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Abstract
In this paper we prove a new g-series transformation using a very simple method.

—Dedicado al Profesor Chan Heng Huat.

1. Introduction

From the theorems of L. Euler [6] and C. F. Gauss [8] to the works by E. Heine
[11], S. Ramanujan [2,3], L. J. Rogers [13], W. N. Bailey [4], G. E. Andrews [1], G.
Gasper and M. Rahman [7], and many others, there is a plethora of literature on
g-series.

However, there are few tools available to prove these theorems. Functional equa-
tions, partial fractions, combinatorial reasoning and the powerful “Bailey’s lemma”
introduced by W. N. Bailey [4] are among the techniques used by mathematicians.

“What is a g-series,” an eloquent paper written by B. C. Berndt [5], describes
some of the main results and characters in the history of this subject.

No special knowledge about g-series is necessary to understand the development
of this paper. Using a potentially new method, we derive a strange g-series trans-
formation, from which several results follow. We employ the traditional notation in
this field

(a;9)0 =1,
(45 9)00 = H (1—aq™)
m=1

2. The Main Result

This paper is devoted to proving the general transformation which we state in the
following proposition.
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Proposition 1. Let a,,(q) and b,,(q), m € Z*, be rational functions of q where

lg) <1 and |2z| < 1. If
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m=0

then

Z bm —Zz3 q m + 22% am(Q)qm(z2; q2)m
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m=0
3. A Pair of Lemmas
Before proving Proposition 1 we establish several lemmas.
Lemma 2. Let |q| <1 and |z| < 1. Then
m +m
i )™q (39
= 1 ™) (410)x
Proof. We need only to rewrite the last expression as
m2+m
i (_l)m i m+1 Lm (q, Q) io: 2" (Q; Q)oc
OO 9 o0 .
(G Om(1 = 2¢™) = = (4:9) (219)00

To do so, we use two results by Euler [6)
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Lemma 3. Let |q| <1 and |z| <I1. Then

9] n nfi (n— 7) tn—i . [eS)
> O ) = (P Y ., @)
n=0 i=0 n—i 14/00 n—0

Proof. The infinite double series

fe’e] %] m m2+m ]
PLACD DY Z
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n=0 m:O 1 qu n = Zq q)
can be rewritten in the more appropriate form
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4. An Additional Lemma and an Important Result

In the following section we establish an additional lemma and highlight an important
result used in its proof.

Lemma 4. Let |¢| <1 and |z| < 1. Then

Zl_z q2n Z -~ = Za'n aq )n (5>
n=0 =0

Proof. In this case, we begin with the double series

s mqm 2im
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We can then rewrite the last identity as we did in (4). O

Now we can multiply (8) by (y¢; ¢?)so to find
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Equating coefficients of y™ on both sides, we have

n (n—d) w—ﬂ%

()" ai(q)g™ " & )" "bi(q)q
2 (4% ¢®)n—i _Z (¢ Qn—i ' ©

y n
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Therefore we can substitute the right side of (6) into the left-hand side of (4) to
obtain the important result mentioned earlier

& n (LSRR o ynsig ()i
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5. Proof of the Main Identity

We first restate the main identity of the paper before providing a proof.

Proposition 1.  Let a,,(q) and by,(q), m € Z", be rational functions of q where
lgl <1 and|z] < 1. If

E am(@)y™ = (yq*; ¢ OOE bm (g (8)
m=0 m=0
then
2 2 o
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Proof. We only need to replace z with —z in (7), multipy (5) by 2z, and then add
both identities:
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6. Applications and Examples

Application 5: Mock theta functions. We take the product

(=90 oo W )0 = (20" 0" oo
where
5 9 o0 qn2+n n oo
(_yq 5 q )oo:Z 2 an
n:O( q
and
2 [e'e]

Z qn +n + 5. (q2; q2)oo 0 (—1)"(]2("2"'")(]2"(22; q2)2n
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o0 n +n
We now need the classical result of Rogers [13]
1 oo n 24n
(9% 6°) 0 (65 ¢°) o z::
Thus, in (10) by replacing z with ¢, we finally obtain
(¢:9°) 0 (g% 6°) o (¢° 42 - 2O (g2 4 SN
= )P (g% g = Y . (1)
(=4 0) q g ; (=@ a)n

This is a famous identity first proved by G. N. Watson [14] for the fifth order mock
theta functions.

Application 6: A New Result from a Classic Identity. In this case we
choose

o0 . ) o) qm2
Am ) 0o —
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Inserting these results into (9) we find

2
(¢,9)oc i qgm(—q‘l;qz)m(—Z;q)m )oo i q’" tm (2 q )
(=2 @) 5= (% ¢*)m Joo St
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In the last identity V. A. Lebesgue’s [12] classic result appears:

>

m=0

q7n+m 2. Z)m 90 4 5 o
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Therefore we can rewrite (12) as

2m ( 7q (=2 @)m 7" 4" oo
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which appears to be a new result.

Application 7: An Interesting Identity. In this example, we take

> 0 m 24m
an (@Y™ = (ya* 4°)oc =
mX::O n(4) ZO " EP
where
bO = 17
b1, ba,b3... = 0.
If we use these results in (9), we find
. . m 242m 2. 2 .
(@ D)oo, 5 (08 Z (2 O _ (@D gy
(—210)s0 (¢*¢*)m (2 @)oo
Using the previous identity, we can obtain the following interesting result. If
1 oo
= Cmdq
(¢;4%) mX::O
then
oo (m+1) 2
Z% 0" = (P 3 (c1yn TG (15)
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Another possibility is using the second Gollnitz-Gordon [9,10] identity

f:q th) 1

— (@09 (05 0)oo (07 4o

n +2n

in (14) where ¢ — —q and z = i,/q. From this we obtain
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The following identity is equivalent. If

0
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then
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7. An Alternative Proof of the Main Identity

G. E. Andrews graciously provided the author with the following alternative proof
of identity (9):

(G0 - _
‘<T;q>m§0’% wq mZ -
1 1

—29™; q) o * (24™; @)oo
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, 0 " X 22 g2im
=2(¢"¢")0 Z 2q am(Q)Z 2. 2
= 5 (¢%54%);
m J
20" am(q) (@* ¢ < 2
=2(¢%¢) =2 20" am (@) (2% ¢*)m-
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