$ 1) $\beta-(k+1)<0$. Our result follows by an application of the quadratic formula.

Proposition 3.6. For $\beta \in\left(1, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$ every $x \in\left(0, \frac{m}{\beta-1}\right)$ has uncountably many β-expansions.

Proof. The proof where $\beta \in\left(1, \frac{2 k+3}{2}\right)$ is analogous to that given in the even case. Therefore in what follows we assume $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$. We remark that

$$
\frac{k+1+\sqrt{k^{2}+6 k+5}}{2} \leq \frac{m+\sqrt{m^{2}+4}}{2}
$$

and

$$
\frac{k+1+\sqrt{k^{2}+6 k+5}}{2}<k+2
$$

for all $k \in \mathbb{N}$. We may therefore use Lemma 2.6 and Corollary 3.4. Let $x \in\left(0, \frac{m}{\beta-1}\right)$. We will show that there exists a sequence of maps that map x into the interior of a choice interval, and by Lemma 2.4 and Proposition 2.5 our result will follow. By Lemma 2.6 there exists a finite sequence of maps that map x into the interior of the switch region. Suppose the image of x is not contained in the interior of a choice interval. Then it must be contained in the i-th fixed digit interval for some $i \in\{1, \ldots, m-1\}$. By repeatedly applying Corollary 3.4 and Lemma 3.5 the image of x must eventually be mapped into the interior of a choice interval.

We refer the reader to Figure 3 for a diagram illustrating the case where $m=$ $2 k+1$ and $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$.

Proposition 3.7. For $\beta \in\left(\frac{k+1+\sqrt{k^{2}+6 k+5}}{2}, m+1\right]$ there exists $x \in\left(0, \frac{m}{\beta-1}\right)$ with a unique β-expansion.

Proof. We will show that the numbers

$$
\frac{k \beta+(k+1)}{\beta^{2}-1} \text { and } \frac{(k+1) \beta+k}{\beta^{2}-1}
$$

have a unique β-expansion. The significance of these numbers is that

$$
T_{\beta, k}\left(\frac{k \beta+(k+1)}{\beta^{2}-1}\right)=\frac{(k+1) \beta+k}{\beta^{2}-1}
$$

and

$$
T_{\beta, k+1}\left(\frac{(k+1) \beta+k}{\beta^{2}-1}\right)=\frac{k \beta+(k+1)}{\beta^{2}-1} .
$$

To show that these numbers have a unique β-expansion it suffices to show that $\frac{k \beta+(k+1)}{\beta^{2}-1}$ and $\frac{(k+1) \beta+k}{\beta^{2}-1}$ belong to the k-th and $(k+1)$-th fixed digit intervals, respectively. That is,

$$
\begin{equation*}
\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}<\frac{k \beta+(k+1)}{\beta^{2}-1}<\frac{k+1}{\beta} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{k \beta+(m-k)}{\beta(\beta-1)}<\frac{(k+1) \beta+k}{\beta^{2}-1}<\frac{k+2}{\beta} . \tag{3}
\end{equation*}
$$

Figure 3: A diagram of the case where $m=2 k+1$ and $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$

The left-hand side of (2) is equivalent to $0<\beta^{2}-k \beta-(k+2)$. The quadratic formula yields that this is equivalent to

$$
\frac{k+\sqrt{k^{2}+4 k+8}}{2}<\beta .
$$

However

$$
\frac{k+\sqrt{k^{2}+4 k+8}}{2}<\frac{k+1+\sqrt{k^{2}+6 k+5}}{2}
$$

for all $k \in \mathbb{N}$. Therefore the left-hand side of (2) holds. The right-hand side of (2) is equivalent to $0<\beta^{2}-(k+1) \beta-(k+1)$. So (2) holds by the quadratic formula.

The right-hand side of (3) is equivalent to $0<\beta^{2}-k \beta-(k+2)$. We know this is true by the above. Similarly the left-hand side of (3) is equivalent to $0<$ $\beta^{2}-(k+1) \beta-(k+1)$, which we also know to be true. It follows that both $\frac{k \beta+(k+1)}{\beta^{2}-1}$ and $\frac{(k+1) \beta+k}{\beta^{2}-1}$ are never mapped into a choice interval and have a unique β-expansion for $\beta \in\left(\frac{k+1+\sqrt{k^{2}+6 k+5}}{2}, m+1\right]$.

We refer the reader to Figure 4 for a diagram describing the numbers we con-

Figure 4: A number with unique β-expansion for $\beta \in\left(\frac{k+1+\sqrt{k^{2}+6 k+5}}{2}, m+1\right]$.
structed with unique β-expansion for $\beta \in\left(\frac{k+1+\sqrt{k^{2}+6 k+5}}{2}, m+1\right]$. By Proposition 3.6 and Proposition 3.7 we can conclude Theorem 1.1.

4. The Set of Numbers with Unique β-Expansion

In this section we study the set of numbers with a unique β-expansion for $\beta \in$ $(\mathcal{G}(m), m+1]$. Let

$$
U_{\beta, m}=\left\{x \in I_{\beta, m}| | \Sigma_{\beta, m}(x) \mid=1\right\}
$$

and

$$
W_{\beta, m}=\left\{\left.x \in\left(\frac{m+1-\beta}{\beta-1}, 1\right)| | \Sigma_{\beta, m}(x) \right\rvert\,=1\right\}
$$

The significance of the set $W_{\beta, m}$ is that if $x \in U_{\beta, m}$ then it maps to $W_{\beta, m}$ under a finite sequence of $T_{\beta, i}$'s. In [9] the authors study the case where $m=1$. They show that the following theorems hold.

Theorem 4.1. The set $U_{\beta, 1}$ satisfies the following:

1. $\left|U_{\beta, 1}\right|=\aleph_{0}$ for $\beta \in\left(\frac{1+\sqrt{5}}{2}, \beta_{c}\right)$
2. $\left|U_{\beta, 1}\right|=2^{\aleph_{0}}$ for $\beta=\beta_{c}$
3. $U_{\beta, 1}$ is a set of positive Hausdorff dimension for $\beta \in\left(\beta_{c}, 2\right]$.

Theorem 4.2. The set $W_{\beta, 1}$ satisfies the following:

1. $\left|W_{\beta, 1}\right|=2$ for $\beta \in\left(\frac{1+\sqrt{5}}{2}, \beta_{f}\right]$, where β_{f} is the root of the equation

$$
x^{3}-2 x^{2}+x-1=0, \beta_{f}=1.75487 \ldots
$$

2. $\left|W_{\beta, 1}\right|=\aleph_{0}$ for $\beta \in\left(\beta_{f}, \beta_{c}\right)$
3. $\left|W_{\beta, 1}\right|=2^{\aleph_{0}}$ for $\beta=\beta_{c}$
4. $W_{\beta, 1}$ is a set of positive Hausdorff dimension for $\beta \in\left(\beta_{c}, 2\right]$.

Here $\beta_{c} \approx 1.78723$ is the Komornik-Loreti constant introduced in [12]. It is the smallest value of β for which $1 \in U_{\beta, 1}$. Moreover β_{c} is the unique solution of the equation

$$
\sum_{i=1}^{\infty} \frac{\lambda_{i}}{\beta^{i}}=1
$$

Where $\left(\lambda_{i}\right)_{i=0}^{\infty}$ is the Thue-Morse sequence (see [3]), i.e. $\lambda_{0}=0$ and if λ_{i} is already defined for some $i \geq 0$ then $\lambda_{2 i}=\lambda_{i}$ and $\lambda_{2 i+1}=1-\lambda_{i}$. The sequence $\left(\lambda_{i}\right)_{i=0}^{\infty}$ begins

$$
\left(\lambda_{i}\right)_{i=0}^{\infty}=01101001100101101001 \ldots
$$

In [2] it was shown that β_{c} is transcendental. For $m \geq 2$ we define the sequence $\left(\lambda_{i}(m)\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}$ as follows:

$$
\lambda_{i}(m)= \begin{cases}k+\lambda_{i}-\lambda_{i-1} & \text { if } m=2 k \\ k+\lambda_{i} & \text { if } m=2 k+1\end{cases}
$$

We define $\beta_{c}(m)$ to be the unique solution of

$$
\sum_{i=1}^{\infty} \frac{\lambda_{i}(m)}{\beta^{i}}=1
$$

In [13] the authors proved that $\beta_{c}(m)$ is transcendental and the smallest value of β for which $1 \in U_{\beta, m}$. In section 6 we include a table of values for $\beta_{c}(m)$. We begin our study of the sets $U_{\beta, m}$ and $W_{\beta, m}$ by showing that the following proposition holds.

Proposition 4.3. $\left|U_{\beta, m}\right| \geq \aleph_{0}$ for $\beta \in(\mathcal{G}(m), m+1]$.
In [14] the following statements were shown to hold: if $\beta \in\left(1, \beta_{c}(m)\right)$ then $U_{\beta, m}$ is countable, $U_{\beta_{c}(m), m}$ has cardinality equal to that of the continuum, and for $\beta \in$ $\left(\beta_{c}(m), m+1\right]$ the Hausdorff dimension of $U_{\beta, m}$ is strictly positive. Combining these results with Proposition 4.3 the following analogue of Theorem 4.1 is immediate.

Theorem 4.4. For $m \geq 2$ the set $U_{\beta, m}$ satisfies the following:

1. $\left|U_{\beta, m}\right|=\aleph_{0}$ for $\beta \in\left(\mathcal{G}(m), \beta_{c}(m)\right)$
2. $\left|U_{\beta, m}\right|=2^{\aleph_{0}}$ for $\beta=\beta_{c}(m)$
3. $U_{\beta, m}$ is a set of positive Hausdorff dimension for $\beta \in\left(\beta_{c}(m), m+1\right]$.

Proof of Proposition 4.3. To begin with, let us assume $m=2 k$ for some $k \in \mathbb{N}$. In this case $\mathcal{G}(m)=k+1$. It is a simple exercise to show that for $\beta \in(k+1, m+1]$

$$
\begin{equation*}
T_{\beta, 0}^{-n}\left(\frac{k}{\beta-1}\right)=\frac{k}{\beta^{n}(\beta-1)}<\frac{1}{\beta} \tag{4}
\end{equation*}
$$

for all $n \in \mathbb{N}$. By the proof of Proposition 3.2 we know that $\frac{k}{\beta-1}$ has a unique β expansion. It follows from (4) that $T_{\beta, 0}^{-n}\left(\frac{k}{\beta-1}\right)$ is never mapped into a choice interval and therefore has a unique β-expansion. As n was arbitrary we can conclude our result. The case where $m=2 k+1$ is proved similarly. In this case we can consider preimages of $\frac{k \beta+(k+1)}{\beta^{2}-1}$.

We also show that the following analogue of Theorem 4.2 holds.
Theorem 4.5. If $m=2 k$ the set $W_{\beta, m}$ satisfies the following:

1. $\left|W_{\beta, m}\right|=1$ for $\beta \in\left(\mathcal{G}(m), \beta_{f}(m)\right]$, where $\beta_{f}(m)$ is the root of the equation

$$
x^{2}-(k+1) x-k=0, \beta_{f}(m)=\frac{k+1+\sqrt{k^{2}+6 k+1}}{2}
$$

2. $\left|W_{\beta, m}\right|=\aleph_{0}$ for $\beta \in\left(\beta_{f}(m), \beta_{c}(m)\right)$
3. $\left|W_{\beta, m}\right|=2^{\aleph_{0}}$ for $\beta=\beta_{c}(m)$
4. $W_{\beta, m}$ is a set of positive Hausdorff dimension for $\beta \in\left(\beta_{c}(m), m+1\right]$.

If $m=2 k+1$ the set $W_{\beta, m}$ satisfies the following:

1. $\left|W_{\beta, m}\right|=2$ for $\beta \in\left(\mathcal{G}(m), \beta_{f}(m)\right]$, where $\beta_{f}(m)$ is the root of the equation

$$
x^{3}-(k+2) x^{2}+x-(k+1)=0
$$

2. $\left|W_{\beta, m}\right|=\aleph_{0}$ for $\beta \in\left(\beta_{f}(m), \beta_{c}(m)\right)$
3. $\left|W_{\beta, m}\right|=2^{\aleph_{0}}$ for $\beta=\beta_{c}(m)$
4. $W_{\beta, m}$ is a set of positive Hausdorff dimension for $\beta \in\left(\beta_{c}(m), m+1\right]$.

Remark 4.6. $\beta_{f}(m)$ is a Pisot number for all $m \in \mathbb{N}$.
By Theorem 4.4 to prove Theorem 4.5 it suffices to show that statement 1 holds in both the odd and even cases, and $\left|W_{\beta, m}\right| \geq \aleph_{0}$ for $\beta>\beta_{f}(m)$ in both the odd and even cases. In section 6 we include a table of values for $\beta_{f}(m)$.

4.1. Proof of Theorem 4.5

The proof of Theorem 4.5 is more involved than Theorem 4.4 and as we will see requires more technical results. The following is taken from [14]. First of all let us define the lexicographic order on $\{0, \ldots, m\}^{\mathbb{N}}$: we say that $\left(x_{i}\right)_{i=1}^{\infty}<\left(y_{i}\right)_{i=1}^{\infty}$ with respect to the lexicographic order if there exists $n \in \mathbb{N}$ such that $x_{i}=y_{i}$ for all $i<n$ and $x_{n}<y_{n}$, or if $x_{1}<y_{1}$. For a sequence $\left(x_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}$ we define $\left(\bar{x}_{i}\right)_{i=1}^{\infty}=\left(m-x_{i}\right)_{i=1}^{\infty}$. We also adopt the notation $\left(\epsilon_{1}, \ldots, \epsilon_{j}\right)^{\infty}$ to denote the element of $\{0, \ldots, m\}^{\mathbb{N}}$ obtained by the infinite concatenation of the finite sequence $\left(\epsilon_{1}, \ldots, \epsilon_{j}\right)$. Let the sequence $\left(d_{i}(m)\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}$ be defined as follows: let $d_{1}(m)$ be the largest element of $\{0, \ldots, m\}$ such that $\frac{d_{1}(m)}{\beta}<1$, and if $d_{i}(m)$ is defined for $i<n$ then $d_{n}(m)$ is defined to be the largest element of $\{0, \ldots, m\}$ such that $\sum_{i=1}^{n} \frac{d_{i}(m)}{\beta^{i}}<1$. The sequence $\left(d_{i}(m)\right)_{i=1}^{\infty}$ is called the quasi-greedy expansion of 1 with respect to β; it is trivially a β-expansion for 1 and the largest infinite β-expansion of 1 with respect to the lexicographic order not ending with $(0)^{\infty}$. We let

$$
S_{\beta, m}=\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}: \sum_{i=1}^{\infty} \frac{\epsilon_{i}}{\beta^{i}} \in W_{\beta, m}\right\}
$$

It follows from the definition of $W_{\beta, m}$ that $\left|W_{\beta, m}\right|=\left|S_{\beta, m}\right|$, and to prove Theorem 4.5 it suffices to show that equivalent statements hold for $S_{\beta, m}$. The following lemma which is essentially due to Parry [15] provides a useful characterisation of $S_{\beta, m}$.

Lemma 4.7. We have

$$
\begin{aligned}
S_{\beta, m}=\{ & \left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}:\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right)<\left(d_{1}(m), d_{2}(m), \ldots\right) \text { and } \\
& \left.\left(\bar{d}_{1}(m), \bar{d}_{2}(m), \ldots\right)<\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right) \text { for all } i \in \mathbb{N}\right\}
\end{aligned}
$$

Remark 4.8. If $\beta<\beta^{\prime}$ then the quasi-greedy expansion of 1 with respect to β is lexicographically strictly less than the quasi-greedy expansion of 1 with respect to β^{\prime}. As a corollary of this we have $S_{\beta, m} \subseteq S_{\beta^{\prime}, m}$ for $\beta<\beta^{\prime}$.

Proposition 4.9. For $\beta \in\left(\mathcal{G}(m), \beta_{f}(m)\right]$ the following holds: $\left|S_{\beta, m}\right|=1$ when m is even, $\left|S_{\beta, m}\right|=2$ when m is odd, and $\left|S_{\beta, m}\right| \geq \aleph_{0}$ for $\beta \in\left(\beta_{f}(m), m+1\right]$.

By the remarks following Theorem 4.5 this will allow us to conclude our result.
Proof. We begin by considering the case where $m=2 k$. When $\beta=\beta_{f}(m)$ we have $\left(d_{i}(m)\right)_{i=1}^{\infty}=(k+1, k-1)^{\infty}$, and by Lemma 4.7

$$
\begin{aligned}
S_{\beta_{f}(m), m}=\{ & \left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}:\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right)<(k+1, k-1)^{\infty} \text { and } \\
& \left.(k-1, k+1)^{\infty}<\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right) \text { for all } i \in \mathbb{N}\right\}
\end{aligned}
$$

By our previous analysis we know that for $\beta \in(\mathcal{G}(m), m+1]$ the number $\frac{k}{\beta-1}$ has a unique β-expansion. The β-expansion of this number is the sequence $(k)^{\infty}$. By Remark 4.8, to prove $\left|S_{\beta, m}\right|=1$ for $\beta \in\left(\mathcal{G}(m), \beta_{f}(m)\right]$ it suffices to show that $S_{\beta_{f}(m), m}=\left\{(k)^{\infty}\right\}$. If $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in S_{\beta_{f}(m), m}$ then clearly ϵ_{i} must equal $k-1, k$ or $k+1$. If $\epsilon_{i}=k+1$ then by Lemma $4.7 \epsilon_{i+1}=k-1$. Similarly if $\epsilon_{i}=k-1$ then $\epsilon_{i+1}=k+1$. Therefore, if $\epsilon_{i} \neq k$ for some i then $\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right)$ must equal $(k-1, k+1)^{\infty}$ or $(k+1, k-1)^{\infty}$. By Lemma 4.7 this cannot happen and we can conclude that $S_{\beta_{f}(m), m}=\left\{(k)^{\infty}\right\}$. For $\beta \in\left(\beta_{f}(m), m+1\right]$ we can construct a countable subset of $S_{\beta, m}$; for example, all sequences of the form $(k)^{j}(k+1, k-1)^{\infty}$ where $j \in \mathbb{N}$.

We now consider the case where $m=2 k+1$. When $\beta=\beta_{f}(m)$ we have $\left(d_{i}(m)\right)_{i=1}^{\infty}=(k+1, k+1, k, k)^{\infty}$ and

$$
\begin{aligned}
S_{\beta_{f}(m), m}=\{ & \left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}:\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right)<(k+1, k+1, k, k)^{\infty} \text { and } \\
& \left.(k, k, k+1, k+1)^{\infty}<\left(\epsilon_{i}, \epsilon_{i+1}, \ldots\right) \text { for all } i \in \mathbb{N}\right\}
\end{aligned}
$$

By our earlier analysis we know that $\left\{(k, k+1)^{\infty},(k+1, k)^{\infty}\right\} \subset S_{\beta, m}$ for $\beta \in$ $(\mathcal{G}(m), m+1]$. By Remark 4.8, to prove $\left|S_{\beta, m}\right|=2$ for $\beta \in\left(\mathcal{G}(m), \beta_{f}(m)\right]$ it suffices to show that $S_{\beta_{f}(m), m}=\left\{(k, k+1)^{\infty},(k+1, k)^{\infty}\right\}$. By an analogous argument to that given in [9] we can show that if $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in S_{\beta_{f}(m), m}$ then $\epsilon_{i}=k$ implies $\epsilon_{i+1}=k+1$, and $\epsilon_{i}=k+1$ implies $\epsilon_{i+1}=k$. Clearly any element of $S_{\beta_{f}(m), m}$ must begin with k or $k+1$, and we may therefore conclude that $S_{\beta_{f}(m), m}=\left\{(k, k+1)^{\infty},(k+1, k)^{\infty}\right\}$. To see that $\left|W_{\beta, m}\right| \geq \aleph_{0}$ for $\beta>\beta_{f}(m)$, we observe that $(k+1, k)^{j}(k+1, k+1, k, k)^{\infty} \in$ $S_{\beta, m}$ for all $j \in \mathbb{N}$, for $\beta>\beta_{f}(m)$.

4.2. The Growth Rate of $\mathcal{G}(m), \beta_{f}(m)$, and $\beta_{c}(m)$

In this section we study the growth rate of the sequences $(\mathcal{G}(m))_{m=1}^{\infty},\left(\beta_{f}(m)\right)_{m=1}^{\infty}$ and $\left(\beta_{c}(m)\right)_{m=1}^{\infty}$. The following theorem summarizes the growth rate of each of these sequences.

Theorem 4.10. 1. $\mathcal{G}(2 k)=k+1$ for all $k \in \mathbb{N}$.
2. $\beta_{f}(2 k)-(k+2)=O\left(\frac{1}{k}\right)$.
3. $\beta_{c}(2 k)-(k+2) \rightarrow 0$ as $k \rightarrow \infty$.
4. $\mathcal{G}(2 k+1)-(k+2)=O\left(\frac{1}{k}\right)$.
5. $\beta_{f}(2 k+1)-(k+2) \rightarrow 0$ as $k \rightarrow \infty$.
6. $\beta_{c}(2 k+1)-(k+2) \rightarrow 0$ as $k \rightarrow \infty$.

The proof of this theorem is somewhat trivial but we include it for completion. To prove this result we firstly require the following lemma.

Lemma 4.11. The sequence $\beta_{c}(m)$ is asymptotic to $\frac{m}{2}$, i.e., $\lim _{m \rightarrow \infty} \frac{\beta_{c}(m)}{m / 2}=1$.
Proof. Suppose $m=2 k$. It is a direct consequence of the definition of $\lambda_{i}(m)$ and $\beta_{c}(m)$ that the following inequalities hold

$$
\sum_{i=0}^{\infty} \frac{k-1}{\beta_{c}(m)^{i}} \leq \beta_{c}(m) \leq \sum_{i=0}^{\infty} \frac{k+1}{\beta_{c}(m)^{i}}
$$

This is equivalent to

$$
\frac{k-1}{1-\frac{1}{\beta_{c}(m)}} \leq \beta_{c}(m) \leq \frac{k+1}{1-\frac{1}{\beta_{c}(m)}}
$$

Dividing through by $m / 2$ and using the fact that $\beta_{c}(m) \rightarrow \infty$ we can conclude our result. The case where $m=2 k+1$ is proved similarly.

We are now in a position to prove Theorem 4.10.
Proof of Theorem 4.10. Statements 1,2 and 4 are an immediate consequence of Theorem 1.1 and Theorem 4.5. It remains to show statements 3 and 6 hold; statement 5 will follow from the fact that $\mathcal{G}(2 k+1)<\beta_{f}(2 k+1)<\beta_{c}(2 k+1)$. It is immediate from the definition of $\lambda_{i}(m)$ that if $m=2 k$ then

$$
\beta_{c}(m)=k+1+\frac{k}{\beta_{c}(m)}+\sum_{i=2}^{\infty} \frac{\lambda_{i+1}(m)}{\beta_{c}(m)^{i}} .
$$

It is a straighforward consequence of $1 \in U_{\beta_{c}(m), m}$ that $\left|\sum_{i=1}^{\infty} \frac{\lambda_{i+j}(m)}{\beta_{c}(m)^{i}}\right| \leq 1$, for all $j, m \in \mathbb{N}$. Therefore $\sum_{i=2}^{\infty} \frac{\lambda_{i+1}(m)}{\beta_{c}(m)^{2}} \rightarrow 0$ as $m \rightarrow \infty$. Combining this statement with Lemma 4.11 we may conclude our result when $m=2 k$. The case where $m=2 k+1$ is proved similarly.

5. The Growth Rate and Dimension Theory of $\Sigma_{\beta, m}(x)$

To describe the growth rate of β-expansions we consider the following. Let

$$
\begin{aligned}
\mathcal{E}_{\beta, m, n}(x)=\{ & \left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{0, \ldots, m\}^{n}: \text { there exists }\left(\epsilon_{n+1}, \epsilon_{n+2}, \ldots\right) \in\{0, \ldots, m\}^{\mathbb{N}} \\
& \text { such that } \left.\sum_{i=1}^{\infty} \frac{\epsilon_{i}}{\beta^{i}}=x\right\} .
\end{aligned}
$$

We define an element of $\mathcal{E}_{\beta, m, n}(x)$ to be an n-prefix for x. Moreover, we let

$$
\mathcal{N}_{\beta, m, n}(x)=\left|\mathcal{E}_{\beta, m, n}(x)\right|
$$

and define the growth rate of $\mathcal{N}_{\beta, m, n}(x)$ to be

$$
\lim _{n \rightarrow \infty} \frac{\log _{m+1} \mathcal{N}_{\beta, m, n}(x)}{n}
$$

when this limit exists. When this limit does not exist we can consider the lower and upper growth rates of $\mathcal{N}_{\beta, m, n}(x)$; these are defined to be

$$
\liminf _{n \rightarrow \infty} \frac{\log _{m+1} \mathcal{N}_{\beta, m, n}(x)}{n} \text { and } \limsup _{n \rightarrow \infty} \frac{\log _{m+1} \mathcal{N}_{\beta, m, n}(x)}{n}
$$

respectively.
In this paper we also consider $\Sigma_{\beta, m}(x)$ from a dimension theory perspective. We endow $\{0, \ldots, m\}^{\mathbb{N}}$ with the metric $d(\cdot, \cdot)$ defined as follows:

$$
d(x, y)= \begin{cases}(m+1)^{-n(x, y)} & \text { if } x \neq y, \text { where } n(x, y)=\inf \left\{i: x_{i} \neq y_{i}\right\} \\ 0 & \text { if } x=y\end{cases}
$$

We will consider the Hausdorff dimension of $\Sigma_{\beta, m}(x)$ with respect to this metric. It is a simple exercise to show that the following inequalities hold:

$$
\begin{equation*}
\operatorname{dim}_{H}\left(\Sigma_{\beta, m}(x)\right) \leq \liminf _{n \rightarrow \infty} \frac{\log _{m+1} \mathcal{N}_{\beta, m, n}(x)}{n} \leq \limsup _{n \rightarrow \infty} \frac{\log _{m+1} \mathcal{N}_{\beta, m, n}(x)}{n} \tag{5}
\end{equation*}
$$

The case where $m=1$ is studied in [4], [8] and [10]. In [4] and [8] the authors show that for $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ and $x \in\left(0, \frac{1}{\beta-1}\right)$ we can bound the lower growth rate and Hausdorff dimension of $\Sigma_{\beta, 1}(x)$ below by some strictly positive function depending only on β. In [10] the growth rate is studied from a measure-theoretic perspective. Our main result is the following.

Theorem 5.1. For $\beta \in(1, \mathcal{G}(m))$ and $x \in\left(0, \frac{m}{\beta-1}\right)$, the Hausdorff dimension of $\Sigma_{\beta, m}(x)$ can be bounded below by some strictly positive constant depending only on β.

By (5) a similar statement holds for both the lower and upper growth rates of $\mathcal{N}_{\beta, m, n}(x)$. Replicating the proof of Lemma 2.4 it can be shown that the following result holds.

Proposition 5.2. $\mathcal{N}_{\beta, m, n}(x)=\left|\Omega_{\beta, m, n}(x)\right|$
By Proposition 5.2 we can identify elements of $\Omega_{\beta, m, n}(x)$ with elements of $\mathcal{E}_{\beta, m, n}(x)$. Therefore, we also define an element of $\Omega_{\beta, m, n}(x)$ to be an n-prefix for x. To prove Theorem 5.1 we will use a method analogous to that given in [4]. We construct an interval $\mathcal{I}_{\beta} \subset I_{\beta, m}$ satisfying the following: for each $x \in \mathcal{I}_{\beta}$ we can generate multiple prefixes for x of a fixed length depending on β; moreover these prefixes map x back into \mathcal{I}_{β}. As we will see Theorem 5.1 will then follow by a counting argument. As was the case in our previous analysis we reduce the proof of Theorem 5.1 to two cases.

5.1. Case Where m Is Even

In what follows we assume $m=2 k$ for some $k \in \mathbb{N}$. To prove Theorem 5.1 we require the following technical lemma.

Lemma 5.3. For each $\beta \in(1, k+1)$ there exists $\epsilon_{0}(\beta)>0$ satisfying the following: if $x \in\left[\frac{1}{\beta}, \frac{1}{\beta}+\epsilon_{0}(\beta)\right)$ then $T_{\beta, 0}(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$, and if $x \in$ $\left(\frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}\right]$ then $T_{\beta, m}(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$.

Proof. This follows from Lemma 2.6 and a continuity argument.
For each $i \in\{1, \ldots, m-1\}$ we let $\epsilon_{i}(\beta)=\frac{1}{2}\left(\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\frac{i+1}{\beta}\right)$. If $\beta \in(1, k+1)$ then $\epsilon_{i}(\beta)>0$ for each $i \in\{1, \ldots, m-1\}$. We define the interval $\mathcal{I}_{\beta}=[L(\beta), R(\beta)]$ where $L(\beta)$ and $R(\beta)$ are defined as follows:

$$
L(\beta)=\min \left\{T_{\beta, 1}\left(\frac{1}{\beta}+\epsilon_{0}(\beta)\right), \min _{i \in\{1, \ldots, m-1\}} T_{\beta, i+1}\left(\frac{i+1}{\beta}+\epsilon_{i}(\beta)\right)\right\}
$$

and

$$
\begin{aligned}
R(\beta)=\max \{ & T_{\beta, m-1}\left(\frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right), \\
& \left.\max _{i \in\{1, \ldots, m-1\}} T_{\beta, i-1}\left(\frac{i+1}{\beta}+\epsilon_{i}(\beta)\right)\right\}
\end{aligned}
$$

We refer to Figure 5 for a diagram illustrating the interval \mathcal{I}_{β} in the case where $m=2$ and $\beta \in(1,2)$.
Proposition 5.4. Let $\beta \in(1, k+1)$. There exists $n(\beta) \in \mathbb{N}$ such that for each $x \in \mathcal{I}_{\beta}$ there exists two distinct elements $a, b \in \Omega_{\beta, m, n(\beta)}(x)$ satisfying $a(x) \in \mathcal{I}_{\beta}$ and $b(x) \in \mathcal{I}_{\beta}$.

Proof. Let $x \in \mathcal{I}_{\beta}$. Without loss of generality we may assume that $\epsilon_{0}(\beta)$ is sufficiently small such that \mathcal{I}_{β} contains the switch region. By Lemma 2.6 there exists a

Figure 5: The interval \mathcal{I}_{β} in the case where $m=2$ and $\beta \in(1,2)$.
sequence of maps a that map x into the interior of our switch region. By Lemma 5.3 we may assume that $a(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$.

The distance between the endpoints of \mathcal{I}_{β} and the endpoints of $I_{\beta, m}$ (the fixed points of the maps $T_{\beta, 0}$ and $T_{\beta, m}$,) can be bounded below by some positive constant. By Lemma $2.1 T_{\beta, 0}$ and $T_{\beta, m}$ both scale the distance between their fixed points and a number by a factor β. Therefore, we can bound from above the length of our sequence a by some constant $n_{s}(\beta) \in \mathbb{N}$ that does not depend on x. We will show that we can take $n(\beta)=n_{s}(\beta)+1$.

We remark that:

$$
\begin{aligned}
{\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right] } & =\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{2}{\beta}\right] \\
& \bigcup\left[\frac{(m-2) \beta+2}{\beta(\beta-1)}, \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right] \\
& \bigcup_{i=1}^{m-2}\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}, \frac{i+2}{\beta}\right] \\
& \bigcup_{i=1}^{m-1}\left[\frac{i+1}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right]
\end{aligned}
$$

We now proceed via a case analysis.

- If $a(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{2}{\beta}\right]$ then $T_{\beta, 0}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, 1}(a(x)) \in \mathcal{I}_{\beta}$.
- If $a(x) \in\left[\frac{(m-2) \beta+2}{\beta(\beta-1)}, \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$ then $T_{\beta, m-1}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, m}(a(x)) \in$ \mathcal{I}_{β}.
- If $a(x) \in\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}, \frac{i+2}{\beta}\right]$ for some $i \in\{1, \ldots, m-2\}$ then $T_{\beta, i}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, i+1}(a(x)) \in \mathcal{I}_{\beta}$.
- We reduce the case where $a(x) \in\left[\frac{i+1}{\beta}, \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right]$ for some $i \in\{1, \ldots, m-$ $1\}$ to two subcases. If $a(x) \in\left[\frac{i+1}{\beta}, \frac{i+1}{\beta}+\epsilon_{i}(\beta)\right]$ then by the monotonicity of our maps both $T_{\beta, i-1}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, i}(a(x)) \in \mathcal{I}_{\beta}$. Similarly, in the case where $a(x) \in\left[\frac{i+1}{\beta}+\epsilon_{i}(\beta), \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}\right]$ both $T_{\beta, i}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, i+1}(a(x)) \in \mathcal{I}_{\beta}$.
We have shown that for any $x \in \mathcal{I}_{\beta}$ there exists $n(x) \leq n_{s}(\beta)+1$ such that two distinct elements of $\Omega_{\beta, m, n(x)}(x)$ map x into \mathcal{I}_{β}. If $n(x)<n_{s}(\beta)+1$ then we can concatenate our two elements of $\Omega_{\beta, m, n(x)}(x)$ by a sequence of maps of length $n_{s}(\beta)+1-n(x)$ that map the image of x into \mathcal{I}_{β}. This ensures that we can take our sequences of maps to be of length $n_{s}(\beta)+1$.

For $\beta \in(1, k+1)$ and $x \in\left(0, \frac{m}{\beta-1}\right)$ we may assume that there exists a sequence of maps a that maps x into \mathcal{I}_{β}. We denote the minimum number of maps required to do this by $j(x)$. Replicating arguments given in [4] we can use Proposition 5.4 to construct an algorithm by which we can generate two prefixes of length $n(\beta)$ for $a^{(j(x))}(x)$. Repeatedly applying this algorithm to successive images of $a^{(j(x))}(x)$ we can generate a closed subset of $\Sigma_{\beta, m}(x)$. We denote this set by $\sigma_{\beta, m}(x)$ and the set of n-prefixes for x generated by this algorithm by $\omega_{\beta, m, n}(x)$. Replicating the proofs given in [4] we can show that the following lemmas hold.
Lemma 5.5. Let $x \in\left(0, \frac{m}{\beta-1}\right)$ and assume $n \geq j(x)$. Then

$$
\left|\omega_{\beta, m, n}(x)\right| \geq 2^{\frac{n-j(x)}{n(\beta)}-1}
$$

Lemma 5.6. Let $x \in\left(0, \frac{m}{\beta-1}\right)$. Assume $l \geq j(x)$ and $b \in \omega_{\beta, m, l}(x)$. Then for $n \geq l$

$$
\mid\left\{a=\left(a_{i}\right)_{i=1}^{n} \in \omega_{\beta, m, n}(x): a_{i}=b_{i} \text { for } 1 \leq i \leq l\right\} \left\lvert\, \leq 2^{\frac{n-l}{n(\beta)}+2} .\right.
$$

With these lemmas we are now in a position to prove Theorem 5.1 in the case where m is even. The argument used is analogous to the one given in [4]. This argument is based upon Example 2.7 of [7].

Proof of Theorem 5.1 when $m=2 k$. By the monotonicity of Hausdorff dimension with respect to inclusion it suffices to show that $\operatorname{dim}_{H}\left(\sigma_{\beta, m}(x)\right)$ can be bounded below by a strictly positive constant depending only on β. It is a simple exercise to show that $\sigma_{\beta, m}(x)$ is a compact set; by this result we may restrict to finite covers of $\sigma_{\beta, m}(x)$. Let $\left\{U_{n}\right\}_{n=1}^{N}$ be a finite cover of $\sigma_{\beta, m}(x)$. Without loss of generality we may assume that all elements of our cover satisfy $\operatorname{Diam}\left(U_{n}\right)<(m+1)^{-j(x)}$. For each U_{n} there exists $l(n) \in \mathbb{N}$ such that

$$
(m+1)^{-(l(n)+1)} \leq \operatorname{Diam}\left(U_{n}\right)<(m+1)^{-l(n)} .
$$

It follows that there exists $z^{(n)} \in\{0, \ldots, m\}^{(n)}$ such that $y_{i}=z_{i}^{(n)}$ for $1 \leq i \leq l(n)$, for all $y \in U_{n}$. We may assume that $z^{(n)} \in \omega_{\beta, m, l(n)}(x)$, if we supposed otherwise then $\sigma_{\beta, m}(x) \cap U_{n}=\emptyset$ and we can remove U_{n} from our cover. We denote by C_{n} the set of sequences in $\{0, \ldots, m\}^{\mathbb{N}}$ whose first $l(n)$ entries agree with $z^{(n)}$, i.e.

$$
C_{n}=\left\{\left(\epsilon_{i}\right)_{i=1}^{\infty} \in\{0, \ldots, m\}^{\mathbb{N}}: \epsilon_{i}=z_{i}^{(n)} \text { for } 1 \leq i \leq l(n)\right\} .
$$

Clearly $U_{n} \subset C_{n}$ and therefore the set $\left\{C_{n}\right\}_{n=1}^{N}$ is a cover of $\sigma_{\beta, m}(x)$.
Since there are only finitely many elements in our cover there exists $J \in \mathbb{N}$ such that $(m+1)^{-J} \leq \operatorname{Diam}\left(U_{n}\right)$ for all n. We consider the set $\omega_{\beta, m, J}(x)$. Since $\left\{C_{n}\right\}_{n=1}^{N}$ is a cover of $\sigma_{\beta, m}(x)$ each $a \in \omega_{\beta, m, J}(x)$ satisfies $a_{i}=z_{i}^{(n)}$ for $1 \leq i \leq l(n)$, for some n. Therefore

$$
\left|\omega_{\beta, m, J}(x)\right| \leq \sum_{n=1}^{N} \mid\left\{a \in \omega_{\beta, m, J}(x): a_{i}=z_{i}^{(n)} \text { for } 1 \leq i \leq l(n)\right\} \mid .
$$

By counting elements of $\omega_{\beta, m, J}(x)$ and Lemmas 5.5 and 5.6 we observe the following:

$$
\begin{aligned}
2^{\frac{J-j(x)}{n(\beta)}-1} & \leq\left|\omega_{\beta, m, J}(x)\right| \\
& \leq \sum_{n=1}^{N} \mid\left\{a \in \omega_{\beta, m, J}(x): a_{i}=z_{i}^{(n)} \text { for } 1 \leq i \leq l(n)\right\} \mid \\
& \leq \sum_{n=1}^{N} 2^{\frac{J-l(n)}{n(\beta)}+2} \\
& =2^{\frac{J+1}{n(\beta)}+2} \sum_{n=1}^{N} 2^{\frac{-(l(n)+1)}{n(\beta)}} \\
& \leq 2^{\frac{J+1}{n(\beta)}+2} \sum_{n=1}^{N} \operatorname{Diam}\left(U_{n}\right)^{\frac{\log _{m+1} 2}{n(\beta)}}
\end{aligned}
$$

Dividing through by $2^{\frac{J+1}{n(\beta)}+2}$ yields

$$
\sum_{n=1}^{N} \operatorname{Diam}\left(U_{n}\right)^{\frac{\log _{m+1} 2}{n(\beta)}} \geq 2^{\frac{-j(x)-3 n(\beta)-1}{n(\beta)}}
$$

The right-hand side is a positive constant greater than zero that does not depend on our choice of cover. It follows that $\operatorname{dim}_{H}\left(\sigma_{\beta, m}(x)\right) \geq \frac{\log _{m+1} 2}{n(\beta)}$, and our result follows.

5.2. Case Where m Is Odd

In what follows we assume $m=2 k+1$ for some $k \in \mathbb{N}$. For $\beta \in\left(1, \frac{2 k+3}{2}\right)$ the proof of Theorem 5.1 is analogous to the even case. As such, in what follows we assume $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$. The significance of $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$ is that for $i \in\{1, \ldots, m-1\}$ the i-th fixed digit interval is well-defined.

Before defining the interval \mathcal{I}_{β} we require the following. We let

$$
\epsilon_{i}(\beta)=\left\{\begin{aligned}
\frac{1}{2}\left(\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\frac{i}{\beta-1}\right) & \text { if } i \in\{1, \ldots, k\} \\
\frac{1}{2}\left(\frac{i}{\beta-1}-\frac{i+1}{\beta}\right) & \text { if } i \in\{k+1, \ldots, m-1\}
\end{aligned}\right.
$$

By Lemma $3.3 \epsilon_{i}(\beta)>0$ for all $i \in\{1, \ldots, m-1\}$. Before proving an analogue of Proposition 5.4 we require the following technical lemmas. It is a simple exercise to show that the following analogue of Lemma 5.3 holds.

Lemma 5.7. For each $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$ there exists $\epsilon_{0}(\beta)>0$ satisfying the following: if $x \in\left[\frac{1}{\beta}, \frac{1}{\beta}+\epsilon_{0}(\beta)\right)$ then $T_{\beta, 0}(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$, and if $x \in\left(\frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}\right]$ then $T_{\beta, m}(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$.

Lemma 5.8. Let $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$. For each $i \in\{1, \ldots, k-1\}$ there exists $\epsilon_{i}^{*}(\beta)>0$ such that if $x \in\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta), \frac{i+1}{\beta}+\epsilon_{i}^{*}(\beta)\right]$ then $T_{\beta, i}(x)<$ $\frac{k+2}{\beta}+\epsilon_{k+1}$. Similarly, for $i \in\{k+2, \ldots, m-1\}$ there exists $\epsilon_{i}^{*}(\beta)>0$ such that if $x \in\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}^{*}(\beta), \frac{i+1}{\beta}+\epsilon_{i}(\beta)\right]$ then $T_{\beta, i}(x)>\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}-\epsilon_{k}$.

Proof. By the analysis given in the proof of Lemma 3.5 for $i \in\{1, \ldots, k-1\}$ we have $T_{\beta, i}\left(\frac{i+1}{\beta}\right)<\frac{k \beta+m-k}{\beta(\beta-1)}$ for $\beta \in\left(1, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$. However, for $\beta \in$ $\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$ we have $\frac{k \beta+m-k}{\beta(\beta-1)} \leq \frac{k+2}{\beta}$. The existence of $\epsilon_{i}^{*}(\beta)$ then follows by a continuity argument and the monotonicity of the maps $T_{\beta, i}$. The case where $i \in\{k+2, \ldots, m-1\}$ is proved similarly.

We are now in a position to define the interval \mathcal{I}_{β}. Let $\mathcal{I}_{\beta}=[L(\beta), R(\beta)]$ where

$$
\begin{aligned}
L(\beta)=\min \{ & \left\{T_{\beta, 1}\left(\frac{1}{\beta}+\epsilon_{0}(\beta)\right), T_{\beta, k+1}\left(\frac{k \beta+k+1}{\beta^{2}-1}\right),\right. \\
& \left.\min _{i \in\{2, \ldots, k\}}\left\{T_{\beta, i}\left(\frac{i}{\beta}+\epsilon_{i-1}^{*}(\beta)\right)\right\}, \min _{i \in\{k+2, \ldots, m\}}\left\{T_{\beta, i}\left(\frac{i}{\beta}+\epsilon_{i-1}(\beta)\right)\right\}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
R(\beta)=\max \{ & T_{\beta, k}\left(\frac{(k+1) \beta+k}{\beta^{2}-1}\right), T_{\beta, m-1}\left(\frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right), \\
& \max _{i \in\{1, \ldots, k\}}\left\{T_{\beta, i-1}\left(\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta)\right)\right. \\
& \left.\max _{i \in\{k+2, \ldots, m-1\}}\left\{T_{\beta, i-1}\left(\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}^{*}(\beta)\right)\right\}\right\} .
\end{aligned}
$$

For ease of exposition in Figure 6 we give a diagram illustrating the interval \mathcal{I}_{β} in the case where $m=3$ and $\beta \in\left[\frac{5}{2}, 1+\sqrt{3}\right)$.

Proposition 5.9. Let $\beta \in\left[\frac{2 k+3}{2}, \frac{k+1+\sqrt{k^{2}+6 k+5}}{2}\right)$. There exists $n(\beta) \in \mathbb{N}$ such that for each $x \in \mathcal{I}_{\beta}$ there exist two distinct elements $a, b \in \Omega_{\beta, m, n(\beta)}(x)$ satisfying $a(x) \in \mathcal{I}_{\beta}$ and $b(x) \in \mathcal{I}_{\beta}$.

Proof. Without loss of generality we may assume that $\epsilon_{0}(\beta)$ is sufficiently small such that \mathcal{I}_{β} contains the switch region. By Lemma 2.6 there exists a sequence of maps a that map x into the switch region. As the endpoints of \mathcal{I}_{β} are a bounded distance away from the endpoints of $I_{\beta, m}$, we can bound the length of a above by some $n_{s}(\beta) \in \mathbb{N}$. Moreover, by Lemma 5.7 we may assume that $a(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$. As in the even case it is useful to treat

Figure 6: The interval \mathcal{I}_{β} in the case where $m=3$ and $\beta \in\left[\frac{5}{2}, 1+\sqrt{3}\right)$.
$\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$ as the union of subintervals. We observe that:

$$
\begin{aligned}
{\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right] } & =\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{m}{\beta(\beta-1)}-\epsilon_{1}(\beta)\right] \\
& \bigcup\left[\frac{m}{\beta}+\epsilon_{m-1}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right] \\
& \bigcup\left[\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}-\epsilon_{k}(\beta), \frac{k+2}{\beta}+\epsilon_{k+1}(\beta)\right] \\
& \bigcup_{i=2}^{k}\left[\frac{i}{\beta}+\epsilon_{i-1}^{*}(\beta), \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta)\right] \\
& \bigcup_{i=k+2}^{m-1}\left[\frac{i}{\beta}+\epsilon_{i-1}(\beta), \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}^{*}(\beta)\right] \\
& \bigcup_{i=1}^{k-1}\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta), \frac{i+1}{\beta}+\epsilon_{i}^{*}(\beta)\right] \\
& \bigcup_{i=k+2}^{m-1}\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}^{*}(\beta), \frac{i+1}{\beta}+\epsilon_{i}(\beta)\right]
\end{aligned}
$$

Without loss of generality we may assume that $\epsilon_{0}(\beta), \epsilon_{i}(\beta)$ and $\epsilon_{i}^{*}(\beta)$ are all sufficiently small such that each of the intervals in our union is well-defined and nontrivial. We now proceed via a case analysis.

- If $a(x) \in\left[\frac{1}{\beta}+\epsilon_{0}(\beta), \frac{m}{\beta(\beta-1)}-\epsilon_{1}(\beta)\right]$, then $T_{\beta, 0}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, 1}(a(x)) \in \mathcal{I}_{\beta}$.
- If $a(x) \in\left[\frac{m}{\beta}+\epsilon_{m-1}(\beta), \frac{(m-1) \beta+1}{\beta(\beta-1)}-\epsilon_{0}(\beta)\right]$, then $T_{\beta, m-1}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, m}(a(x)) \in \mathcal{I}_{\beta}$.
- Suppose that $a(x) \in\left[\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}-\epsilon_{k}(\beta), \frac{k+2}{\beta}+\epsilon_{k+1}(\beta)\right]$. If $a(x) \in$ $\left[\frac{k \beta+k+1}{\beta^{2}-1}, \frac{(k+1) \beta+k}{\beta^{2}-1}\right]$, then $T_{\beta, k}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, k+1}(a(x)) \in \mathcal{I}_{\beta}$. If $a(x) \in$ $\left[\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}-\epsilon_{k}(\beta), \frac{k \beta+k+1}{\beta^{2}-1}\right]$, then we are a bounded distance away from the fixed point of the map $T_{\beta, k}$. By Lemma 2.1 we know that $T_{\beta, k}$ scales the distance between $a(x)$ and the fixed point of $T_{\beta, k}$ by a factor β. Therefore we can bound the number of maps required to map $a(x)$ into $\left[\frac{k \beta+k+1}{\beta^{2}-1}, \frac{(k+1) \beta+k}{\beta^{2}-1}\right]$. By a similar argument, if $a(x) \in\left[\frac{(k+1) \beta+k}{\beta^{2}-1}, \frac{k+2}{\beta}+\epsilon_{k+1}(\beta)\right]$ we can bound the number of maps required to map $a(x)$ into $\left[\frac{k \beta+k+1}{\beta^{2}-1}, \frac{(k+1) \beta+k}{\beta^{2}-1}\right]$. By the above we can assert that when $a(x) \in\left[\frac{(k-1) \beta+m-(k-1)}{\beta(\beta-1)}-\epsilon_{k}(\beta), \frac{k+2}{\beta}+\epsilon_{k+1}(\beta)\right]$ there exist two distinct sequences of maps whose length we can bound above by some $n_{c}(\beta) \in \mathbb{N}$. Moreover, these sequences of maps map $a(x)$ into \mathcal{I}_{β}.
- If $a(x) \in\left[\frac{i}{\beta}+\epsilon_{i-1}^{*}(\beta), \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta)\right]$ for some $i \in\{2, \ldots, k-1\}$, then $T_{\beta, i-1}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, i}(a(x)) \in \mathcal{I}_{\beta}$.
- If $a(x) \in\left[\frac{i}{\beta}+\epsilon_{i}(\beta), \frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}^{*}(\beta)\right]$ for some $i \in\{k+2, \ldots, m-1\}$, then $T_{\beta, i-1}(a(x)) \in \mathcal{I}_{\beta}$ and $T_{\beta, i}(a(x)) \in \mathcal{I}_{\beta}$.
- If $a(x) \in\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta), \frac{i+1}{\beta}+\epsilon_{i}^{*}(\beta)\right]$ for some $i \in\{1, \ldots, k-1\}$, then $a(x)$ is a bounded distance away from the fixed point of the map $T_{\beta, i}$. By Lemma 2.1 we know that $T_{\beta, i}$ scales the distance between $a(x)$ and its fixed point by a factor β. Therefore we can bound the number of maps required to map $a(x)$ outside of the interval $\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}(\beta), \frac{i+1}{\beta}+\epsilon_{i}^{*}(\beta)\right]$ by some $n_{i}(\beta) \in \mathbb{N}$. If $a(x)$ has been mapped into an interval covered by one of the above cases we are done. If not it has to be mapped into another interval of the form $\left[\frac{(j-1) \beta+m-(j-1)}{\beta(\beta-1)}-\epsilon_{j}(\beta), \frac{j+1}{\beta}+\epsilon_{j}^{*}(\beta)\right]$. By Corollary 3.4 and Lemma 5.8 we know that $i<j \leq k+1$. Repeating the previous step as many times as is necessary we can ensure that $a(x)$ is mapped to an interval that was addressed in one of our previous cases within $\sum_{i=1}^{k-1} n_{i}(\beta)$ maps.
- The case where $a(x) \in\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\epsilon_{i}^{*}(\beta), \frac{i+1}{\beta}+\epsilon_{i}(\beta)\right]$ for some $i \in$ $\{k+2, \ldots, m-1\}$ is analogous to the case where $a(x) \in\left[\frac{(i-1) \beta+m-(i-1)}{\beta(\beta-1)}-\right.$ $\left.\epsilon_{i}(\beta), \frac{i+1}{\beta}+\epsilon_{i}^{*}(\beta)\right]$ for some $i \in\{1, \ldots, k-1\}$.

We have shown that for any $x \in \mathcal{I}_{\beta}$ there exists $n(x) \in \mathbb{N}$ satisfying the following: two distinct elements of $\Omega_{\beta, m, n(x)}(x)$ map x into \mathcal{I}_{β}; moreover, $n(x) \leq n_{s}(\beta)+$ $n_{c}(\beta)+\sum_{i=1}^{k-1} n_{i}(\beta)$. We take $n(\beta)$ to equal $n_{s}(\beta)+n_{c}(\beta)+\sum_{i=1}^{k-1} n_{i}(\beta)$. If $n(x)<$ $n(\beta)$ then we can concatenate our image of x by an arbitrary sequence of maps of length $n(\beta)-n(x)$ that map x into \mathcal{I}_{β}. This ensures our sequences of maps are of length $n(\beta)$.

Repeating the analysis given in the case where m is even we can conclude Theorem 5.1 in the case where m is odd.

6. Open Questions and a Table of Values for $\mathcal{G}(m), \beta_{f}(m)$, and $\boldsymbol{\beta}_{c}(m)$

We conclude with a few open questions and a table of values for $\mathcal{G}(m), \beta_{f}(m)$ and $\beta_{c}(m)$.

- In [1] the authors study the order in which periodic orbits appear in the set of uniqueness. When $m=1$ they show that as $\beta \nearrow 2$ the order in which periodic orbits appear in the set of uniqueness is intimately related to the classical Sharkovskii ordering. It is natural to ask whether a similar result holds in our general case.
- In [18] it is shown that when $m=1$ and $\beta=\frac{1+\sqrt{5}}{2}$ the set of numbers: $x=\frac{(1+\sqrt{5}) n}{2}(\bmod 1)$ for some $n \in \mathbb{N}$ have countably many β-expansions, while the other elements of $\left(0, \frac{1}{\beta-1}\right)$ have uncountably many β-expansions. Does an analogue of this statement hold in the case of general m ?
- Let p_{1}, \ldots, p_{k} be vectors in \mathbb{R}^{d} such that the polyhedra Π with these vertices is convex. Let $\left\{f_{i}\right\}_{i=1}^{k}$ be the one parameter family of maps given by

$$
f_{i}(x)=\lambda x+(1-\lambda) p_{i} .
$$

Where $\lambda \in(0,1)$ is our parameter. As is well-known there exists a unique compact non-empty S_{λ} such that $S_{\lambda}=\cup_{i=1}^{k} f_{i}\left(S_{\lambda}\right)$. We say that $\left(\epsilon_{i}\right)_{i=1}^{\infty} \in$ $\{1, \ldots, k\}^{\mathbb{N}}$ is an address for $x \in S_{\lambda}$ if $\lim _{n \rightarrow \infty}\left(f_{\epsilon_{n}} \circ \ldots \circ f_{\epsilon_{1}}\right)(\mathbf{0})=x$. We ask whether an analogue of the golden ratio exists in this case. That is, does there exists λ^{*} such that for $\lambda \in\left(\lambda^{*}, 1\right)$ every $x \in S_{\lambda} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ has uncountably many addresses, but for $\lambda \in\left(0, \lambda^{*}\right)$ there exists $x \in S_{\lambda} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ with a unique address. In [16] the author shows that an analogue of the golden ratio exists in the case when $d=2$ and $k=3$.

Acknowledgements The author would like to thank Nikita Sidorov for much support and Rafael Alcaraz Barrera for his useful remarks.

Table 1: Table of values for $\mathcal{G}(m), \beta_{f}(m)$ and $\beta_{c}(m)$

m	$\mathcal{G}(m)$	$\beta_{f}(m)$	$\beta_{c}(m)$
1	$\frac{1+\sqrt{5}}{2} \approx 1.61803 \ldots$	$1.75488 \ldots$	$1.78723 \ldots$
2	2	$1+\sqrt{2}=2.41421 \ldots$	$2.47098 \ldots$
3	$1+\sqrt{3} \approx 2.73205 \ldots$	$2.89329 \ldots$	$2.90330 \ldots$
4	3	$\frac{3+\sqrt{17}}{2}=3.56155 \ldots$	$3.66607 \ldots$
5	$\frac{3+\sqrt{21}}{2} \approx 3.79129 \ldots$	3.93947	$3.94583 \ldots$
6	4	$2+\frac{\sqrt{28}}{2}=4.64575 \ldots$	$4.75180 \ldots$
7	$2+2 \sqrt{2} \approx 4.82843 \ldots$	$4.96095 \ldots$	$4.96496 \ldots$
8	5	$\frac{5+\sqrt{41}}{2}=5.70156 \ldots$	$5.80171 \ldots$
9	$\frac{5+\sqrt{45}}{2} \approx 5.85410 \ldots$	$5.97273 \ldots$	$5.97537 \ldots$
10	6	$3+\sqrt{14}=6.74166 \ldots$	$6.83469 \ldots$

References

[1] J.-P. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: the Sharkovskii ordering, Ergodic Theory Dynam. Systems 29 (2009), no. 4, 1055-1074.
[2] J,-P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000), no. 5, 448-449.
[3] J,-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in C. Ding, T. Helleseth, and H. Niederreiter, eds., Sequences and their applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16.
[4] S. Baker, The growth rate and dimension theory of beta-expansions, Fund. Math. 219 (2012), 271-285
[5] Z. Daróczy and I. Katai, Univoque sequences, Publ. Math. Debrecen 42 (1993), no. 3-4, 397-407.
[6] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions $1=$ $\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems, Bull. Soc. Math. Fr. 118 (1990), 377-390.
[7] K. Falconer. Fractal Geometry: Mathematical Foundation and Applications. John Wiley, Chichester, 1990.
[8] D. J. Feng, N. Sidorov, Growth rate for beta-expansions, Monatsh. Math. 162 (2011), no. 1, 41-60.
[9] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001), 535-543.
[10] T. Kempton, Counting β-expansions and the absolute continuity of Bernoulli convolutions, Preprint.
[11] V. Komornik, A. Lai, M. Pedicini, Generalized golden ratios of ternary alphabets, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 1113-1146.
[12] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), no. 7, 636-639.
[13] V. Komornik and P. Loreti, Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar. 44 (2002), no. 2, 197-218.
[14] D. Kong, W. Li, F. Dekking, Intersections of homogeneous Cantor sets and beta-expansions, Nonlinearity 23 (2010), no. 11, 2815-2834.
[15] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[16] N. Sidorov, Combinatorics of linear iterated function systems with overlaps. Nonlinearity 20 (2007), no. 5, 1299-1312.
[17] N. Sidorov, Expansions in noninteger bases, Lecture notes of a graduate course at the summer school at Queen Mary, University of London, July, 2010.
[18] N. Sidorov and A. Vershik, Ergodic properties of the Erdos measure, the entropy of the golden shift, and related problems. Monatsh. Math. 126 (1998), no. 3, 215-261.

