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Abstract
The present paper considers a kind of combinatorial series and its allied reciprocal
relations which are determined by discrete multi-fold convolutions. Furthermore,
their various formal and analytic expressions in explicit forms are obtained. Con-
structive applications to some well-known sequences such as the Bell numbers, the
Fibonacci numbers, the Stirling numbers and some others given by integer partition
functions are also presented.

1. Introduction

In this paper, we obtain various explicit constructive results for combinatorial sums
or series. These results are closely related to what we will call the discrete multi-fold
convolutions. Our paper consists of two main parts. The first part, composed of
Sections 2, 3, and 4, deals with one kind of discrete multi-fold convolution which
is determined by an arbitrary function on the set of positive integers. Some basic
identities and delta operator summation formulae are investigated and illustrated
with examples. The second part, consisting of Sections 5 and 6, discusses another
general class of discrete multi-fold convolutions which are formed by finitely many
di↵erent functions with discrete variables. Constructive applications to some well-
known number sequences are expounded in detail.

In this paper, we will denote the sets of positive integers, non-negative integers,
real numbers and complex numbers by N+, N, R and C respectively. Also, we will
use the following notation:

• �(n) : the set of partitions of n 2 N+, usually written as 1k12k2 · · ·nkn with
k1 + 2k2 + · · · + nkn = n, ki 2 N.
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• �(n, k) : the subset of �(n) consisting of the partitions of n with k parts, i.e.,
partitions 1k12k2 · · ·nkn subject to k1 + k2 + · · · + kn = k.

• (t)k = t(t� 1)(t� 2) · · · (t� k +1) : the kth falling factorial of t with (t)0 = 1.

• � : the di↵erence operator defined by �f(t) = f(t + 1) � f(t), and ��k =
�k+1(k 2 N+) with �0 = 1 denoting the identity operator.

• D : the di↵erentiation operator with DDk = Dk+1 and D0 = 1.

• E : the shift operator defined by E = 1 + � and Exf(t) = f(t + x), x 2 R.

It should be pointed out that both � and D, nowadays known as delta operators,
could be generally applied to formal power series to deduce certain formal results.
Throughout the present paper, we will make frequent use of formal power series,
and provide suitable convergence conditions so that the formal results actually are
exact and analytic under these conditions.

2. A Kind of Multi-Fold Convolution

As usual, we will say that (x1, x2, · · · , xk) is a k-composition of n with non-negative
parts, if x1 + x2 + · · · + xk = n, where xi 2 N, 1  i  k. The set of all such
compositions of n may be denoted by [n, k, 0], i.e.,

[n, k, 0] :=
�
(x1, x2, · · · , xk)

�� kX
i=1

xi = n, xi � 0
 
.

Also, we will use the standard representation for the set �(n, k), i.e.,

�(n, k) :=
�
(x1, x2, · · · , xn)

�� nX
i=1

ixi = n,
nX

i=1

xi = k, xi � 0
 
.

Definition 2.1. Let f(x) be a real-valued or complex-valued function defined on N
with f(0) = 1. Then the k-fold convolution and the n/k-partition sum associated
with f(x) are respectively defined by the following summations:

Sk
n(f) =

X
[n,k,0]

f(x1)f(x2) · · · f(xk) (2.1)

T k
n (f) =

X
�(n,k)

fk1(1)fk2(2) · · · fkn(n)
k1!k2! · · · kn!

(2.2)

where the sums on the right-hand sides (in short, RHS) of (2.1) and (2.2) range
over the sets [n, k, 0] and �(n, k) respectively.
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Note that [n, k, 0] and �(n, k) have no meaning for k = 0. For convenience,
we define S0

n(f) = T 0
n(f) = 0, and thereby have sequences {Sk

n(f)}n,k�0 and
{T k

n (f)}n,k�0. Also it is obvious that S1
n(f) = f(n), Sk

1 (f) = kf(1) and

T 1
n(f) = f(n), T 1

1 (f) = f(1); T k
1 (f) = 0 for k > 1.

Moreover, it is easy to see that the RHS of (2.2) with replacement f(n) ! tn(n 2
N+) is in agreement with the incomplete Bell polynomial in ti(1  i  n), up to a
constant factor n! (cf.[2]).

In what follows we assume that

G(t) =
1X

k=0

g(k)tk (2.3)

is a formal power series with complex coe�cients. As usual, G(k)(t) = DkG(t)
denotes the kth formal derivative of G(t).

Theorem 2.2. For m,n 2 N+, the following identities hold:

Sm
n (f) =

mX
k=1

(m)kT k
n (f) (2.4)

T k
n (f) =

1
k!

�kSt
n(f)

��
t=0

(2.5)
1X

k=1

g(k)Sk
n(f)tk =

nX
k=1

G(k)(t)T k
n (f)tk, (2.6)

where the left-hand side (in short, LHS) of (2.6) is a formal power series.

Proof. To justify (2.4), according to Definition 2.1, we only need to compute the
LHS of (2.4) in this way: for 1  k  m, consider first the finite sumX

[n,m,0]k

f(x1)f(x2) · · · f(xm), (2.7)

where [n,m, 0]k denotes the subset of [n,m, 0], being composed of all compositions
(x1, x2, · · · , xm) of n with just k components xi � 1. In other words, there are m�k
components xi = 0 in (x1, x2, · · · , xm). Recall that f(0) = 1 and such factors will
take m� k ordered places in

� m
m�k

�
=
�m

k

�
di↵erent ways. Meanwhile, the number

of all possible permutations of the factors in the product

fk1(1)fk2(2) · · · fkn(n)

over the set �(n, k) is enumerated by k!/(k1!k2! · · · kn!). Thus the sum (2.7) boils
down to ✓

m

k

◆ X
�(n,k)

k!
k1!k2! · · · kn!

fk1(1)fk2(2) · · · fkn(n) = (m)kT k
n (f).
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Summing on k, 1  k  m, we therefore obtain (2.4).
With (2.4) in hand we are able to reformulate St

n(f) in the form

St
n(f) =

X
j�1

j!
✓

t

j

◆
T j

n(f), S0
n(f) = 0.

Then it follows that

�kSt
n(f)

��
t=0

=
X
j�1

j!�k

✓
t

j

◆��
t=0

T j
n(f)

=
X
j�1

j!
✓

0
j � k

◆
T j

n(f) = k!T k
n (f).

Thus (2.5) is proved.
Once again, by use of (2.4) we may compute the LHS of (2.6) formally as follows:

1X
m=1

g(m)Sm
n (f)tm =

1X
m=1

g(m)tm
mX

k=1

(m)kT k
n (f)

=
1X

k=1

✓ 1X
m=k

(m)kg(m)tm
◆

T k
n (f)

=
1X

k=1

Dk

✓ 1X
m=k

g(m)tm
◆

T k
n (f)tk

=
nX

k=1

G(k)(t)T k
n (f)tk.

The last equality follows from the fact that T k
n (f) = 0 for k > n. This completes

the proof of (2.6). 2

Put G(t) = 1/(1� t) for |t| < 1 and et for t 2 R in (2.6) in succession. Then we
may get the following

Corollary 2.3. For n 2 N, the sequence {Sk
n(f)}k�0 has the ordinary and expo-

nential generating functions, respectively, as follows:

1X
k=0

Sk
n(f)tk =

nX
k=1

k!
1� t

✓
t

1� t

◆k

T k
n (f) (2.8)

1X
k=0

Sk
n(f)

tk

k!
= et

nX
k=1

T k
n (f)tk. (2.9)

It should be mentioned that as an extension of a basic result contained in [15]
by Savits and Constantine, formula (2.6) was first given by Hsu in his short note
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[10]. Afterwards, it was recovered by Constantine [3] via a di↵erent approach. In
fact, formula (2.6) is actually a consequence implied by the general transformation
formula of series (cf.[8])

1X
k=0

f(k)�(k)(0)
tk

k!
=

1X
k=0

�kf(0)�(k)(t)
tk

k!
.

To see this, it su�ces to substitute f(t) with St
n(f) and �(t) with G(t), and then

simplify the resulting identity by (2.5).

3. A Convergence Theorem

In this section, we will provide a simple and verifiable convergence condition for
(2.6) in order to make it an available exact formula.

Theorem 3.1. If G(t) =
P

k�0 g(k)tk is absolutely convergent for |t| < r, then
so is the infinite series on the LHS of (2.6), thereby (2.6) is an exact formula for
|t| < r.

Proof. Comparing the LHS of (2.6) with G(t) and using Cauchy’s root test for the
convergence of infinite series, we only need to show that for every n 2 N+,

lim
k!1

��Sk
n(f)

��1/k  1.

To this end, assume max
0xn

|f(x)| = ⇢. By the definition of Sk
n(f), it is easily found

that every product f(x1)f(x2) · · · f(xk) restricted by

x1 + x2 + · · · + xk = n (3.1)

contains at most n factors f(xi) with xi � 1. Owing to the facts that f(0) = 1 and
|f(x)| < ⇢ for x 6= 0, it follows directly that |f(x1)f(x2) · · · f(xk)|  ⇢n. Meanwhile,
the total number of such terms is

�n+k�1
n

�
, a fact coming from the number of

solutions in nonnegative integers for the diophantine equation (3.1). Thus we have

��Sk
n(f)

�� 
✓

n + k � 1
n

◆
⇢n,

that leads to

lim
k!1

��Sk
n(f)

��1/k  lim
k!1

✓✓
n + k � 1

n

◆
⇢n

◆1/k

= 1.

Hence the theorem is proved. 2
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Corollary 3.2. Identity (2.8) is analytic for |t| < 1 and so is (2.9) for |t| < +1.

Example 3.3. Evidently, the following power series

G(t) =
1p

1� 4t
=

1X
k=0

✓
2k
k

◆
tk

converges absolutely for |t| < 1/4. In this case, we have

G(k)(t) =
(2k)!
k!

(1� 4t)�k�1/2, g(k) =
✓

2k
k

◆
.

As a consequence of (2.6), we get the following exact formula
1X

k=0

✓
2k
k

◆
Sk

n(f)tk =
nX

k=1

(2k)!
k!

tk

(1� 4t)k+1/2
T k

n (f) (3.2)

for |t| < 1/4.

Example 3.4. It is well known that the Fibonacci number sequence {Fn}n�0 is
generated by the generating function

G(t) =
1

1� t� t2
=

1X
k=0

Fktk,

which is convergent absolutely for |t| < (
p

5 � 1)/2. To ease notations, we let
a = (1 +

p
5)/2 and b = (1�

p
5)/2. We therefore have

G(t) =
1

(1� at)(1� bt)
=

1p
5

1X
k=0

(ak+1 � bk+1)tk

and g(k) = Fk = (ak+1 � bk+1)/
p

5. Simple computation gives

G(k)(t) =
1p
5
Dk

✓
a

1� at
� b

1� bt

◆
=

k!p
5

✓
a

1� at

◆k+1

�
✓

b

1� bt

◆k+1�
,

that reduces (2.6) to
1X

k=0

FkSk
n(f)tk =

nX
k=1

k!p
5

✓
a

1� at

◆k+1

�
✓

b

1� bt

◆k+1�
T k

n (f)tk, (3.3)

which is an exact formula for |t| < (
p

5� 1)/2.

Example 3.5. Setting G(t) = (1 + t)↵ for ↵ 2 R and |t| < 1, we have g(k) =
�↵

k

�
and G(k)(t) = (↵)k(1 + t)↵�k. A direct substitution of these facts into (2.6) yields

1X
k=0

✓
↵

k

◆
Sk

n(f)tk =
nX

k=1

(↵)k
tk

(1 + t)k�↵
T k

n (f). (3.4)
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The further substitution ↵ ! �↵� 1 leads us to
1X

k=0

✓
↵ + k

k

◆
Sk

n(f)(�t)k =
nX

k=1

(↵ + k)k
(�t)k

(1 + t)k+↵+1
T k

n (f). (3.5)

Obviously, both (3.4) and (3.5) are analytic for |t| < 1. It is also clear that (2.8)
can be deduced from (3.4) via the substitutions ↵ ! �1 and ↵ ! �t.

As indicated above, formula (2.6) can be used to construct various special exact
formulae or identities via the choices of G(t) and f(t), provided that they are subject
to the convergence conditions given by Theorem 3.1.

4. Some Operator Summation Formulae

It is known that both D and � are delta operators, so that by use of Mullin-Rota’s
substitution rule (cf.[9]), we may deduce some special operator summation formulae
from (2.9), (3.2), (3.4) and (3.5) respectively.

For any function �(t) over R, it is easy to check that

(1 + �)↵�(t) = E↵�(t) = �(t + ↵).

Thus, under the substitution t ! �, we see that (3.4) and (3.5) together yields a
pair of �-type operator summation formulae. The results are as follows:

1X
k=0

✓
↵

k

◆
Sk

n(f)�k�(0) =
nX

k=1

(↵)kT k
n (f)�k�(↵� k) (4.1)

1X
k=0

✓
↵ + k

k

◆
Sk

n(f)(��)k�(0) =
nX

k=1

(↵ + k)kT k
n (f)(��)k�(�↵� k � 1). (4.2)

Alternatively, the substitution t ! �1
4� reduces (3.2) to a �-type summation

formula of the form
1X

k=0

(�1)k

22k

✓
2k
k

◆
Sk

n(f)�k�(0) =
nX

k=1

(�1)k(2k)!
22kk!

T k
n (f)�k�(�k � 1/2). (4.3)

As above, substituting t by D in (2.9) and simplifying the result by the relations
that eD = E = 1+�, we come up with a D-type summation formula for �(t) 2 C1

(the set of infinitely di↵erentiable real functions over R) evaluated at t = 0:

1X
k=0

1
k!

Sk
n(f)Dk�(0) =

nX
k=1

T k
n (f)Dk�(1). (4.4)
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In accordance with Example 3.5 in Section 3, it is clear that (4.1) and (4.2) are
exact formulae under the condition

lim
k!1

�����k�(0)
����
1/k

< 1. (4.5)

Actually condition (4.5) also ensures the validity of formula (4.3) inasmuch as it
is just equivalent to the condition (see Example 3.3)

lim
k!1

���� 1
4k

�k�(0)
����
1/k

<
1
4
.

Moreover, Corollary 3.2 states that (4.4) is an exact formula under the condition

lim
k!1

����Dk�(0)
����
1/k

< +1. (4.6)

It may happen that limk!1
���k�(0)

��1/k = 1. In this case, the convergence condi-
tions for (4.1), (4.2), and (4.3) should be investigated separately.

As one might expect, all formulae from (4.1) to (4.4) can be employed to produce
various special formulae and identities, because f(x) and �(t) are free to choose.
In what follows we will detail how to find concrete identities by considering some
interesting examples.

Example 4.1. Substitute �(t) with �1(t) =
�t+�

m

�
and �2(t) = 1/(t + �) in turn,

m 2 N+ and � > 0. Then we have

�k�1(t) =
✓

t + �

m� k

◆
, �k�2(t) =

(�1)k

t + �

✓
t + � + k

k

◆�1

.

From now on, we write briefly
�t+�+k

k

��1
for 1/

�t+�+k
k

�
. Under these two choices,

it is easy to deduce the following six formulae respectively from (4.1), (4.2), and
(4.3):

mX
k=0

✓
↵

k

◆✓
�

m� k

◆
Sk

n(f) =
nX

k=1

(↵)k

✓
↵ + � � k

m� k

◆
T k

n (f)

(4.7)
mX

k=0

(�1)k

✓
↵ + k

k

◆✓
�

m� k

◆
Sk

n(f) =
nX

k=1

(�1)k(↵ + k)k

✓
� � ↵� k � 1

m� k

◆
T k

n (f)

(4.8)
mX

k=0

(�1)k

4k

✓
2k
k

◆✓
�

m� k

◆
Sk

n(f) =
nX

k=1

(�1)k(2k)!
4kk!

✓
� � k � 1/2

m� k

◆
T k

n (f)

(4.9)
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1X
k=0

(�1)k

✓
↵

k

◆✓
� + k

k

◆�1

Sk
n(f) = �

nX
k=1

(�1)k(↵)k

↵ + � � k

✓
↵ + �

k

◆�1

T k
n (f) (4.10)

1X
k=0

✓
↵ + k

k

◆✓
� + k

k

◆�1

Sk
n(f) = �

nX
k=1

(↵ + k)k

� � ↵� k � 1

✓
� � ↵� 1

k

◆�1

T k
n (f) (4.11)

1X
k=0

1
4k

✓
2k
k

◆✓
� + k

k

◆�1

Sk
n(f) = �

nX
k=1

(2k)!
4kk!(� � k � 1/2)

✓
� � 1/2

k

◆
T k

n (f). (4.12)

We remark that all infinite series involved in (4.10), (4.11), and (4.12) are assumed
to be convergent under suitable conditions for ↵,� and Sk

n(f).

Example 4.2. The most simple case of Sk
n(f) is when n = 1 with f(1) = 1. In

such a case, it is easy to check that

Sk
1 (f) = k, T 1

1 (f) = 1, T k
1 (f) = 0 for k > 1.

Consequently, each identity from (4.7) to (4.12) yields correspondingly a special
identity for n = 1. The results are stated as follows:

mX
k=0

k

✓
↵

k

◆✓
�

m� k

◆
= ↵

✓
↵ + � � 1

m� 1

◆
(V andermonde) (4.13)

mX
k=0

(�1)kk

✓
↵

k

◆✓
�

m� k

◆
= �(↵ + 1)

✓
� � ↵� 2

m� 1

◆
(4.14)

mX
k=0

(�1)kk

4k

✓
2k
k

◆✓
�

m� k

◆
= �1

2

✓
� � 3/2
m� 1

◆
(4.15)

1X
k=0

(�1)kk

✓
↵

k

◆✓
� + k

k

◆�1

= � ↵�

(� + ↵)(↵ + � � 1)
(4.16)

1X
k=0

k

✓
↵ + k

k

◆✓
� + k

k

◆�1

=
(1 + ↵)�

(� � ↵� 1)(� � ↵� 2)
(4.17)

1X
k=0

k

4k

✓
2k
k

◆✓
� + k

k

◆�1

=
�

2(� � 1/2)(� � 3/2)
. (4.18)

Note that for ↵ > 0 and � > 0 we have the estimates

|
✓

↵

k

◆
|  b↵c+ 1

k
= O(1/k),

✓
2k
k

◆
/4k ⇠ 1p

k⇡
= O(1/

p
k)

and ✓
� + k

k

◆
�
✓

k + b�c
[�]

◆
= O(kb�c) (k !1),

where |
�↵

k

�
| is the absolute value of

�↵
k

�
, bxc denotes the largest integer not greater

than x, the big O notation takes the usual meaning of asymptotic. Thus all infinite
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series appearing in (4.16), (4.17), and (4.18) are absolutely convergent under their
respective conditions, i.e.,

(4.16) : ↵ > 0,� � 2; (4.17) : ↵ > 0,� � ↵ + 3; (4.18) : � � 2.

Both (4.16) and (4.17) are comparable with the series

1X
k=0

(�1)k

✓
↵

k

◆✓
� + k

k

◆�1

=
�

↵ + �
(4.19)

for ↵ > 0,� � 1. It is of interest to note that the special case of (4.19) when ↵ is
an integer is recorded as a “theorem” in Wilf [17, p.134,Theorem], being employed
as an example of the well-known WZ method. Thus we believe that (4.16), (4.17),
and (4.18) may also be verified by means of the WZ method.

Example 4.3. By the multivariate Vandermonde convolution formula it is easily
found that for ↵ 2 R and r 2 N+,

X
[n,k,0]

✓
↵

x1

◆✓
↵

x2

◆
· · ·

✓
↵

xk

◆
=

✓
k↵

n

◆

X
[n,k,0]

✓
x1

r

◆✓
x2

r

◆
· · ·

✓
xk

r

◆
=

✓
n + k � 1
kr + k � 1

◆
.

Now, replace f(x) with
�↵

x

�
and

�r+x
r

�
in turn. For both cases, we therefore obtain

Sk
n

✓✓
↵

x

◆◆
=
✓

k↵

n

◆
, T k

n

✓✓
↵

x

◆◆
=

X
�(n,k)

�↵
1

�k1�↵
2

�k2 · · ·
�↵

n

�kn

k1!k2! · · · kn!
; (4.20)

Sk
n

✓✓
r + x

r

◆◆
=
✓

k(r + 1) + n� 1
n

◆

T k
n

✓✓
r + x

r

◆◆
=

X
�(n,k)

�r+1
r

�k1�r+2
r

�k2 · · ·
�r+n

r

�kn

k1!k2! · · · kn!
. (4.21)

Accordingly, (2.6) leads us to a pair of combinatorial series as follows:

1X
k=0

g(k)
✓

k↵

n

◆
tk =

nX
k=1

G(k)(t)tkT k
n

✓✓
↵

x

◆◆
(4.22)

1X
k=0

g(k)
✓

k(r + 1) + n� 1
n

◆
tk =

nX
k=1

G(k)(t)tkT k
n

✓✓
r + x

r

◆◆
. (4.23)

As is expected, a variety of special identities can be deduced from (4.7) and (4.12)
with Sk

n(f) and T k
n (f) being replaced by those of (4.20) and (4.21) . For instance,
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by virtue of (4.11) and (4.20), we may find a combinatorial series

1X
k=0

✓
↵ + k

k

◆✓
� + k

k

◆�1✓k�

n

◆
=

nX
k=1

(↵ + k)k�

� � ↵� k � 1

✓
� � ↵� 1

k

◆�1

T k
n

✓✓
�

x

◆◆
.

(4.24)

A bit of analysis shows that this series is absolutely convergent under the conditions
↵, � > 0,� � ↵ + n + 2. Other identities are left to the interested reader to work
out.

5. Reciprocal Relations

Let us begin with a basic result originally due to Hsu and his coauthors of [1].

Lemma 5.1. ([1, Corollary 1]) Let {↵n}n�1 and {�n}n�1 be two sequences such
that

exp
✓ 1X

n=1

↵n tn
◆

= 1 +
1X

n=1

�n tn (5.1)

or, equivalently,

log
✓

1 +
1X

n=1

�n tn
◆

=
1X

n=1

↵n tn. (5.2)

Then the system of relations

�n =
X
�(n)

↵k1
1 ↵k2

2 · · ·↵kn
n

k1!k2! · · · kn!
(5.3)

holds if and only if so does the system

↵n =
X
�(n)

(�1)k�1
�k1

1 �k2
2 · · ·�kn

n

k1!k2! · · · kn!
, (5.4)

where the sum on the right ranges over �(n) = {1k12k2 · · ·nkn}, k = k1+k2+· · ·+kn.

It is worth mentioning that in the context of combinatorial analysis, such a pair
of equivalent relations is said to be a reciprocal relation. We refer the reader to [4]
and [1, Sections 1 and 2] for its precise definition and applications. Meanwhile, the
factor (�1)k�1 is just the Möbius function of the partition lattice [16, (30)]. For
k > 1, it can be written explicitly as

(�1)k�1 = (�1)k1+k2+···+kn�1(k1 + k2 + · · · + kn � 1)!.
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Keeping Lemma 5.1 in mind, we now consider an m-fold convolution of the form

Sm
n (f) =

X
[n,m,0]

f1(x1)f2(x2) · · · fm(xm), (5.5)

where fj(x) are m known functions with fj(0) = 1, the sum ranges over all the m-
compositions (x1, x2, · · · , xm) of n with x1 + x2 + · · ·+ xm = n, xj � 0, 1  j  m.

We set

log
✓

1 +
1X

n=1

fj(n) tn
◆

=
1X

n=1

�j(n) tn (5.6)

or, equivalently

exp
✓ 1X

n=1

�j(n) tn
◆

= 1 +
1X

n=1

fj(n) tn, (5.7)

where each �j(n) is defined on N. All that we are interested in is a reciprocal
relation between Sm

n (f) and
Pm

j=1 �j(n). The relevant conclusion can be given as
follows.

Theorem 5.2. Let Sm
n (f) and �m(n) be given as above. The following reciprocal

relation holds:

Sm
n (f) =

X
�(n)

nY
r=1

�Pm
j=1 �j(r)

�kr

kr!
(5.8)

mX
j=1

�j(n) =
X
�(n)

(�1)k�1

nY
r=1

�
Sm

r (f)
�kr

kr!
. (5.9)

In particular, set fj(x) = f(x) with f(0) = 1, 1  j  m. Then �j(x) = �(x).
Therefore, (5.8) and (5.9) together yield a reciprocal relation as below.

Corollary 5.3. We have

Sm
n (f) =

X
�(n)

mk �(1)k1�(2)k2 · · · �(n)kn

k1!k2! · · · kn!
(5.10)

�(n) =
1
m

X
�(n)

(�1)k�1

�
Sm

1 (f)
�k1�Sm

2 (f)
�k2 · · ·

�
Sm

n (f)
�kn

k1!k2! · · · kn!
. (5.11)

Proof. Observe first that (5.8) and (5.9) are special consequences of (5.3) and (5.4)
under the choices that

↵n =
mX

j=1

�j(n), �n = Sm
n (f).
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Thus, by Lemma 5.1 it su�ces to verify (5.1) for such choices. To this end, one
only needs to compute

exp
✓ 1X

n=1

tn
mX

j=1

�j(n)
◆

=
mY

j=1

exp
✓ 1X

n=1

�j(n) tn
◆

=
mY

j=1

✓ 1X
n=0

fj(n) tn
◆

=
1X

n=0

✓ X
[n,m,0]

f1(x1)f2(x2) · · · fm(xm)
�◆

tn

=
1X

n=0

Sm
n (f) tn.

Note that Sm
0 (f) = f1(0)f2(0) · · · fm(0) = 1. Hence identity (5.1) is confirmed. By

Lemma 5.1 again, (5.7) and (5.8) follow directly from (5.3) and (5.4), respectively.
Moreover, when �j(x) = �(x), the product in (5.8) becomes

nY
r=1

(m�(r))kr = mk1+k2+···+kn

nY
r=1

�(r)kr = mk
nY

r=1

�(r)kr .

Hence (5.10) and (5.11) are deduced from (5.7) and (5.8) correspondingly. Thus
the theorem and the corollary are proved. 2

As already shown in [11], many classical special functions such as the Genenbauer-
Humbert polynomials and the She↵er polynomials can be represented by the cycle
indicator of the form

Cn(t1, t2, · · · , tn) =
X
�(n)

n!
k1!k2! · · · kn!

✓
t1
1

◆k1✓ t2
2

◆k2

· · ·
✓

tn
n

◆kn

. (5.12)

Such a representation has an advantage that the sequence {Cn(t1, t2, · · · , tn)}n�0

satisfies a kind of recurrence relation. We refer the reader to [11] for further details.
Comparing (5.10) with (5.12) we may rewrite

Sm
n (f) =

1
n!

Cn

�
1m�(1), 2m�(2), · · · , nm�(n)

�
(5.13)

with each �(r) being given by the coe�cient of tr in the power series expansion of
log(1 +

P1
n=1 f(n)tn), i.e.,

�(r) = [tr] log
✓

1 +
1X

n=1

f(n) tn
◆

. (5.14)

As a benefit of doing so, {Sm
n (f)}m,n�1 may be computed via the recurrence rela-

tions of Cn(t1, t2, · · · , tn).
It may be of interest to compare the expression (5.10) with the basic identity

(2.4). Nevertheless, there does not seem to exist any available recurrence relation
for the sum on the RHS of (2.4).
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6. Further Examples Involving Some Classical Number Sequences

In this section we will only focus on some applications of Corollary 5.3. As for
the reciprocal relation (5.8) and (5.9) in Theorem 5.2, we have not found any good
example so far.

Example 6.1. Recall that the Bell numbers $ are defined by the exponential
generating function

exp(et � 1) = exp
✓ 1X

n=1

tn

n!

◆
=

1X
n=0

$(n)
tn

n!
. (6.1)

Define the m-fold convolution

Sm
n ($) =

X
[n,m,0]

$(x1)$(x2) · · ·$(xm)
x1!x2! · · ·xm!

. (6.2)

Then by taking f(n) = $(n)/n! and using (5.14) we find that

�(n) = [ tn](et � 1) = 1/n!.

In such a case, a combination of the above result with (5.10) and (5.11) finally leads
to a reciprocal relation:

Sm
n ($) =

X
�(n)

mk

�
1/1!

�k1�1/2!
�k2 · · ·

�
1/n!

�kn

k1!k2! · · · kn!
(6.3)

m

n!
=

X
�(n)

(�1)k�1

�
Sm

1 ($)
�k1�Sm

2 ($)
�k2 · · ·

�
Sm

n ($)
�kn

k1!k2! · · · kn!
. (6.4)

It is of interest to note that the case m = 1 of (6.3) yields a well-known identity

$(n)
n!

=
X
�(n)

�
1/1!

�k1�1/2!
�k2 · · ·

�
1/n!

�kn

k1!k2! · · · kn!
.

Example 6.2. Let p(n) and M2(n) be the numbers of partitions and plane parti-
tions of n, respectively. Recall further that in the book [7, p. 310] by Hardy and
Wright, the divisor function �k(n) is defined by

�k(n) =
X
d|n

dk

for n, k � 0. We may write �(n) for �1(n). As is well-known to us, the Euler
formula [7] and the MacMahon function [14] state that the generating functions for
{p(n)}n�0 and {M2(n)}n�0 are respectively given by

1Y
k=1

(1� tk)�1 and
1Y

k=1

(1� tk)�k,
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yielding

log
✓

1 +
1X

n=1

p(n) tn
◆

=
1X

n=1

�(n)
tn

n

log
✓ 1X

n=1

M2(n) tn
◆

=
1X

n=0

�2(n)
tn

n
.

To proceed further, let us consider the m-fold convolutions

Sm
n (p) =

X
[n,m,0]

p(x1)p(x2) · · · p(xm)

and

Sm
n (M2) =

X
[n,m,0]

M2(x1)M2(x2) · · ·M2(xm).

Taking these into account and making use of both (5.10) and (5.11), we obtain two
pairs of reciprocal relations as follows:

Sm
n (p) =

X
�(n)

mk

�
�(1)/1

�k1��(2)/2
�k2 · · ·

�
�(n)/n

�kn

k1!k2! · · · kn!
(6.5)

m

n
�(n) =

X
�(n)

(�1)k�1

�
Sm

1 (p)
�k1�Sm

2 (p)
�k2 · · ·

�
Sm

n (p)
�kn

k1!k2! · · · kn!
(6.6)

and

Sm
n (M2) =

X
�(n)

mk

�
�2(1)/1

�k1��2(2)/2
�k2 · · ·

�
�2(n)/n

�kn

k1!k2! · · · kn!
(6.7)

m

n
�2(n) =

X
�(n)

(�1)k�1

�
Sm

1 (M2)
�k1�Sm

2 (M2)
�k2 · · ·

�
Sm

n (M2)
�kn

k1!k2! · · · kn!
. (6.8)

In particular, when m = 1, we recover two known identities (cf.[7, (4.6)/(4.7)]):

p(n) =
X
�(n)

�
�(1)/1

�k1��(2)/2
�k2 · · ·

�
�(n)/n

�kn

k1!k2! · · · kn!
(6.9)

M2(n) =
X
�(n)

�
�2(1)/1

�k1��2(2)/2
�k2 · · ·

�
�2(n)/n

�kn

k1!k2! · · · kn!
. (6.10)

Example 6.3. It is clear from [16, Vol.II, p.76, Exer. 5.13(b)] that for j � 1

exp
✓X

n�1

�n(Fj)
xn

n

◆
=
X
n�0

n!j�1xn,



INTEGERS: 14 (2014) 16

where Fj denotes the free group on j generators1 and �n(Fj) denotes the number
of subgroups of Fj of index n. On account of this, we thereby obtain the following
reciprocal relation:

Sm
n (F ) =

X
�(n)

nY
r=1

�Pm
j=1 �r(Fj)

�kr

kr! rkr
(6.11)

1
n

mX
j=1

�n(Fj) =
X
�(n)

(�1)k�1

nY
r=1

�
Sm

r (F )
�kr

kr!
(6.12)

with the m-fold convolution

Sm
n (F ) =

X
[n,m,0]

(x1!)0(x2!)1 · · · (xm!)m�1.

Both (6.11) and (6.12) contain the well-known Cauchy identity and its dual form
as the special case when m = 1 (F1 a cyclic group):

1 =
X
�(n)

1
k1!k2! · · · kn!

nY
r=1

1
rkr

(6.13)

1
n

=
X
�(n)

(�1)k�1

k1!k2! · · · kn!
. (6.14)

We can put the preceding results in a general context. To do this, replace Fj with
a free Abelian group Gj which is finitely generated by j generators and let µn(Gj)
be the number of conjugacy classes, i.e., g�1Gjg for all g 2 Fj , of subgroups of Gj

of index n. According to Group theory or [16, Vol. II, Exer.5.13(a)], we have

exp
✓X

n�1

�n(Gj)
xn

n

◆
=

Y
n�1

1
(1� xn)µn(Gj)

.

So it is easily found that
�n(Gj) =

X
d|n

µd(Gj) d,

since
X
n�1

�n(Gj)
xn

n
= log

Y
n�1

1
(1� xn)µn(Gj)

=
X
n�1

✓X
d|n

µd(Gj) d

◆
xn

n
.

1which means that every element of the group Fj can be expressed as a combination (under
the group operation) of elements of certain j-subset of Fj and their inverses.
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Thus we obtain

Sm
n (G) =

X
�(n)

nY
r=1

�Pm
j=1 �r(Gj)

�kr

kr! rkr
(6.15)

1
n

mX
j=1

�n(Gj) =
X
�(n)

(�1)k�1

nY
r=1

�
Sm

r (G)
�kr

kr!
, (6.16)

where the m-fold convolution

Sm
n (G) =

X
[n,m,0]

�X
d|x1

µd(G1) d
�1�X

d|x2

µd(G2) d
�2 · · ·

� X
d|xm

µd(Gm) d
�m

.

Example 6.4. Recall that in Example 3.4, we write a = (1 +
p

5)/2, b = (1 �p
5)/2. Thus, the Fibonacci numbers Fn may be written as Fn = (an+1�bn+1)/

p
5.

Starting with the generating function for {Fn}n�0, namely

1X
n=0

Fn tn =
1

(1� at)(1� bt)
,

it is not hard to find that

log
✓ 1X

n=0

Fn tn
◆

=
1X

n=1

an + bn

n
tn.

On considering the m-fold convolution

Sm
n (F ) =

X
[n,m,0]

Fx1Fx2 · · ·Fxm ,

we immediately obtain the following reciprocal relation via (5.10) and (5.11):

Sm
n (F ) =

X
�(n)

mk

�
(a + b)/1

�k1�(a2 + b2)/2
�k2 · · ·

�
(an + bn)/n

�kn

k1!k2! · · · kn!
(6.17)

m
an + bn

n
=

X
�(n)

(�1)k�1

�
Sm

1 (F )
�k1�Sm

2 (F )
�k2 · · ·

�
Sm

n (F )
�kn

k1!k2! · · · kn!
. (6.18)

It is worth mentioning that the case m = 1 of (6.18) is correspondent to the well-
known identity (cf.[7, Example 6])

X
�(n)

(�1)k�1(k � 1)!
F k1

1 F k2
2 · · · F kn

n

k1!k2! · · · kn!
=

1
n

⇢✓
1 +

p
5

2

◆n

+
✓

1�
p

5
2

◆n�
.
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Example 6.5. For p 2 N+, as is known to us, there holds a rational generating
function for the Stirling numbers of the second, namely

1X
n=0

⇢
n + p

p

�
tn =

1
(1� t)(1� 2t) · · · (1� pt)

,

where we have adopted Knuth’s notation for the Stirling numbers (cf.[12] or [17]).
By this we at once obtain

log
✓ 1X

n=0

⇢
n + p

p

�
tn
◆

=
pX

j=1

log(1� jt)�1

=
1X

n=1

(1n + 2n + · · · + pn)
tn

n
=

1X
n=1

sn
p
tn

n
,

where sn
p =

Pp
j=1 jn is the sum of arithmetic progression of degree n. Given m and

p 2 N+, let us consider the m-fold convolution

Sm
n (S) =

X
[n,m,0]

⇢
x1 + p

p

�⇢
x2 + p

p

�
· · ·

⇢
xm + p

p

�
.

In view of (5.10) and (5.11), it is easy to find the following reciprocal relation:

Sm
n (S) =

X
�(n)

mk

�
s1

p/1
�k1�s2

p/2
�k2 · · ·

�
sn

p/n
�kn

k1!k2! · · · kn!
(6.19)

m

n
sn

p =
X
�(n)

(�1)k�1

�
Sm

1 (S)
�k1�Sm

2 (S)
�k2 · · ·

�
Sm

n (S)
�kn

k1!k2! · · · kn!
. (6.20)

Certainly (6.19) may also be written as

Sm
n (S) =

1
n!

Cn

�
ms1

p,ms2
p, · · · ,msn

p

�
. (6.21)

Evidently, the case m = 1 is just the cycle indicator of the Stirling numbers
⇢

n + p
p

�
=

1
n!

Cn

�
s1

p, s
2
p, · · · , sn

p

�
.

7. Concluding Remarks

In our preceding discussion, we have illustrated the applications of Theorem 2.2,
Theorem 5.2 and Corollary 5.3 to Analytic Combinatorics by establishing some
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summation and transformation formulae. All these examples demonstrate that the
k-fold convolution and n/k�partition given by Definition 2.1 are closely related with
the generating functions of admissible combinatorial constructions (cf.[5, Def.1.5;
I.2]), such as the integer partition, the rooted or labeled tree, etc. Perhaps most
noteworthy is that two summations often occur in the ring of symmetric functions
[13]. For example, the elementary symmetric functions and the kth power sum in
n independent variables xi are respectively defined by

ek =
X

1i1<i2<···<ikn

xi1xi2 · · ·xik

sk = xk
1 + xk

2 + · · · + xk
n.

In these two expressions, the integer n is purposely suppressed for clarity. Recall
that Girard’s famous formula states

sm = m
X

�(m,n)

(�1)m+k1+k2+···+kn
(k1 + k2 + · · · + kn � 1)!

k1!k2! · · · kn!
ek1
1 ek2

2 · · · ekn
n . (7.1)

In [14, Section I, Chapter I, Sections 5 and 6], MacMahon generalized this formula
by establishing

1X
m=1

smtm =
e1t� 2e2t2 + 3e3t3 + · · ·

1� e1t + e2t2 � e3t3 + · · · . (7.2)

This clearly states that as a reciprocal of (7.1), each ek can be expressed in terms
of sm

em =
X

�(m,n)

(�1)m+k1+k2+···+kn

k1!k2! · · · kn!

✓
s1

k1

◆k1✓ s2

k2

◆k2

· · ·
✓

sn

kn

◆kn

. (7.3)

Another pair of reciprocal relations for em and sm via the use of determinants can
be found in [13, p.28, Example 8]. Thus, it is interesting to study such reciprocal
relations as Theorem 5.2 and Corollary 5.3 in full generality in the ring of symmetric
functions. This will be discussed in our forthcoming paper.
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