AN UPPER BOUND FOR RAMANUJAN PRIMES

Anitha Srinivasan
Dept. of Mathematics, Saint Louis University- Madrid Campus, Madrid, Spain

Received: 10/18/13, Accepted: 3/2/14, Published: 4/28/14

Abstract

For $n \geq 1$, the $n^{\text {th }}$ Ramanujan prime is defined as the least positive integer R_{n} such that for all $x \geq R_{n}$, the interval $\left(\frac{x}{2}, x\right]$ has at least n primes. Let p_{i} be the $i^{\text {th }}$ prime. Laishram showed that $R_{n}<p_{3 n}$ for all n. Sondow improved this result to $R_{n}<\frac{41}{47} p_{3 n}$ for all n. Our main result states that for each $\epsilon>0$, there exists an N such that $R_{n}<p_{[2 n(1+\epsilon)]}$ for all $n>N$. This allows us to give upper bounds such as $R_{n} \leq p_{[2.6 n]}$ for all n or $R_{n} \leq p_{[2.4 n]}$ for all $n>43$.

1. Introduction

For $n \geq 1$, the $n^{\text {th }}$ Ramanujan prime is defined as the least positive integer R_{n}, such that for all $x \geq R_{n}$ the interval $\left(\frac{x}{2}, x\right]$ has at least n primes. Note that by the minimality condition, R_{n} is prime and the interval $\left(\frac{R_{n}}{2}, R_{n}\right]$ contains exactly n primes. Let p_{n} denote the $n^{\text {th }}$ prime. Sondow [5] showed that $p_{2 n}<R_{n}<p_{4 n}$ for all n and conjectured that $R_{n}<p_{3 n}$ for all n. This conjecture was proved by Laishram [4] and subsequently Sondow, Nicholson and Noe [6] improved Laishram's result by showing that $R_{n}<\frac{41}{47} p_{3 n}$. We show that $R_{n} \leq p_{[2.6 n]}$ for all n, which for large n, is a better bound than the ones mentioned above. We also obtain results that do not hold for all n, such as $R_{n} \leq p_{[2.4 n]}$ for all $n>43$. Our results are particular cases of the following theorem, where $[x]$ denote the integer part of x.

Theorem 1.1 For every $\epsilon>0$, there exists an integer N such that if $\alpha=[2 n(1+\epsilon)]$, then $R_{n}<p_{\alpha}$ for all $n>N$.

For $\epsilon=.3$, we have $N=249$ in the above theorem, so that on verifying the result for the first 249 Ramanujan primes, we obtain that $R_{n} \leq p_{[2.6 n]}$ for all n. When $\epsilon=.2$, similarly we obtain that $R_{n} \leq p_{[2.4 n]}$ for all $n>43$. In the case of $\epsilon=.5$, we obtain Laishram's result, with only $N=30$ values to check. The results of Laishram, and Sondow, Nicholson and Noe mentioned above use the following result of Sondow.

Theorem 1.2 (Sondow [5]) For every $\epsilon>0$, there exists an integer N such that $R_{n}<(2+\epsilon) n \log n$ for all $n>N$.

As a consequence of the above result, Sondow was able to show that $R_{n}<p_{4 n}$. Laishram gave specific values of N for each ϵ in Theorem 1.2, that enabled him to arrive at $R_{n}<p_{3 n}$. The proof of Theorem 1.2 uses the Prime Number Theorem and hence the values of N are large. For the same reason, the explicit values of N in Theorem 1.2 provided by Laishram also tend to be large, making it harder to obtain better upper bounds for R_{n}. The proof of Theorem 1.1 is based on the simple fact that if $R_{n}=p_{s}$, then $p_{s-n}<\frac{p_{s}}{2}$. This follows because the interval $\left(\frac{p_{s}}{2}, p_{s}\right]$ contains exactly n primes. Then, using known upper and lower bounds for the $i^{\text {th }}$ prime, a decreasing function $F(x)$ is defined (for each fixed n) that satisfies $F(s)>0$, so that each time $F(x)<0$ for some x, we have $s<x$, hence obtaining an upper bound for s and thus for R_{n}.

2. Proof of Main Theorem

Our proof is based on the following lemma that is a direct consequence of the definition of a Ramanujan prime.
Lemma 2.1 Let $R_{n}=p_{s}$ be the $n^{\text {th }}$ Ramanujan prime where p_{s} is the $s^{\text {th }}$ prime. Then $p_{s-n}<\frac{p_{s}}{2}$ for all $n \geq 2$.

Proof. By the minimality of R_{n}, the interval $\left(\frac{p_{s}}{2}, p_{s}\right]$ contains exactly n primes and hence $p_{s-n}<\frac{p_{s}}{2}$.

The following lemma gives well-known bounds for the $n^{\text {th }}$ prime.
Lemma $2.2([3,2])$ For all $n \geq 2$ we have

$$
n(\log n+\log \log n-1)<p_{n}<n(\log n+\log \log n)
$$

Proof of Theorem 1.1. Let $R_{n}=p_{s}$. We assume that $n, s \geq 2$. Then by Lemmas 2.1 and 2.2 , we have $2(s-n)(\log (s-n)+\log \log (s-n)-1)<s(\log s+\log \log s)$. For $x \geq 2 n$, consider the function

$$
F(x)=x(\log x+\log \log x)-2(x-n)(\log (x-n)+\log \log (x-n)-1) .
$$

Note that $F(s)>0$. We have

$$
F^{\prime}(x)=1+\frac{1}{\log x}+A-\frac{2}{\log (x-n)}-2 \log \log (x-n)
$$

where $A=\log x+\log \log x-2 \log (x-n)$. We will show that $F^{\prime}(x)<0$ for $x \geq 2 n$. It is easy to verify that $1+\frac{1}{\log x}-2 \log \log (x-n)<0$ when $x \geq 2 n>16$. As $x \geq 2 n$, we have $\frac{n}{x}<\frac{1}{2}$. Also, $\frac{\log x}{x}<\frac{1}{4}$ and hence $\frac{n}{x}+\sqrt{\frac{\log x}{x}}<1$. It follows that
$\left(1-\frac{n}{x}\right)^{2}>\frac{\log x}{x}$ and therefore $(x-n)^{2}>x \log x$, that is $A<0$. Therefore $F(x)$ is a decreasing function for $x \geq 2 n$.

Now let $\alpha=2 n(1+\epsilon)$. Denoting $\log \log n$ by $\log _{2} n$, we have

$$
F(\alpha)=-2 \epsilon \log n+(2+2 \epsilon) \log _{2}(2 n+2 n \epsilon)-(2+4 \epsilon) \log _{2}(n+2 n \epsilon)+a(\epsilon)
$$

where $a(\epsilon)$ is a constant that depends on ϵ. Thus, there exists N such that for $n>N$, we have $F(\alpha)<0$. As F is a decreasing function and $F(s)>0$, we have $s \leq 2 n(1+\epsilon)$ for $n>N$. Hence, we have $R_{n}=p_{s} \leq p_{[2 n(1+\epsilon)]}$ for all $n>N$.
Corollary 2.1 $R_{n} \leq p_{[2.6 n]}$ for all n.
Proof. Let $R_{n}=p_{s}$. We take $\epsilon=.3$. Then $F(2.6 n)<0$ for $n>249$. Hence $s<2.6 n$ for $n>249$. The result follows on verification that it holds for the first 249 Ramanujan numbers.

Remark 2.1 Observe that to obtain Laishram's result that $R_{n}<p_{3 n}$, we use $\epsilon=.5$ in Theorem 1.1. It is easy to verify that $F(3 n)<0$ for all $n>30$. It follows that $s<3 n$, that is $R_{n}<p_{3 n}$ when $n>30$. We may check that the first thirty Ramanujan numbers satisfy $R_{n}<p_{3 n}$. Theorem 1.1 may be used to give other (better) bounds for R_{n} that do not hold for all n. For example, for $\epsilon=.2$, we obtain $N=3400$ and on checking these N values, we obtain the result that $R_{n}<p_{[2.4 n]}$ for all $n>43$.

Acknowledgement The author wishes to thank the referee for pointing out that similar results have been obtained independently by Axler and appear in his unpublished 2013 thesis in Germany [1].

References

[1] C. Axler, Über die Primzahl-Zählfunktion, die n-te Primzahl und verallgemeinerte Ramanujan-Primzahlen, available at http://docserv.uni-duesseldorf.de/ servlets/DerivateServlet/Derivate-28284/pdfa-1b.pdf or at http://secure-web.cisco.com/ auth=11Yrcb0S2liMRhCdUOXPy_4M9o3G3U\&url $=$ http $\% 3 A \% 2 F \% 2 F d o c s e r v . u n i-$ duesseldorf.de\%2Fservlets\%2FDocumentServlet\%3Fid\%3D26247
[2] N. E. Bach, J. Shallit, Algorithmic Number Theory, MIT press, 233 (1996), ISBN 0-262-02405-5.
[3] P. Dusart, The $k^{\text {th }}$ prime is greater than $k(\ln k+\ln \ln k-1)$ for $k \geq 2$, Math. Comp. 68, no. 225, (1999), 411-415.
[4] S. Laishram, On a conjecture on Ramanujan primes, Int. J. Number Theory 6, (2010), 1869-1873.
[5] J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116, (2009), 630-635.
[6] J. Sondow, J. W. Nicholson, T. D. Noe, Ramanujan primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14, (2011), Article 11.6.2.

