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Abstract
In this paper, we study the well-known Miki and Matiyasevich convolution identities
for Bernoulli numbers and deduce analogues of their identities for numbers related
to Bernoulli numbers.

1. Introduction

The Bernoulli numbers Bn appear in many areas of mathematics, most notably
in number theory, the calculus of finite di↵erences and asymptotic analysis with
important applications. They can be defined by the generating function

x

ex � 1
=

1X
n=0

Bn
xn

n!
(|x| < 2⇡). (1.1)

One can easily see that B2k+1 = 0 and (�1)k+1B2k > 0 for all k � 1. Let Zp be
the ring of p-adic integers with p a prime. The von Staudt-Clausen theorem asserts
that Bn 2 Zp if p � 1 - n, and pBn 2 Zp, more precisely pBn ⌘ �1 (mod p) if
p� 1 | n.

Various types of linear and nonlinear recurrence relations for Bernoulli numbers
have been studied for a long time. We can find a large number of formulas in the
classical books [17, 18] and in [12]. For special type recurrence and reciprocity
relations for these numbers, see, e,g., [1, 2, 3, 8, 11].

As one of many convolution identities for Bernoulli numbers, Miki [16] proved in
1978 the following curious identity based on p-adic arguments.

1The author was partially supported by the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Scientific Research (C).
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Proposition 1.1 (Miki, 1978). For n � 4,
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n� i
= 2Hn

Bn

n
, (1.2)

where Hn = 1 + 1
2 + · · · + 1

n is the nth harmonic number.

Since 1
i(n�i) = 1

n

⇣
1
i + 1

n�i

⌘
, we may rewrite (1.2) as the form

n�2X
i=2

BiBn�i

i
�

n�2X
i=2

✓
n

i

◆
BiBn�i

i
= HnBn. (1.3)

In 2005, Miki’s identity was extended by Gessel [10] to the Bernoulli polynomials
Bn(�) (n � 0) defined by

xe�x

ex � 1
=

1X
n=0

Bn(�)
xn

n!
(|x| < 2⇡).

Indeed, he proved the following

Proposition 1.2 (Gessel, 2005). For n � 1,

n�1X
i=1

Bi(�)Bn�i(�)
i(n� i)

� 2
n

n�1X
i=0

✓
n

i

◆
Bi(�)Bn�i

n� i
= 2Hn�1

Bn(�)
n

+ Bn�1(�). (1.4)

Since Bn(0) = Bn, identity (1.2) is given as a special case of (1.4) where � = 0.
Also the case � = 1/2 reduces to Faber and Pandharipande’s identity shown in [7]
(see also [6] observing it from a quite di↵erent viewpoint) for the numbers defined
by Bn = ((1� 2n�1)/2n�1)Bn. Indeed, we have

Bn =
1� 2n�1

2n�1
Bn = 2

✓
1
2

◆n

Bn �Bn = Bn

✓
1
2

◆
.

On the other hand, Matiyasevich [15] discovered the following good companion
identity for (1.2) with the aid of computer software system “Mathematica”:

Proposition 1.3 (Matiyasevich, 1997). For n � 4,

(n + 2)
n�2X
i=2

BiBn�i � 2
n�2X
i=2

✓
n + 2

i

◆
BiBn�i = n(n + 1)Bn. (1.5)

There are several kinds of proofs of (1.2), (1.4) and (1.5) using some tools from
combinatorics, contour integrals, p-adic analysis and others, however we now pay
particular attention to Crabb’s short and intelligible proof of (1.4) given in [5]. To
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prove (1.4), he used a certain functional equation related to the generating function
of Bn(�) stated above.

This paper is concerned with the Miki and Matiyasevich convolution identities.
In Section 2, as a preliminary we first explain an umbral notation and later intro-
duce Euler-type identities and some required functional identities. In Section 3, we
rederive (1.2) and (1.5) with elementary and shorter proofs based on essentially the
same idea as Crabb’s. In Section 4, we deal with analogues of their convolution
identities for the numbers B0

n = (1� 2n)Bn defined by the generating function

x

ex + 1
=

1X
n=0

B0
n
xn

n!
(|x| < ⇡). (1.6)

We note that these numbers B0
n are closely related to the Genocchi numbers

defined by Gn = 2(1� 2n)Bn = 2B0
n (n � 1). Therefore, all the results concerning

B0
n given below can be expressed in terms of Genocchi numbers.

2. Preliminary

In this section, we prepare some matters which will be needed in the later sections.
Given two sequences S = {Sn}n�0 and T = {Tn}n�0 of numbers or functions,

we use the following umbral notation (for more details on umbral calculus, see
[9, 19, 20, 21]). We now define for any u, v 2 R,

(uS + vT )0 = S0T0, (uS + vT )n =
nX

i=0

✓
n

i

◆
uivn�iSiTn�i (n � 1).

In other words, we expand (uS+vT )n in full by means of the binomial theorem and
replace Si and T i by Si and Ti (i = 0, 1, ..., n), respectively. For example, we may
write the most basic identity which is usually attributed to Euler as, considering
the sequence B = {Bn}n�0,

(B + B)0 = (B0)2 = 1, (B + B)n = (1� n)Bn � nBn�1 (n � 1). (2.1)

If S(x) and T (x) are the exponential generating functions of the sequences S and
T , respectively, then we have

S(ux)T (vx) =
1X

n=0

(uS + vT )n xn

n!
,

and hence the following derivative expression can be given:

(uS + vT )n =


dn

dxn
S(ux)T (vx)

�
x=0

.
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As we mentioned above, we use the notation B0
n = (1�2n)Bn (n � 0). It is easy

to construct the following functional equations from the generating functions (1.1)
and (1.6) of Bn and B0

n, respectively:

x

ex � 1
· x

ex + 1
=

x

2

✓
x

ex � 1
� x

ex + 1

◆
=

x

2
· 2x
e2x � 1

,

x

ex + 1
· x

ex + 1
= (x� 1)

x

ex + 1
+ x

✓
d

dx

x

ex + 1

◆
.

Using these, we can immediately produce analogues of Euler’s identity (2.1) for
the sequences B = {Bn}n�0 and B0 = {B0

n}n�0 by the derivative method.

Proposition 2.1. For n � 1, we have

(B + B0)n =
n

2
�
Bn�1 �B0

n�1

�
= 2n�2nBn�1, (2.2)

(B0 + B0)n = nB0
n�1 + (n� 1)B0

n. (2.3)

We will observe again these identities from a di↵erent direction in Section 4.
For ↵,� 2 R, we present the following three types of rational function identities:

(a)
1

X↵ � 1
· 1
X� � 1

=
1

X↵+� � 1

✓
1 +

1
X↵ � 1

+
1

X� � 1

◆
(↵,�,↵ + � 6= 0),

(b)
1

X↵ + 1
· 1
X� + 1

=
1

X↵+� � 1

✓
1� 1

X↵ + 1
� 1

X� + 1

◆
(↵ + � 6= 0),

(c)
1

X↵ � 1
· 1
X� + 1

=
1

X↵+� + 1

✓
1 +

1
X↵ � 1

� 1
X� + 1

◆
(↵ 6= 0).

These identities can be easily confirmed by direct calculations. In the following
sections, we utilize them to construct some required functional equations related to
the generating functions (1.1) and (1.6) of Bn and B0

n, respectively.

3. The Miki and Matiyasevich Identities

In this section, we first present an elementary and shorter proof of Proposition 1.1
by applying a certain functional equation constructed using (a), which is a slightly
modified version of Crabb’s proof. Subsequently, we give a very short proof of
Proposition 1.3 and later we discuss other types of convolution identities.

In what follows, we assume that n � 4 and n is even. Otherwise, both sides of
(1.2) vanish because B2k+1 = 0 for all k � 1 and so it is meaningless.

Proof of Proposition 1.1. Put ↵ = t, � = 1 � t and X = ex in (a), and multiply
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both sides by t(1� t)x2. Then we establish the functional equation

tx

etx � 1
· (1� t)x
e(1�t)x � 1

=
x

ex � 1

✓
t(1� t)x + (1� t)

tx

etx � 1
+ t

(1� t)x
e(1�t)x � 1

◆
.

(3.1)

Di↵erentiate (3.1) n-times with respect to x by applying Leibniz’s rule and put
x = 0. Then we get

(tB + (1� t)B)n = t(1� t)nBn�1 + (1� t)(B + tB)n + t(B + (1� t)B)n,

namely,

nX
i=0

✓
n

i

◆
ti(1� t)n�iBiBn�i � t(1� t)nBn�1

= (1� t)
nX

i=0

✓
n

i

◆
tn�iBiBn�i + t

nX
i=0

✓
n

i

◆
(1� t)n�iBiBn�i.

(3.2)

If we gather the terms involving Bn(= B0Bn), then, noting that Bn�1 = 0 for an
even n � 4, above (3.2) becomes

n�2X
i=2

✓
n

i

◆
ti(1� t)n�iBiBn�i �

�
1� tn+1 � (1� t)n+1

�
Bn

=
n�2X
i=2

✓
n

i

◆�
(1� t)tn�i + t(1� t)n�i

�
BiBn�i.

(3.3)

Divide (3.3) by t(1 � t) and integrate it between 0 and 1 with respect to t. Then,
making use of the easily shown formulas

Z 1

0
tm(1� t)kdt =

m!k!
(m + k + 1)!

(m,k � 0),

1
2

Z 1

0

1� tm+1 � (1� t)m+1

t(1� t)
dt =

Z 1

0

1� tm

1� t
dt = Hm (m � 1),

(3.4)

we obtain, since
�n

i

� (i�1)!(n�1�i)!
(n�1)! = n

i(n�i) = 1
i + 1

n�i ,

n
n�2X
i=2

BiBn�i

i(n� i)
� 2HnBn = 2

n�2X
i=2

1
n� i

✓
n

i

◆
BiBn�i = n

n�2X
i=2

✓
n

i

◆
BiBn�i

i(n� i)
.

This is exactly the same as (1.2) if we divide both sides by n.
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It is also possible to deduce (1.2) by dividing (3.3) by 1 � t and integrating
between 0 and 1 with respect to t. Indeed, if we divide (3.3) by 1� t, then we have

n�2X
i=2

✓
n

i

◆
ti(1� t)n�1�iBiBn�i �

✓
1� tn+1

1� t
� (1� t)n

◆
Bn

=
n�2X
i=2

✓
n

i

◆�
tn�i + t(1� t)n�1�i

�
BiBn�i.

Integrating this between 0 and 1, we get, using (3.4),
n�2X
i=2

BiBn�i

n� i
+

✓
1

n + 1
�Hn+1

◆
Bn =

n�2X
i=2

✓
n

i

◆
BiBn�i

n� i
,

which is equivalent to (1.3) (hence to (1.2)), since Hn+1 = Hn + 1/(n + 1).
As a further application of (3.3), we can easily reestablish Matiyasevich’s identity

(1.5) with a simpler and shorter proof.

Proof of Proposition 1.3. Integrating directly both sides of (3.3) from 0 to 1, we
obtain, using (3.4),

1
n + 1

n�2X
i=2

BiBn�i �
n

n + 2
Bn = 2

n�2X
i=2

✓
n

i

◆
BiBn�i

(n + 1� i)(n + 2� i)
.

Multiply both sides by (n + 1)(n + 2) to obtain (1.5).

The following identities are also easy consequences from (3.3).

Proposition 3.1. For n � 4, we have
n�2X
i=2

✓
n

i

◆
BiBn�i = �(n + 1)Bn (Euler), (3.5)

n�2X
i=2

✓
n

i

◆
iBiBn�i = �

✓
n + 1

2

◆
Bn, (3.6)

n�2X
i=2

✓
n

i

◆
2iBiBn�i = �(n + 2n)Bn, (3.7)

n�2X
i=2

✓
n

i

◆
3i(2 + 2n�i)BiBn�i = �(3n+1 + 2n + 3n� 1)Bn. (3.8)

Proof. For Euler’s identity (3.5), we have only to divide (3.3) by t and put t = 0. For
(3.6), di↵erentiate both sides of (3.3) with respect to t only once and put t = 1/2.
Then we get

n�2X
i=2

✓
n

i

◆
(2i� n)BiBn�i = 0,
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and hence (3.6) is given by using (3.5). Next, putting t = 1/2 in (3.3) and multi-
plying it by 2n, we have

n�2X
i=2

✓
n

i

◆
BiBn�i + (1� 2n)Bn =

n�2X
i=2

✓
n

i

◆
2iBiBn�i,

which gives (3.7) by using (3.6). Similarly, if we put t = 1/3 in (3.3) and multiply
it by 3n+1, then

3
n�2X
i=2

✓
n

i

◆
2n�iBiBn�i � (3n+1 � 1� 2n+1)Bn =

n�2X
i=2

✓
n

i

◆
3i(2 + 2n�i)BiBn�i,

which leads to (3.8) using (3.7). This completes the proof.

The identities (3.7) and (3.8) can also be obtained by putting t = 2, 3 in (3.3).

4. Analogues of Propositions 1.1 and 1.3

In this section, we study analogues of the Miki and Matiyasevich convolution
identities for the numbers B0

n = (1�2n)Bn by the same arguments as that performed
in Section 3.

We first prove the following analogues of Miki’s identity (1.2):

Proposition 4.1. For n � 4, we have

n�2X
i=2

B0
iB
0
n�i

i
+

n�2X
i=2

✓
n

i

◆
B0

iBn�i

i
= �B0

n

n
, (4.1)

n�2X
i=2

BiB0
n�i

i(n� i)
�

n�2X
i=2

✓
n� 1

i

◆
2iBiB0

n�i

i(n� i)
= Hn�1

B0
n

n
. (4.2)

Proof. We first prove (4.1). Put ↵ = t, � = 1� t and X = ex in (b) and multiply
it by t(1� t)x2. Then we get the functional equation

tx

etx + 1
· (1� t)x
e(1�t)x + 1

=
x

ex � 1

✓
t(1� t)x� (1� t)

tx

etx + 1
� t

(1� t)x
e(1�t)x + 1

◆
.

(4.3)

If we di↵erentiate (4.3) n-times with respect to x and put x = 0, then we obtain
for the sequences B = {Bn}n�0 and B0 = {B0

n}n�0,

(tB0 + (1� t)B0)n = t(1� t)nBn�1 � (1� t)(B + tB0)n � t(B + (1� t)B0)n,



INTEGERS: 14 (2014) 8

namely,
nX

i=0

✓
n

i

◆
ti(1� t)n�iB0

iB
0
n�i � t(1� t)nBn�1

=�
nX

i=0

✓
n

i

◆�
(1� t)tn�i + t(1� t)n�i

�
BiB

0
n�i.

Considering the obvious facts B0 = 1, B0
0 = 0 and Bn�1 = B0

n�1 = 0 for an even
n � 4, this identity implies

n�2X
i=2

✓
n

i

◆
ti(1� t)n�iB0

iB
0
n�i + ((1� t)tn + t(1� t)n)B0

n

=�
n�2X
i=2

✓
n

i

◆�
(1� t)tn�i + t(1� t)n�i

�
BiB

0
n�i.

(4.4)

Dividing (4.4) by t(1� t), we have

n�2X
i=2

✓
n

i

◆
ti�1(1� t)n�1�iB0

iB
0
n�i +

�
tn�1 + (1� t)n�1

�
B0

n

=�
n�2X
i=2

✓
n

i

◆�
tn�1�i + (1� t)n�1�i

�
BiB

0
n�i.

Integrating this between 0 and 1 with respect to t and dividing it by n, we deduce,
using the first formula in (3.4),

n
n�2X
i=2

B0
iB
0
n�i

i(n� i)
+

2
n

B0
n = �2

n�2X
i=2

✓
n

i

◆
BiB0

n�i

n� i
,

which gives, since 1
i(n�i) = 1

n

⇣
1
i + 1

n�i

⌘
,

2
n�2X
i=2

B0
iB
0
n�i

n� i
+

2
n

B0
n = �2

n�2X
i=2

✓
n

i

◆
BiB0

n�i

n� i
.

This implies (4.1) if we divide this by 2 and replace n� i by i.

For the proof of (4.2), we put ↵ = t, � = 1 � t and X = ex in (c) and multiply
it by t(1� t)x2 to get the functional equation

tx

etx � 1
· (1� t)x
e(1�t)x + 1

=
x

ex + 1

✓
t(1� t)x + (1� t)

tx

etx � 1
� t

(1� t)x
e(1�t)x + 1

◆
.

(4.5)
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Di↵erentiating (4.5) n times with respect to x and putting x = 0, we obtain

(tB + (1� t)B0)n = t(1� t)nB0
n�1 + (1� t)(B0 + tB)n � t(B0 + (1� t)B0)n,

which implies
nX

i=0

✓
n

i

◆
ti(1� t)n�iBiB

0
n�i � t(1� t)nB0

n�1

= (1� t)
nX

i=0

✓
n

i

◆
tn�iB0

iBn�i � t
nX

i=0

✓
n

i

◆
(1� t)n�iB0

iB
0
n�i.

Since B0 = 1, B0
0 = 0 and Bn�1 = B0

n�1 = 0, we can write this as
n�2X
i=2

✓
n

i

◆
ti(1� t)n�iBiB

0
n�i � ((1� t)� (1� t)n)B0

n

=(1� t)
n�2X
i=2

✓
n

i

◆
tn�iB0

iBn�i � t
n�2X
i=2

✓
n

i

◆
(1� t)n�iB0

iB
0
n�i.

(4.6)

Dividing (4.6) by t(1� t), we have
n�2X
i=2

✓
n

i

◆
ti�1(1� t)n�1�iBiB

0
n�i �

✓
1� (1� t)n�1

t

◆
B0

n

=
n�2X
i=2

✓
n

i

◆
tn�1�iB0

iBn�i �
n�2X
i=2

✓
n

i

◆
(1� t)n�1�iB0

iB
0
n�i.

Similarly to the above, integrating between 0 and 1 with respect to t, we have, using
both formulas in (3.4),

n
n�2X
i=2

BiB0
n�i

i(n� i)
�Hn�1B

0
n =

n�2X
i=2

✓
n

i

◆
B0

i(Bn�i �B0
n�i)

n� i

=
n�2X
i=2

✓
n

i

◆
2n�iB0

iBn�i

n� i
,

which yields (4.2) dividing by n and replacing n� i by i on the right-hand side.

Next, we deduce analogues of Matiyasevich’s identity (1.5) by making again use
of (4.4) and (4.6).

Proposition 4.2. For n � 4, we have

(n + 2)
n�2X
i=2

B0
iB
0
n�i + 2

n�2X
i=2

✓
n + 2

i

◆
BiB

0
n�i = �2B0

n, (4.7)

(n + 2)
n�2X
i=2

BiB
0
n�i �

n�2X
i=2

✓
n + 2

i

◆
2n�iB0

iBn�i =
(n� 1)(n + 2)

2
B0

n. (4.8)
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Proof. Directly integrating (4.4) between 0 and 1 with respect to t, we have

1
n + 1

n�2X
i=2

B0
iB
0
n�i +

2
(n + 1)(n + 2)

B0
n

=� 2
n�2X
i=2

✓
n

i

◆
BiB0

n�i

(n + 1� i)(n + 2� i)
.

(4.9)

By the same arguments as done above, we obtain from (4.6)

1
n + 1

n�2X
i=2

BiB
0
n�i �

✓
1
2
� 1

n + 1

◆
B0

n

=
n�2X
i=2

✓
n

i

◆
B0

i(Bn�i �B0
n�i)

(n + 1� i)(n + 2� i)

=
1

(n + 1)(n + 2)

n�2X
i=2

✓
n + 2

i

◆
2n�iB0

iBn�i.

(4.10)

Multiplying (4.9) and (4.10) by (n + 1)(n + 2), we get the identities indicated.

Euler-type identities (2.2) and (2.3) in Proposition 2.1 can also be deduced from
(4.4) and (4.6), respectively. Indeed, if we divide (4.4) and (4.6) by t (or 1� t) and
put t = 0 (or t = 1), then we have for n � 4,

n�2X
i=2

✓
n

i

◆
B0

iBn�i = �B0
n, (4.11)

n�2X
i=2

✓
n

i

◆
B0

iB
0
n�i = (n� 1)B0

n, (4.12)

which are equivalent to (2.2) and (2.3), respectively. Since B0
n�i = (1� 2n�i)Bn�i,

subtracting (4.12) from (4.11), we get
n�2X
i=2

✓
n

i

◆
2n�iB0

iBn�i = �nB0
n.

As easily seen, it is also possible to derive this identity multiplying (3.5) by 2n

and subtracting it from (3.7).
At the end of this paper, we would like to mention that many interesting iden-

tities related to Bernoulli, Euler and other polynomials obtained by using umbral
calculus and p-adic integral on Zp can be found in [4, 13, 14].
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