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Abstract
The article discusses su�ciently long minimal zero-sum sequences over groups of
the form Cr�1

2 �C2k, with rank r � 3. Their structure is clarified by general results
in the first part. The conclusions are applied to the Davenport problems, direct and
inverse, for the rank-5 group C4

2 � C2k. We determine its Davenport constant for
k � 70 and describe the longest minimal zero-sum sequences in the more interesting
case where k is odd.

1. Introduction

A non-empty sequence in an additively written abelian group G is a minimal zero-
sum sequence if its sum is the zero element of G and none of its proper subse-
quences has sum zero. The classic direct Davenport problem asks for the maximum
length D(G) of a minimal zero-sum sequence over G. This length is called the
Davenport constant of G; finding it is an unsolved problem for most groups.

The associated inverse Davenport problem asks for a description of the minimal
zero-sum sequences with length D(G). It proves to be not any easier than the direct
one. A notable achievement concerns groups of rank 2. Gao and Geroldinger [2]
conjectured the answer to the inverse problem for groups of the form C2

n. Assuming
their conjecture true, Schmid [8] solved the inverse problem conditionally for all
abelian groups with rank 2. After a number of partial results Gao, Geroldinger and
Grynkiewicz [3] reduced the proof of the conjecture for C2

n to the case of a prime n.
Finally the crucial prime case was settled by Reiher [5]. Let us also mention that
the inverse problem for the rank-3 group C2

2 � C2k was solved by Schmid [9].
A more general inverse zero-sum problem is to describe all su�ciently long min-

imal zero-sum sequences over G. It is solved for cyclic groups [6], [11] and for
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the rank-2 group C2 � C2k [7], by characterizing the “long” sequences in naturally
emerging length ranges. The ranges are optimal with respect to the form of the
obtained characterization.

In this article we deal with the general inverse problem for higher-rank groups
of the form Cr�1

2 � C2k, with rank r � 3. Here the “long” minimal zero-sum
sequences are too diverse to be described satisfactorily by a single characteriza-
tion theorem. The central result of the first part is a more modest-looking state-
ment, Proposition 4.1. Without being an explicit characterization, it is a starting
point of further investigations. Examples are the statements in Section 4 which
establish non-obvious structural properties of the long minimal zero-sum sequences
over Cr�1

2 � C2k. In turn these properties form a basis for a systematic study of the
longest minimal zero-sum sequences. In Section 5 we solve the Davenport problems
for the rank-5 group C4

2 � C2k in a sense to be explained below.
The approach to our inverse problem for the group G = Cr�1

2 � C2k is the one
developed for the rank-2 group C2 � C2k in [7]. It rests on the characterization
theorem for long minimal zero-sum sequences in cyclic groups (Theorem 2.1) and
related properties presented in Section 2. The proof of the main structural state-
ment in Section 3 (Proposition 3.8) is reduced to considerations in the cyclic sub-
group 2G = {2x | x 2 G}. We partition a given minimal zero-sum sequence over G
into blocks with sums in 2G and study the obtained minimal zero-sum sequence
over 2G ⇠= Ck. For the scheme to function it is essential that the factor group G/2G
is isomorphic to the elementary 2-group Cr

2 .
Our condition defining a “long” sequence is quite restrictive—strong enough to

keep simple the standard idea just described. We are interested mostly in longest
minimal zero-sum sequences, not so much in the optimal range where the general
results hold true. Let us emphasize that, whatever the optimal length constraint,
the approach is feasible only if the exponent of G is large with respect to its rank.

The ultimate goal of Sections 4 and 5 are the Davenport problems for C4
2 �C2k.

The statements for arbitrary rank in them are treated accordingly. A number of
these can be refined or generalized, but we usually include versions su�cient for the
immediate task.

It is a basic fact that, for a general abelian group G = Cn1 � · · · � Cnr with
1 < n1| · · · |nr, the Davenport constant D(G) is at least

Pr
j=1(nj � 1)+1 = D⇤(G).

For G = Cr�1
2 � C2k with r 2 {2, 3, 4} it is known that D(G) = D⇤(G). The first

example showing that there exist abelian groups G with D(G) > D⇤(G) is due to
Baayen (see [10]). It applies to the groups C2k�2

2 � C2k with odd k � 3, hence to
the rank-5 group C4

2 � C6 in particular. Geroldinger and Schneider [4] found such
an example for all groups of the form C4

2 �C2k, with odd k � 3 again. We solve the
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direct Davenport problem in C4
2 � C2k for k � 70. The outcome is (Theorem 5.8):

D(C4
2 � C2k) =

(
2k + 4 = D⇤(C4

2 � C2k) if k is even;
2k + 5 = D⇤(C4

2 � C2k) + 1 if k is odd.

About the inverse problem, for odd k > 70 there is a unique longest minimal zero-
sum sequence in C4

2�C2k (Theorem 5.9). In contrast, there are many such sequences
for even k � 70. We do not need new ideas to exhibit them; however the devel-
opment indicates that doing so would not be particularly illuminating. A similar
situation occurs already with the rank-3 group C2

2 � C2k, as observed in [9].
The length, the sum and the sumset of a sequence ↵ are denoted by |↵|, S(↵)

and ⌃(↵) respectively. For a subsequence � of ↵ we say that ↵ is divisible by � or �
divides ↵, and write �|↵. The complementary subsequence of � is denoted by ↵��1.
Term multiplicities are indicated by exponents, e.g., (e+a)a3e2 is the sequence with
terms e + a, a, a, a, e, e. The union of disjoint sequences is called their product . Let
a sequence ↵ be the product of its disjoint subsequences ↵1, . . . ,↵m. We say that
the ↵i’s form a decomposition of ↵ with factors ↵1, . . . ,↵m and write ↵ =

Qm
i=1 ↵i.

Quite often we study the sequence with terms S(↵1), . . . , S(↵m). For convenience of
speech it is also said to be a decomposition of ↵ with factors ↵1, . . . ,↵m; sometimes
we call terms ↵1, . . . ,↵m themselves.

2. Basis of a Sequence in a Cyclic Group

The foundation of all the work is the next theorem for cyclic groups.

Theorem 2.1 ([6],[11]). Each minimal zero-sum sequence � of length ` � bk/2c+2
in the cyclic group Ck, k � 3, has the form � =

Q`
j=1(xjg), where g is a term of �

that generates Ck and x1, . . . , x` are positive integers with sum k.

The notions in this section and some of the next statements were introduced in [7],
where the analogue of our inverse problem for the group C2 � C2k is considered.
We omit the simple proof of the first lemma.

Lemma 2.2. Let � be a sequence with positive integer terms, sum k � 3 and
length |�| � bk/2c + 2. If µ is the multiplicity of the term 1 in � and t 2 � is an
arbitrary term then µ � 2|�|� k, t  µ� (2|�|� k � 2) and t  k � |�| + 1.

Definition 2.3. Let g be a generator of the cyclic group Ck. The g-coordinate of
an element a 2 Ck is the unique integer xg(a) 2 [1, k] such that a = xg(a)g. The
singleton {g} is a basis of a sequence � in Ck if

P
t2� xg(t) = k.

Sequences with a basis are minimal zero-sum sequences. The converse is false in
general; and if a basis exists, the sequence may not contain the basis element as a
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term. However for length � bk/2c+ 2 the notions of a minimal zero-sum sequence
and a sequence with a basis are equivalent. Moreover the basis of a long minimal
zero-sum sequence is unique, and the sequence has terms equal to its basis element.

Lemma 2.4. Each minimal zero-sum sequence � of length |�| � bk/2c+ 2 in Ck,
k � 3, has a uniquely determined basis {g}. The multiplicity µ of the basis element g
in � and the g-coordinate xg(t) of each term t satisfy the inequalities µ � 2|�|� k,
xg(t)  µ� (2|�|� k � 2) and xg(t)  k � |�| + 1.

Proof. A basis exists by Theorem 2.1. Its uniqueness is proven in [7, Lemma 5].
The three inequalities follow from their analogues in Lemma 2.2.

Certain local changes do not a↵ect the basis of a long minimal zero-sum sequence.

Lemma 2.5. Let � be a minimal zero-sum sequence in Ck, k � 3, that satisfies
the condition 2|�| � k � 4. Let w  2|�| � k � 2 be a positive integer. Suppose
that w terms of � are replaced by at least w group elements so that the obtained
sequence �0 is a minimal zero-sum sequence. Then � and �0 have the same basis.

Proof. We use repeatedly Lemma 2.4. Both � and �0 have uniquely determined
bases {g} and {h} as 2|�| � k � 4 and |�0| � |�|. Since g and h generate Ck,
there is an integer s 2 (0, k) coprime to k such that g = sh. Then the h-coordinate
of g is xh(g) = s. Let µ and µ0 be respectively the multiplicities of g and h in �
and �0. At least µ � w terms g are not replaced, hence present in �0 (note that
µ� w > 0). Since

P
t2�0 xh(t) = k and xh(g) = s, we obtain s(µ� w)  k. If the

removed w terms of � are replaced by p � w group elements then |�0| = |�|+ p�w
and so µ0 � 2|�0| � k = (2|�| � k) + 2p � 2w. Hence µ0 > p by 2|�| � k > w
and p � w. Thus � has a term h that is not replaced. Its g-coordinate satisfies
xg(h)  µ � (2|�| � k � 2)  µ � w, hence sxg(h)  s(µ � w)  k by the above.
Since h = xg(h)g = (sxg(h))h, we have 1 = xh(h) = sxg(h), implying h = g.

3. Augmentations

Let G be an abelian group and H a subgroup of G. We call an H-block each
sequence in G with sum in H. An H-decomposition of a sequence is a decompo-
sition whose factors are H-blocks; clearly the sequence is an H-block itself. An
H-block is minimal if its projection onto the factor group G/H under the natural
homomorphism is a minimal zero-sum sequence. An H-decomposition whose fac-
tors are minimal H-blocks is an H-factorization. In accordance with our general
terminology, an H-decomposition (H-factorization) is viewed in two di↵erent ways.
Depending on the occasion, we regard it either as a partition of a sequence into
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H-blocks (minimal H-blocks), or as a sequence over H, with terms the sums of its
factors. In the latter case we sometimes call terms the factors themselves.

It is plain that H-factorizations exist for every H-block. Observe also that the
minimal zero-sum sequences in G are H-blocks for every subgroup H of G. Moreover
their H-decompositions and H-factorizations are minimal zero-sum sequences in H.

We are concerned with the group G = Cr�1
2 � C2k where r � 2 and, first of all,

with its subgroup 2G = {2x : x 2 G} which is cyclic of order k. In this section we
consider certain 2G-factorizations. The factor group G/2G is isomorphic to Cr

2 , the
elementary 2-group of rank r. The minimal zero-sum sequences in Cr

2 have the form
u1 · · ·um(u1 + · · · + um) where m  r and u1, . . . , um are independent elements.
Such a sequence generates a subgroup of rank m, with basis {u1, . . . , um}. So the
blocks in a 2G-factorization may have lengths 1, 2, . . . , r + 1. Call pairs the blocks
of length 2 and long blocks the ones of length � 3. The blocks with length 1 are the
terms of the original sequence in 2G. They are terms of every 2G-factorization.

For the rest of the section let G = Cr�1
2 � C2k with r � 2, and let ↵

denote a minimal zero-sum sequence over G that satisfies

|↵| � k +
l

3r�1
r+1 (2r � 1)

m
+ 1. (3.1)

The length condition (3.1) imposes a restrictive constraint on k and r:

k �
l

3r�1
r+1 (2r � 1)

m
� 2r�1 + 2. (3.2)

To justify (3.2) we use a general upper bound for the Davenport constant due to
Bhowmik and Schlage-Puchta (see [1, Theorem 1.1]):

Let G be a finite abelian group with exponent exp(G). If exp(G) �
p
|G| then

D(G)  exp(G) + |G|/exp(G)� 1; if exp(G) <
p
|G| then D(G)  2

p
|G|� 1.

The uniform (and less precise) estimate D(G)  exp(G)+ |G|/exp(G)�1 follows
because exp(G) + |G|/exp(G) � 2

p
|G| always holds.

In the case G = Cr�1
2 � C2k the above yields D(Cr�1

2 � C2k)  2k + 2r�1 � 1.
Then |↵|  2k + 2r�1 � 1 for each minimal zero-sum sequence ↵ over Cr�1

2 � C2k.
Now (3.2) follows in view of (3.1).

In summary, the length condition (3.1) is satisfied only if k is exponentially large
with respect to r. We use only a very weak consequence of the implied relation (3.2)
in Section 4, but a constraint stronger than (3.2) is needed in Section 5.

Definition 3.1. An augmentation of ↵ is a 2G-factorization such that terms of ↵
from the same proper 2G-coset participate in at most 2 long blocks.

All augmentations are su�ciently long, so that the conclusions of Section 2 apply.
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Lemma 3.2. The following statements hold true for every augmentation � of ↵:
a) � has a uniquely determined basis, with basis element a generator of 2G;
b) � has at least 2r terms equal to the basis element that are not terms of ↵;
c) 2|�|� k � 4 and the number of long blocks in � does not exceed 2|�|� k � 2.

Proof. Let � have w long blocks with total length W . If ↵ has y terms in 2G then
w + y terms of � are not sums of pairs. Hence |�| = w + y + 1

2 (|↵| � y � W ),
yielding 2|�| = |↵| + 2w �W + y. Observe that W � 2w  r�1

r+1 (2r+1 � 2) because
W  2r+1 � 2 (each of the 2r � 1 proper 2G-cosets is involved in at most two long
blocks) and W  (r + 1)w (the length of a block is  r + 1). So (3.1) yields

2|�|�k = (|↵|�k)�(W�2w)+y �
l

3r�1
r+1 (2r � 1)

m
+1� r�1

r+1 (2r+1�2)+y � 2r +y.

Since r � 2 and y � 0, we have 2|�| � k � 4 and so Lemma 2.4 applies. Hence �
has a unique basis {g} where g generates 2G; part (a) follows.

For part (b) Lemma 2.4 ensures at least 2|�|� k � 2r + y terms of � equal to g.
At most y of them are terms of ↵ (from 2G). The remaining ones are sums of pairs
or long blocks, and there are at least 2r of them.

The inequality 2|�|�k � 4 from part (c) was already established. For the second
claim in (c) it is enough to check w + 2  2r because 2|�|� k � 2r + y � 2r. The
length of a long block is at least 3, so w  1

3W  1
3 (2r+1 � 2). The inequality

1
3 (2r+1 � 2) + 2  2r is true for r � 2 and implies the desired w + 2  2r.

Let B|↵ be a 2G-block. A standard partition of B is a 2G-factorization of B
such that each proper 2G-coset is represented at most once in its long blocks. The
terms pairs and long blocks have the same meaning like above.

We say that a proper 2G-coset is even or odd according as it contains an even or
odd number of terms of ↵; a nonzero number of terms is assumed in the even case.

It is immediate that in a standard partition all terms of B from an even coset
are partitioned into pairs. All terms except one from an odd coset are partitioned
into pairs; the exceptional term is in a long block. It is also clear that if u0, u00 2 B
are terms from the same proper 2G-coset then there is a standard partition of B
containing the pair u0u00.

Now form a standard partition of the complementary subsequence ↵B�1 of B
(which is also a 2G-block). The two partitions together form an augmentation of ↵
since each proper 2G-coset is involved in at most 2 long blocks. We justified the
following simple observation.

Lemma 3.3. Let B|↵ be a 2G-block and B = B1 · · ·Bm a standard partition of B.
Then the sums of B1, . . . , Bm are terms of an augmentation of ↵.

In particular the standard partitions of the entire ↵ are augmentations which we
call standard . They play a rôle in the next considerations.
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We need an almost evident general statement. Let {a, b} and {c, d} be disjoint
pairs in a multiset. A swap means replacing them by the pairs {a, c} and {b, d}.

Lemma 3.4. Every partition of a multiset with cardinality 2m into m pairs can be
obtained from every other such partition by a sequence of swaps.

Proof. We use induction on m. The base m = 1 is obvious. For the inductive
step m � 1 7! m, m � 2, consider a multiset M with |M | = 2m and two di↵erent
partitions P1,P2 of M into m pairs. Take a pair {x1, x2} such that {x1, x2} 2 P2,
{x1, x2} 62 P1. Then x1 and x2 are in di↵erent pairs {x1, x01}, {x2, x02} 2 P1. Apply
the swap {x1, x01}, {x2, x02} 7! {x1, x2}, {x01, x02} in P1 to obtain a partition P 0

1 of M
with m pairs; P 0

1 shares the pair {x1, x2} with P2.
Now remove {x1, x2} from M , P 0

1 and P2. This yields a multiset M 0 with cardi-
nality 2(m� 1) and two partitions of M 0 into m� 1 pairs. It remains to apply the
induction hypothesis.

Although we need the next statement only in this section, it adds an interesting
detail to the general picture.

Lemma 3.5. All augmentations of ↵ have the same basis.

Proof. We prove first that every augmentation � has the same basis as a standard
one. Suppose that two long blocks B0, B00 of � have terms u0, u00 from the same
proper 2G-coset. Form a standard partition of the 2G-block B0B00 that contains
the pair u0u00: B0B00 = B1 · · ·Bm, m � 2, with B1 = u0u00. Replacing B0, B00 by
B1, . . . , Bm yields a 2G-factorization �0 of ↵, with more pairs than �. No proper
2G-coset is involved in more than two long blocks of �0, so �0 is an augmentation.
In particular �0 is a minimal zero-sum sequence in 2G, obtained by removing two
terms from � and adding m � 2 new ones. Now Lemma 2.5 can be applied with
w = 2 since 2  2|�| � k � 2 (Lemma 3.2c). Hence �0 has the same basis as �.
Repeat this step as long as there is a proper coset represented in two long blocks.
Eventually we reach a standard augmentation with the same basis as �.

So it is enough to show that every two standard augmentations �1,�2 have the
same basis. The terms of ↵ in 2G belong to each one of �1 and �2. The terms in
an even 2G-coset U form a multiset with even cardinality which is partitioned into
pairs, both in �1 and �2. Call the two partitionsP1 and P2. By Lemma 3.4 P2 can be
obtained from P1 through a sequence of swaps. They yield all pairs in �2 with terms
from U . Consider the terms u1, . . . , u2m�1 in an odd 2G-coset U . In both �1 and �2

all of them but one are divided into pairs. Let the respective pairs be p01, . . . , p
0
m�1

and p001 , . . . , p00m�1, and let u1, u2 be the unpaired terms in �1,�2. Then u1 is in a
long block B1 = u1B of �1 where B|↵ is a subsequence with sum in U , |B| � 2. Set
p0m = {u1, B}, p00m = {u2, B}. Then P1 = {p01, . . . , p0m} and P2 = {p001 , . . . , p00m} are
partitions of the 2m-element multiset {u1, . . . , u2m�1, B} into pairs. Again, P2 can
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be obtained from P1 by a sequence of swaps (Lemma 3.4). As a result all pairs in �2

with terms from U are obtained, and also a long block B0
1 = u2B that contains the

only term u2 2 U involved in a long block of �2. Clearly |B0
1| = |B1|.

Carry out the swaps described, for all proper 2G-cosets. No swap changes
the number of long blocks in which a 2G-coset is represented. Therefore all 2G-
factorizations throughout the process are standard augmentations of ↵. They share
the same basis by Lemma 2.5 which applies with w = 2 like above. Furthermore
the term representing an odd coset U in a long block can be replaced by another
term from U only through swaps involving U itself, not any other coset.

In summary, the swaps lead to a standard augmentation �0 with the same basis
as �1 and with the same pairs as �2. The long blocks in �0 combined contain the
same terms of ↵ as the long blocks in �2 combined. The swaps do not change the
number and the lengths of long blocks. In particular �0 and �1 have the same
number w1 of long blocks and hence also the same length.

Let �2 have w2 long blocks; one may assume w1  w2. Replace the long blocks
in �0 by the ones in �2 to obtain �2. Apply Lemma 2.5 one more time, with w = w1,
to conclude that �0 and �2 have the same basis. The conditions 2|�0|� k � 4 and
w1  2|�0|�k�2 are ensured by Lemma 3.2c. So �1 and �2 have the same basis.

Now we observe that ↵ has a term of rather special nature.

Lemma 3.6. Let g be the common basis element of all augmentations of ↵. There
exists a term a 2 ↵ with order 2k such that 2a = g.

Proof. Let � be an augmentation in which the multiplicity of g is a minimum. By
Lemma 3.2b � has at least 2r terms g that are not present in ↵; they are sums of
pairs or long blocks. At least 2r+1 terms of ↵ are needed for their formation, and
there are 2r � 1 proper 2G-cosets. Hence some proper coset U is involved at least
3 times in blocks with sum g. At least one of its participations is in a pair by the
definition of an augmentation. A pair with a term in U has both of its terms in U ,
so � contains a pair u1u0 and a block u2B with sums g, where the terms u1, u2, u0

and the sum S(B) = u00 belong to U . We claim that u1 = u2 = a and 2a = g.
Swap u1 and u2 to obtain the blocks u2u0 and u1B. A new augmentation results,

with the same basis {g}. The minimum choice of � implies that the new blocks
have sums g, like u1u0 and u2B. So u2 + u0 = u1 + u00 = g = u1 + u0 = u2 + u00,
yielding u1 = u2, u0 = u00. A symmetric argument gives u0 = u2, u1 = u00. Hence
u1 = u2 = u0 = u00 = a where a is a term of ↵ from U , and 2a = g. Clearly
ord(a) = 2k because 2G = hgi ⇢ hai, a 62 2G, |2G| = k and exp(G) = 2k. Therefore
the term a meets the requirements.

Henceforth we write xa(B) for an hai-block B instead of xa(S(B)). The empty
subsequence ;|↵ is regarded as an hai-block with xa(;) = 0.
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Lemma 3.7. There exists a term a 2 ↵ of order 2k with the following properties:
a) If � is an augmentation of ↵ then

P
t2� xa(t) = 2k and 0 < xa(t) < k for

each t 2 �.
b) If B|↵ is a 2G-block and B = B1 · · ·Bm is a standard partition of B then

xa(B) = xa(B1) + · · · + xa(Bm).
c) If B|↵ is a minimal 2G-block or a minimal hai-block then 0 < xa(B) < k.

Proof. Let a 2 ↵ be a term like in Lemma 3.6. If U is the proper 2G-coset contain-
ing a then hai = 2G [ U is a cyclic subgroup of G with maximum order 2k.

a) Since {g} is the basis of �, we have
P

t2� xg(t) = k. Because 2|�| � k � 4
(Lemma 3.2c), Lemma 2.4 applies and gives 0 < xg(t)  k � |�|+ 1 for each t 2 �.
Now we use 2|�| � k � 4 again to obtain 0 < 2xg(t)  k � 2 < k. On the other
hand g = 2a, so t = xg(t)g = (2xg(t))a. As 2xg(t) 2 (0, k), the a-coordinate of t
is xa(t) = 2xg(t). Hence the relations

P
t2� xg(t) = k and 0 < 2xg(t) < k can be

written respectively as
P

t2� xa(t) = 2k and 0 < xa(t) < k.
b) By Lemma 3.3 the sums of B1, . . . , Bm are terms of an augmentation. Then

(a) implies that the sum of their a-coordinates is at most 2k. This is enough to
conclude that xa(B) = xa(B1) + · · · + xa(Bm).

c) A minimal 2G-block B is a standard partition of itself, so there is an augmen-
tation with term S(B) (Lemma 3.3). Hence (a) gives 0 < xa(B) < k.

Let B be a minimal hai-block. Then S(B) 2 hai = 2G [ U , and we can assume
S(B) 2 U . (If S(B) 2 2G then B is also a minimal 2G-block.) Observe that a 2 B
implies B = a by the minimality of B, and the claim is trivially true. So suppose
that a 62 B and form the block B0 = Ba. Now S(B0) 2 2G and it is immediate
that B0 is a minimal 2G-block. Therefore 0 < xa(B0) < k by the previous case, i.e.,
S(B0) 2 {a, 2a, . . . , (k � 1)a}. Because S(B0) = S(B) + a and S(B) 6= 0, it follows
that S(B) 2 {a, 2a, . . . , (k � 2)a}. Thus 0 < xa(B) < k holds true.

We proceed to the main result of the section.

Proposition 3.8. Let G = Cr�1
2 � C2k where r � 2, and let ↵ be a minimal zero-

sum sequence in G with length |↵| � k +
l

3r�1
r+1 (2r � 1)

m
+ 1. There exists a term a

of ↵ with order 2k such that every hai-factorization of ↵ has basis {a}.

Proof. Let a 2 ↵ be a term with the properties from Lemma 3.7. Consider any
hai-factorization � of ↵ and set S =

P
t2� xa(t). We construct an augmentation �

of ↵ such that
P

t2� xa(t) = S. Then Lemma 3.7a will yield S = 2k. Denote by U
again the proper 2G-coset containing a; then hai = 2G [ U .

The terms of � are sums of minimal hai-blocks, they are either in 2G or in U .
Moreover there is an even number of blocks with sums in U . Partition them into
pairs, and let A1, A2 be one such pair. The product A1A2 is a 2G-block. Let
A1A2 = B1 · · ·Bm be a standard partition, with B1, . . . , Bm minimal 2G-blocks.
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Replace A1, A2 by B1, . . . , Bm. We have xa(A1A2) = xa(B1) + · · · + xa(Bm) by
Lemma 3.7b. On the other hand xa(A1A2) = xa(A1) + xa(A2) as xa(Ai) 2 (0, k)
by Lemma 3.7c, i = 1, 2. Hence xa(A1) + xa(A2) = xa(B1) + · · · + xa(Bm).

By doing the same with every pair of blocks with sums in U we obtain a
2G-factorization � of ↵ such that

P
t2� xa(t) = S. (The initial hai-blocks with

sum in 2G are minimal 2G-blocks; they are unchanged.) Suppose that two long
blocks B0, B00 of � contain terms u0, u00 from the same proper 2G-coset. Form
a standard partition B0B00 = B1 · · ·Bm of the 2G-block B0B00 in which one of the
blocks Bi is the pair u0u00. Like above we deduce xa(B0B00) = xa(B1)+ · · ·+xa(Bm)
from Lemma 3.7b and xa(B0B00) = xa(B0) + xa(B00) from Lemma 3.7c. It follows
that xa(B0) + xa(B00) = xa(B1) + · · · + xa(Bm). Therefore replacing B0, B00 by
B1, . . . , Bm yields a new 2G-factorization of ↵, with the same value of S as � and
with more pairs.

Repeat the same step as long as a proper 2G-coset is represented in more than
one long block. Since the number of pairs cannot increase indefinitely, the process
terminates. The resulting 2G-factorization � is a (standard) augmentation of ↵ and
satisfies

P
t2� xa(t) = S, as desired.

All subsequent work rests on the existence of a term like in Proposition 3.8. Such
a term has other substantial properties, the ones from the previous two lemmas.
Some of them are summarized in the first statement of the next section.

4. Additional General Properties

We proceed to consider selected additional structural properties of long minimal
zero-sum sequences over Cr�1

2 � C2k. The selection is determined by our next goal,
the longest minimal zero-sum sequences over the rank-5 group C4

2�C2k. So we could
have treated only the case r = 5, but keeping the natural generality is desirable.
Most conclusions are interesting on their own right and can be developed further.

Proposition 4.1. Let G = Cr�1
2 � C2k where r � 2, and let ↵ be a minimal

zero-sum sequence in G with length |↵| � k +
l

3r�1
r+1 (2r � 1)

m
+ 1. There exists an

order-2k term a of ↵ with the following properties:
a) Every hai-decomposition of ↵ has basis {a}.
b) If B|↵ is a minimal hai-block then 0 < xa(B) < k.
c) If B|↵ is an hai-block and B = B1 · · ·Bm is an hai-decomposition of B then

xa(B) = xa(B1) + · · · + xa(Bm).
d) If B|↵ and B0 are hai-blocks such that B0|B then xa(B0)  xa(B), with equality

if and only if B0 = B.
e) Every hai-block B|↵ with xa(B) = 1 is minimal.
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Proof. Let a 2 ↵ be a term like in Proposition 3.8. We show that it has the stated
properties. Claim (b) is a part of Lemma 3.7c. We prove claim (c) which implies (a),
(d) and (e). Suppose first that B = B1 · · ·Bm is an hai-factorization of B. Take any
hai-factorization of the complementary block ↵B�1 and add B1, . . . , Bm to obtain
an hai-factorization of ↵. The a-coordinates of its blocks have sum 2k (Proposi-
tion 3.8). Hence

Pm
i=1 xa(Bi) 2 (0, 2k] (for B 6= ;) and so xa(B) =

Pm
i=1 xa(Bi).

For the general case, factorize each Bi into a product of minimal hai-blocks
Bi1, . . . , Bisi . By the above, xa(Bi) = xa(Bi1)+· · ·+xa(Bisi) for each i = 1, . . . ,m,
so
Pm

i=1 xa(Bi) =
Pm

i=1

Psi

j=1 xa(Bij). The Bij ’s form an hai-factorization of B.
Hence xa(B) =

Pm
i=1

Psi

j=1 xa(Bij) by the previous case, and the claim follows.

For the rest of the section let ↵ be again a minimal zero-sum sequence
over G = Cr�1

2 �C2k, r � 2, that satisfies |↵| � k +
l

3r�1
r+1 (2r � 1)

m
+1.

Fix a term a 2 ↵ like in Proposition 4.1.

Most of the proofs that follow require k to be relatively large as compared to r:
the modest k > r2 su�ces for the purpose. It is amply ensured by the length con-
dition above, which is condition (3.1). Recall that (3.1) implies (3.2), an inequality
much stronger than k > r2 for r � 2.

We repeatedly use the fact that a minimal hai-block in ↵ has length at most r, due
to G/ hai ⇠= Cr�1

2 . A multitude of hai-factorizations is considered, so “hai-block,”
“hai-factorization” and “hai-decomposition” are usually abbreviated to “block,”
“factorization” and “decomposition.” However decomposition also keeps its general
meaning, a partition of a sequence into arbitrary disjoint subsequences. The context
excludes ambiguity. Write t̄ for the hai-coset containing t 2 G and u ⇠ v if u = v.
For a sequence � =

Q
ti in G denote by �̄ the sequence

Q
t̄i in G/ hai.

Our exposition uses two non-conventional notions which we introduce now.

The �-quantity. Let B|↵ be a block and X|B a proper nonempty subsequence.
Then X 0 = BX�1 is also proper and nonempty; sometimes we say that B = XX 0

is a proper decomposition of B. As S(X) and S(X 0) are in the same hai-coset, they
di↵er by a multiple of a.

Hence there is a unique integer �(X) 2 [0, k] such that S(X 0) = S(X)+�(X)a or
S(X) = S(X 0)+ �(X)a. Write �(X) instead of the precise but cumbersome �B(X);
no confusion will arise. Naturally �(X) = �(X 0). If, e.g., S(X 0) = S(X) + �(X)a,
then S(X) + S(X 0) = xa(B)a leads to the relations 2S(X 0) =

�
xa(B) + �(X)

�
a,

2S(X) =
�
xa(B)� �(X)

�
a. As 2S(X) 2 2G and 2a generates 2G, we see that �(X)

and xa(B) are of the same parity.
It follows that there is an element e in the hai-coset S(X) such that 2e = 0 and

{S(X), S(X 0)} =
�
e + 1

2

�
xa(B) + �(X)

�
a, e + 1

2

�
xa(B)� �(X)

�
a
 

. (4.1)

If S(X) is a proper hai-coset then ord(e) = 2 (e is one of the two elements with
order 2 in S(X)). If S(X) = hai then e = ka (ka is the only order-2 element in hai)
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or e = 0 (and ord(e) = 1). Let us remark however that the exceptional e = 0
practically does not occur in our exposition.

Indeed we consider mostly proper decompositions B = XX 0 of minimal blocks B.
In this case S(X) 6= hai, so the respective element e from (4.1) has order 2.

We also define the lower member X⇤ of the decomposition B = XX 0 (of the
pair X,X 0). Namely let X⇤ be X or X 0 according as S(X 0) = S(X) + �(X)a or
S(X) = S(X 0) + �(X)a. By (4.1) S(X⇤) = e + 1

2

�
xa(B) � �(X)

�
a. Note that if

�(X) = 0 then either one of X and X 0 can be taken as X⇤.

The defect. For every hai-block B|↵ define d(B) = |B|� xa(B) and call d(B)
the defect of B. The defect is additive: For each hai-decomposition B =

Qm
i=1 Bi

of B one has d(B) =
Pm

i=1 d(Bi) (Proposition 4.1c).
In particular the entire ↵ is an hai-block with defect d(↵) = |↵|�xa(↵) = |↵|�2k;

equivalently |↵| = 2k + d(↵).

While Proposition 4.1 represents the main idea of the approach, the following
statement is its main technical tool.

Lemma 4.2. Let B1, . . . , Bm be disjoint blocks in ↵ with
Pm

i=1 xa(Bi) < k and
Bi = XiX 0

i proper decompositions, i = 1, . . . ,m, such that
Pm

i=1 S(Xi) = 0. Then:
a) The product of the lower members X⇤

1, . . . ,X
⇤
m is an hai-block dividing B1· · ·Bm

with a-coordinate

xa(X⇤
1 · · ·X⇤

m) =
1
2

 
mX

i=1

xa(Bi)�
mX

i=1

�(Xi)

!
.

In addition
Pm

i=1 �(Xi) 
Pm

i=1 xa(Bi)� 2.
b) For each i = 1, . . . ,m there exists an element ei 2 S(Xi) such that

2ei = 0, {S(Xi), S(X 0
i)} = {ei + 1

2

�
xa(Bi)� �(Xi)

�
a, ei + 1

2

�
xa(Bi) + �(Xi)

�
a},

and e1, . . . , em satisfy e1 + · · · + em = 0.

Proof. Denote �(Xi) = qi, i = 1, . . . ,m. Since �(Xi) = �(X 0
i), one may assume that

Xi = X⇤
i for each i = 1, . . . ,m. In other words S(X 0

i) = S(Xi) + qia for all i. Let
Wi = X 0

1 · · ·X 0
iXi+1 · · ·Xm for 1  i  m� 1 and W0 =

Qm
i=1 Xi, Wm =

Qm
i=1 X 0

i.
Every Wi is a block due to

Pm
i=1 S(Xi) = 0, and W0 =

Qm
i=1 X⇤

i .
a) Note that xa(Wi) < k for all i = 0, . . . ,m. Indeed B1 · · ·Bm is the product of

the blocks Wi and W 0
i = X1 · · ·XiX 0

i+1 · · ·X 0
m for 1  i  m � 1, hence Proposi-

tion 4.1c yields xa(Wi) + xa(W 0
i ) = xa(B1 · · ·Bm) =

Pm
i=1 xa(Bi) < k. In addition

we obtain analogously xa(W0) + xa(Wm) =
Pm

i=1 xa(Bi) < k.
Observe next that S(Wi) � S(Wi�1) = S(X 0

i) � S(Xi) = qia for i = 1, . . . ,m,
meaning that xa(Wi) ⌘ xa(Wi�1) + qi (mod 2k). Given xa(Wi) < k and qi 2 [0, k]
for all admissible i, the congruence turns into equality: xa(Wi) = xa(Wi�1) + qi.
Summation over i = 1, . . . ,m yields xa(Wm)� xa(W0) =

Pm
i=1 qi =

Pm
i=1 �(Xi).
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It follows that xa(W0) = 1
2

�Pm
i=1xa(Bi)�

Pm
i=1 �(Xi)

�
, as required. Also, since

the positive integers xa(W0) and xa(Wm) add up to
Pm

i=1 xa(Bi), their di↵erence
xa(Wm)� xa(W0) =

Pm
i=1 �(Xi) is at most

Pm
i=1 xa(Bi)� 2.

b) Let S(Xi) = ei + 1
2

�
xa(Bi) + ✏i�(Xi)

�
a, with ei 2 S(Xi) such that 2ei = 0

and ✏i 2 {�1, 1}, i = 1, . . . ,m. Such a representation exists by (4.1), which also
gives S(X 0

i) = ei + 1
2

�
xa(Bi) � ✏i�(Xi)

�
a. So it su�ces to show

Pm
i=1 ei = 0.

Clearly
Pm

i=1 ei 2 {0, ka} as
Pm

i=1 ei 2 hai, 2
Pm

i=1 ei = 0. If
Pm

i=1 ei = ka then
S(X1 · · ·Xm) = sa where s = k + 1

2

�Pm
i=1 xa(Bi) +

Pm
i=1 ✏i�(Xi)

�
. The inequal-

ity
Pm

i=1 �(Xi) 
Pm

i=1 xa(Bi) � 2 from (a) and the hypothesis
Pm

i=1 xa(Bi) < k
imply s 2 (k, 2k); in particular xa(X1 · · ·Xm) = s. However the block X1 · · ·Xm

divides B1 · · ·Bm, hence s = xa(X1 · · ·Xm)  xa(B1 · · ·Bm) =
Pm

i=1 xa(Bi) < k
(Proposition 4.1d). The contradiction proves

Pm
i=1 ei = 0.

We often use Lemma 4.2 in the case where one xa(Bi) equals 2 or 3, and the
remaining ones are equal to 1. The justification of the next corollary is straight-
forward. All claims follow directly from Lemma 4.2 and the fact that xa(Bi) and
�(Xi) have the same parity.

Corollary 4.3. Under the assumptions of Lemma 4.2 suppose that xa(Bi) = 1 for
i = 1, . . . ,m � 1 and xa(Bm) 2 {2, 3}. Then there exist elements ei 2 S(Xi) with
2ei = 0, i = 1, . . . ,m, such that

Pm
i=1 ei = 0 and:

a) �(Xi) = 1 and {S(Xi), S(X 0
i)} = {ei, ei + a} for i = 1, . . . ,m� 1;

b) If xa(Bm) = 2 then �(Xm) = 0 and S(Xm) = S(X 0
m) = em+a; if xa(Bm) = 3

then �(Xm) = 1 and {S(Xm), S(X 0
m)} = {em + a, em + 2a}.

We are about to see that substantial structural properties can be expressed con-
veniently in terms of the �-quantity and the defect. Let us mention already now
that minimal blocks with positive defects are particularly interesting.

Lemma 4.4. Each minimal block B|↵ with positive defect has a term b 2 B such
that �(b) � xa(B).

Proof. Suppose that a minimal block B = b1 · · · bm in ↵ satisfies d(B) > 0 and
�(bi) < xa(B) for all i. Applying (4.1) with X = bi, X 0 = Bb�1

i yields an ei 2 bi

with ord(ei) = 2 and bi = ei + 1
2

�
xa(B)±�(bi)

�
a for a suitable choice of sign. Hence

bi = ei +xia with xi an integer in
�
0, xa(B)

�
because 1

2

�
xa(B)±�(bi)

�
2
�
0, xa(B)

�
by �(bi) < xa(B). Adding up gives xa(B)a =

Pm
i=1 bi =

Pm
i=1 ei +(

Pm
i=1 xi) a, and

we have
Pm

i=1 ei 2 {0, ka} due to
Pm

i=1 ei 2 hai, 2
Pm

i=1 ei = 0.
Now xa(B) < |B| since d(B) = |B| � xa(B) > 0, and m = |B|  r since B is

minimal. These imply
Pm

i=1 xi < |B|xa(B) < |B|2  r2. Hence
Pm

i=1 xi < k due to
k > r2. Thus xa(B)a = (✏ +

Pm
i=1 xi) a with ✏ 2 {0, k} and

Pm
i=1 xi 2 (0, k), which

yields ✏ +
Pm

i=1 xi = xa(B). Next, xa(B) 2 (0, k) (Proposition 4.1b), so ✏ = 0 andPm
i=1 xi = xa(B). Therefore |B| = m  xa(B), contradicting d(B) > 0.
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Lemma 4.5. Let B1, . . . , Bm|↵ be disjoint minimal blocks with positive defects and
Xi|Bi proper nonempty subsequences satisfying �(Xi) � xa(Bi), i = 1, . . . ,m. Then
S(X1), . . . , S(Xm) are independent elements in G/ hai.

Proof. If S(X1), . . . , S(Xm) are not independent, the sequence
Qm

i=1 S(Xi) has a
nonempty minimal zero-sum subsequence �, say � =

Qn
i=1 S(Xi) where 0 < n  m.

Because
Pn

i=1 S(Xi) = 0, the main assumption of Lemma 4.2 is satisfied for the
proper decompositions Bi = XiX 0

i, i = 1, . . . , n. We show that
Pn

i=1 xa(Bi) < k is
satisfied too. Since � is minimal, its length does not exceed the Davenport constant r
of G/ hai ⇠= Cr�1

2 . Hence n = |�|  r. Since xa(Bi) < |Bi|  r for i = 1, . . . , n
(each Bi is minimal with d(Bi) > 0), we have

Pn
i=1 xa(Bi) <

Pn
i=1 |Bi|  nr  r2.

Now k > r2 gives
Pn

i=1 xa(Bi) < k. So the inequality in Lemma 4.2a holds true,
yielding

Pn
i=1 �(Xi) 

Pn
i=1 xa(Bi) � 2. However this is false as �(Xi) � xa(Bi)

for all i = 1, . . . , n.

There follows the non-evident observation that a su�ciently long minimal zero-
sum sequence in G has few disjoint blocks with positive defects.

Corollary 4.6. a) There are at most r�1 disjoint blocks with positive defects in ↵.
b) Let B1, . . . , Bm be disjoint minimal blocks with positive defects in ↵. Then

xa(B1) + · · · + xa(Bm) < k.

Proof. a) Let B1, . . . , Bm|↵ be disjoint blocks with d(Bi) > 0, i = 1, . . . ,m. Each Bi

factorizes into minimal blocks, and at least one of the factors has positive defect
because d(·) is additive. By choosing one such factor for every i = 1, . . . ,m we can
assume that the Bi’s are minimal. For each i = 1, . . . ,m some bi 2 Bi satisfies
�(bi) � xa(Bi) (Lemma 4.4). Then b1, . . . , bm are independent elements in G/ hai
(Lemma 4.5). Hence m does not exceed the rank r � 1 of G/ hai ⇠= Cr�1

2 .
b) We have m < r due to (a), and d(Bi) > 0 means xa(Bi) < |Bi|, i = 1, . . . ,m.

So
Pm

i=1 xa(Bi) <
Pm

i=1 |Bi|  mr < r2; now refer to k > r2 again.

Remark 4.7. By Corollary 4.6b the condition
Pm

i=1 xa(Bi) < k in Lemma 4.2
and Corollary 4.3 holds for minimal blocks with positive defects. So in further
applications of these statements to such blocks we omit checking

Pm
i=1 xa(Bi) < k.

In the sequel an (l, s)-block means a minimal block B with length l and sum sa
where l > s; thus d(B) > 0 is assumed. The phrase “B is an (l, s)-block” is
shortened to “B = (l, s)” wherever convenient. We write (⇤, s)-block or (l, ⇤)-block
if l or s is irrelevant. Furthermore a unit block means a product of (⇤, 1)-blocks.

Lemma 4.8. a) For each unit block U |↵ the subgroup
⌦
U
↵

of G/ hai has rank d(U).
Consequently d(U)  r � 1.

b) Let U |↵ be a unit block, B|↵U�1 a minimal block with positive defect and X|B
a proper nonempty subsequence such that �(X) � xa(B). Then S(X) 62

⌦
U
↵
.
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Proof. a) Let U = U1 · · ·Um be a product of (⇤, 1)-blocks Ui. Remove one term
from each Ui and note that the remaining

Pm
i=1(|Ui| � 1) terms are independent

in G/ hai. If not there exist Ui1 , . . . , Uis , s  m, and proper nonempty Xij |Uij such
that

Ps
j=1 S(Xij ) = 0. However �(Xij ) � xa(Uij ) = 1 for all j as �(Xij ) is odd.

Hence S(Xi1), . . . , S(Xis) are independent elements in G/ hai by Lemma 4.5, which
is a contradiction. So the remaining

Pm
i=1(|Ui|� 1) terms are independent indeed,

and this is the maximum number of independent elements in
⌦
U
↵

(an independent
set must be missing at least one element from each Ui). Hence

⌦
U
↵

is a subgroup
of rank

Pm
i=1(|Ui|� 1). The sum equals

Pm
i=1 d(Ui) = d(U) as xa(Ui) = 1 for all i.

In particular d(U) does not exceed the rank r � 1 of G/ hai ⇠= Cr�1
2 .

b) Let S(X) 2
⌦
U
↵

for a proper nonempty X|B with �(X) � xa(B). Then there
is a product U1 · · ·Um|U of (⇤, 1)-blocks Ui and proper nonempty Xi|Ui such that
S(X)+

Pm
i=1 S(Xi) = 0. However this is false: Lemma 4.5 applies as �(Xi) � xa(Ui)

for all i and �(X) � xa(B), hence S(X), S(X1), . . . , S(Xm) are independent.

There follows a direct consequence of Lemma 4.4 and Lemma 4.8.

Corollary 4.9. If U is a unit block in ↵ with d(U) = r � 1 then ↵U�1 is not
divisible by blocks with positive defect.

More subtle applications of the �-quantity involve lower members of proper de-
compositions. Such is the spirit of the concluding lemmas.

Lemma 4.10. Let a (⇤, 1)-block U |↵ satisfy �(u) = 1 for each u 2 U . Then there
exist a term u 2 U and an order-2 element e 2 G such that u = e+a, S(Uu�1) = e.
Thus Uu�1 is the lower member of the proper decomposition U = (u)(Uu�1).

Proof. By (4.1) the condition �(u) = 1 implies {u, S(Uu�1)} = {e, e + a} for some
e 2 G with order 2. There is a term u of the form e + a, or else multiplyingP

u2U u = a by 2 yields the impossible 2a = 0. The claim follows.

Lemma 4.11. a) Let U = (l, 1) and B = (m, 2) be disjoint blocks in ↵ such that
u 2

⌦
B
↵

for every term u 2 U . Then the product UB is divisible by a (⇤, 1)-block V
with d(V ) > d(U). Moreover if m � 5 then d(V ) > d(U) can be strengthened to
d(V ) > d(U) + 1.

b) Let U = (l, 1) and B = (m, 3) be disjoint blocks in ↵ such that u 2
⌦
B
↵

for
every term u 2 U . Suppose that the product UB is not divisible by a unit block V
with d(V ) > d(U). Then l = 2 and UB is divisible by an (m, 2)-block.

Proof. In both (a) and (b) for each u 2 U there is a proper nonempty X|B such that
u ⇠ S(X); let X 0 = BX�1. Consider the proper decompositions U = (u)(Uu�1)
and B = XX 0. Because xa(B) 2 {2, 3}, Corollary 4.3a implies �(u) = 1. Hence by
Lemma 4.10 u can be chosen so that u = e + a and S(Uu�1) = e for an order-2
element e 2 G. Then Uu�1 is the lower member of the pair u,Uu�1.
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Next, in (a) we have �(X) = 0 and S(X) = S(X 0) = e + a by Corollary 4.3b.
Similarly �(X) = 1 and {S(X), S(X 0)} = {e + a, e + 2a} hold in (b). By symmetry
let |X| � |X 0| in (a) and S(X) = e+ a, S(X 0) = e+2a in (b). Then the pair X,X 0

has lower member X; in (a) one can assume so because �(X) = 0.
Let V = (Uu�1)X be the product of the lower members of the same decomposi-

tions U = (u)(Uu�1), B = XX 0. This is a block with sum e+(e+a) = a and length
l0 = l � 1 + |X|. Note that l0 > 1 since l > 1, so V is an (l0, 1)-block dividing UB.

In (a) we obtain l0 � l � 1 + dm/2e � l + 1 as |X| � dm/2e and also m � 3 by
d(B) > 0. So d(V ) � l > d(U), as needed. Likewise if m � 5 then d(V ) > d(U)+1.

The assumption in (b) implies d(V )  d(U), i.e., l0  l. Then |X| = 1 and
|X 0| = m� 1. Consider the block C = (Uu�1)X 0, with sum e + (e + 2a) = 2a and
length l+m�2. We claim that C is minimal. Otherwise it has an hai-decomposition
with at least two factors. Since xa(C) = 2, it follows from Proposition 4.1, parts (c)
and (e), that the factors are exactly two and each one is a (⇤, 1)-block. Then
their product C is a unit block dividing UB with d(C) > d(U), contrary to the
assumption. Indeed d(C) = l + m� 4 > l � 1 = d(U) since m � 4 by d(B) > 0.

Because t 2
⌦
B
↵

for all t 2 C and C is minimal, it follows that |C|  |B|, i.e.,
l + m� 2  m. This gives l = 2 and |C| = m. Therefore C|UB is an (m, 2)-block,
completing the proof. Let us remark that UBC�1 = (e+a)2 is a block with length 2
and sum 2a; its defect is 0.

The last statement concerns (r, 3)-blocks where r � 5 is the rank of G.

Corollary 4.12. Suppose that G has rank r � 5. Let U1 = (2, 1), U2 = (2, 1) and
B = (r, 3) be disjoint blocks in ↵. Then the product U1U2B is divisible by a unit
block V with d(V ) > d(U1U2).

Proof. The claim is evident if U1B is divisible by a unit block V with d(V ) > d(U1).
If not we apply Lemma 4.11b to U1 and B. This is possible since

⌦
B
↵

= G/ hai.
So there is an (r, 2)-block C that divides U1B. Now U2 and C are disjoint and⌦
C
↵

= G/ hai, hence Lemma 4.11a applies. Its last part yields a (⇤, 1)-block V with
d(V ) > d(U2) + 1 = d(U1U2) that divides U2C. Clearly V divides U1U2B.

5. Longest Minimal Zero-Sum Sequences in C4
2 � C2k

5.1. General Observations

Despite what appears to be an extensive preparation, the Davenport problems for
the groups Cr�1

2 � C2k are still out of reach, even for relatively small r � 5. The
next two general lemmas are necessary to start out an argument in this direction.
The first one is a basic property of all longest minimal zero-sum sequences. The
second one is related to Proposition 4.1d.
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Lemma 5.1. Let G be a finite abelian group and ↵ a minimal zero-sum sequence
of maximum length in G. For each term t 2 ↵ and each element g 2 G there is a
subsequence of ↵ that contains t and has sum g. In particular ⌃(↵) = G.

Proof. Replace t 2 ↵ by t � g and g. The resulting sequence ↵0 has sum 0 and
is not minimal since ↵ is longest possible. Take a proper nonempty zero-sum sub-
sequence �|↵0. Notice that its complementary sequence ↵0��1 is also a proper
nonempty zero-sum subsequence. The minimality of ↵ implies that � and ↵0��1

each contains exactly one of t� g and g. We may assume t � g 2 �, g /2 �; then
� = �(t � g) where �|↵t�1. (The extreme cases � = ; and � = ↵t�1 correspond
to g = t and g = 0 respectively.) Now �t is a subsequence of ↵ with the stated
properties. Indeed it contains t, and S(�) = 0 rewrites as S(�t) = g.

Lemma 5.2. Let G be a finite abelian group and a 2 G an element with order m.
Suppose that an hai-block � in G satisfies the following condition:

For every hai-block �0|� the inequality xa(�0)  xa(�) holds, with equal-
ity if and only if �0 = �.

Then �am�xa(�) is a minimal zero-sum sequence in G, of length m + |�|� xa(�).

Proof. Denoting xa(�) = s and ↵ = �am�s, we have S(↵) = sa+(m�s)a = 0. Each
zero-sum subsequence ↵0|↵ has the form ↵0 = �0at where �0|� and 0  t  m� s.
Clearly S(�0) 2 hai, so �0 is an hai-block. Then 0  xa(�0)  s by the assumption of
the lemma, also 0  xa(at) = t  m�s. Hence 0  xa(�0)+xa(at)  m. In addition
if ↵0 6= ; then xa(�0)+xa(at) > 0 (the summands are not both zero). The inequality
0 < xa(�0) + xa(at)  m shows that xa(�0) + xa(at) = xa(�0at) = xa(↵0). Since
S(↵0) = 0, we obtain m = xa(↵0) = xa(�0) + xa(at)  s + (m � s) = m, implying
xa(�0) = s = xa(�) and xa(at) = m � s. These equalities hold respectively only
if �0 = �, by the equality claim in the assumption, and t = m � s. Thus ↵0 = ↵,
proving that ↵ is a minimal zero-sum sequence.

5.2. The Approach

We mentioned in Section 4 that a long minimal zero-sum sequence ↵ in Cr�1
2 � C2k

can be regarded as an hai-block with defect d(↵) = |↵| � xa(↵) = |↵| � 2k; thus
|↵| = 2k + d(↵). Here a 2 ↵ is a term like in Proposition 4.1. Hence |↵| is a maxi-
mum if and only if so is d(↵). From this viewpoint finding the Davenport constant
of Cr�1

2 � C2k is equivalent to maximizing the defect d(↵) over all (su�ciently long)
minimal zero-sum sequences ↵. Solving the inverse Davenport problem reduces to
a characterization of the equality cases.

To argue in this spirit with the tools at hand, we need them to apply (at least)
to longest minimal zero-sum sequences.
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In this subsection G denotes the group Cr�1
2 � C2k where r � 3 and

k �
l

3r�1
r+1 (2r � 1)

m
� r + 2. (5.1)

Let ↵ be a minimal zero-sum sequence of maximum length over G, and
let a 2 ↵ be a term like in Proposition 4.1. In the sequel we call such
a term distinguished.

The restriction (5.1) does ensure that all earlier conclusions hold for longest min-
imal zero-sum sequences ↵ over G. Indeed they are known to satisfy the standard
inequality |↵| � D⇤(G) = 2k + r�1 which, together with (5.1), implies the assump-
tion |↵| � k +

l
3r�1
r+1 (2r � 1)

m
+ 1 in Section 4. In particular a distinguished term

exists. Observe that (5.1) is stronger than the implicit constraint (3.2) in Section 3.
Note also that |↵| � 2k + r � 1 rewrites as d(↵) � r � 1 in terms of the defect.

We go back to the abbreviations “block” and “factorization” for “hai-block” and
“hai-factorization” wherever convenient. However from now on “decomposition”
means a proper decomposition of a block as it is defined in Section 4 together with
the �-quantity.

Combined with our general structural results, Lemma 5.2 yields a strong conse-
quence for longest minimal zero-sum sequences.

Corollary 5.3. Every hai-block in ↵ has nonnegative defect.

Proof. Let B|↵ be an hai-block. By Proposition 4.1d the assumption of Lemma 5.2
holds for its complementary hai-block C = ↵B�1. So, since ord(a) = 2k, there
exists a minimal zero-sum sequence over G of length l = 2k + |C| � xa(C). We
have l = |↵| � d(B) due to |B| + |C| = |↵| and xa(B) + xa(C) = xa(↵) = 2k
(Proposition 4.1a). Because |↵| is longest possible, it follows that |↵|� d(B)  |↵|,
implying d(B) � 0.

The true significance of Corollary 5.3 is to be seen shortly. Let us mention first
several easy-to-obtain implications. All terms of ↵ in the subgroup hai are equal
to a. Every proper hai-coset contains at most two distinct terms of the sequence.
Because |B|  r for every minimal hai-block B|↵, the conclusion xa(B)  |B| of
Corollary 5.3 (i.e., d(B) � 0) shows that 0 < xa(B)  r. For k large with respect
to r, which is the case with our setting, this inequality is much stronger than the
general 0 < xa(B) < k (Proposition 4.1b).

Here is an informal description of a possible approach to the Davenport problems.
Let F be an arbitrary factorization of ↵. All blocks in it have nonnegative defects
(Corollary 5.3). At most r � 1 of them have positive defects (Corollary 4.6), so the
remaining ones have defect 0. If B1, . . . , Bm are the blocks with positive defect then
d(↵) =

Pm
i=1 d(Bi) because d(·) is additive. The blocks with defect 0 are irrelevant

to d(↵) and hence to the Davenport constant D(G) = |↵| = 2k + d(↵).
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The combined length of B1, . . . , Bm is less than r2, and r2 is much less than the
total length |↵| � k+

l
3r�1
r+1 (2r � 1)

m
+1 under the constraint (5.1). We observe that

D(G) is determined by a very small part of sequence. This part and its structure
depend on the factorization F while d(↵) does not. Therefore one can choose F as
desired. In general it is not easy to deal with the multitude of diverse factorizations.
We focus mostly on ones with the following extremal property.

Definition 5.4. A factorization of ↵ is canonical if the product of all (⇤, 1)-blocks
in it has maximum defect.

Fix the notation WF for the product of all (⇤, 1)-blocks in a factorization F .
The defects d(WF ) are equal (and maximal) for all canonical factorizations F of ↵.
Denote their common value by d⇤(↵).

The following properties are meant to simplify the remainder of the exposition.
The first one is somewhat cumbersome, yet its formulation enables us to avoid
multiple repetitions of the same standard reasoning.

Let F be a canonical factorization of ↵. Then:

(i) The complementary block ↵W�1
F of WF is not divisible by a unit block. More

generally let B1, . . . , Bm be blocks in F , and let d be the combined defect of
the (⇤, 1)-blocks among them. Then the product B1 · · ·Bm is not divisible by
a unit block V with defect d(V ) > d.

(ii) 2  d(WF )  r � 1; consequently d⇤(↵) = d(WF ) 2 {2, . . . , r � 1}.

(iii) If r = 5 then F contains neither a (5, 2)- nor a (5, 3)-block.

Here is the justification.

(i): We prove the general form of the claim. Let B1 · · ·Bm be divisible by a unit
block V = V1 · · ·Vn where the Vi’s are (⇤, 1)-blocks, and let V 0 = (B1 · · ·Bm)V �1.
Replace B1, . . . , Bm by V1, . . . , Vn and the factors in any factorization of V 0. We
obtain a new factorization of ↵. The new value of d(WF ) does not exceed the old
one as F is canonical. It follows that d(V )  d.

(ii): The right inequality follows from Lemma 4.8a. For the left one take a term
x 2 ↵ that is not in hai. Apply Lemma 5.1 by choosing g to be the distinguished
term a. There exists a subsequence U of ↵ that contains x and has sum a. Because
U is an hai-block with xa(U) = 1, it is a minimal hai-block (Proposition 4.1e). By
Definition 5.4 then each canonical factorization has (⇤, 1)-blocks, hence WF 6= ;.
Suppose that d(WF ) = 1. Then WF is a single (2, 1)-block: two terms x, x0 with
sum a from the same proper hai-coset. Let y 62 hai [ (x + hai) be another term.
Such a term exists as ⌃(↵) = G (Lemma 5.1) and r � 3. Lemma 5.1 yields a (⇤, 1)-
block V |↵ containing y, like with x above. Clearly |V |  |WF | = 2, so |V | = 2.
Thus V is a (2, 1)-block contained in the coset y + hai and hence disjoint with WF .
This contradicts property (i).
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(iii): Let on the contrary F contain a (5, s)-block B with s 2 {2, 3}, and let
U |WF be a (⇤, 1)-block. Such a block exists by d(WF ) � 2 (property (ii)). For
s = 2 Lemma 4.11a shows that the product UB is divisible by a (⇤, 1)-block V
with d(V ) > d(U), contradicting (i). Lemma 4.11b rejects s = 3 in the same way
if |U | > 2. So assume that s = 3 and WF contains only (2, 1)-blocks. Note that
there are at least two of them by property (ii). Let U1 and U2 be such blocks.
Corollary 4.12 states that the product U1U2B is divisible by a unit block V with
d(V ) > d(U1U2), which yields a contradiction like before.

In summary, one can undertake the Davenport problems for Cr�1
2 �C2k by study-

ing the blocks with positive defects in suitably chosen factorizations. A basic result
about the “excessive Davenport inequality” D(G) > D⇤(G) is available already now.

Suppose that D(G) > D⇤(G) holds for a group G = Cr�1
2 �C2k where k

and r � 3 satisfy k �
l

3r�1
r+1 (2r � 1)

m
�r+2. Let ↵ be a longest minimal

zero-sum sequence in G with distinguished term a. Then d⇤(↵)  r � 2
and d(↵W�1

F ) � 2 for each canonical hai-factorization F of ↵.

Indeed if d⇤(↵) > r�2 then d(WF ) = d⇤(↵) = r�1 by property (ii). Corollary 4.9
and Corollary 5.3 imply that the only blocks with nonzero defect in F are the factors
of WF . By the additivity of d(·) then d(↵) = d(WF ) = r � 1. However this yields
D(G) = |↵| = 2k + d(↵) = 2k + r � 1 = D⇤(G), contradicting D(G) > D⇤(G).

Note that D(G) > D⇤(G) implies d(↵) � r. So the second claim follows from
d⇤(↵)  r� 2, already proven, and d(↵) = d(WF ) + d(↵W�1

F ) = d⇤(↵) + d(↵W�1
F ).

We use this general observation in the solution of the direct Davenport problem
for rank r = 5 (Theorem 5.8).

5.3. Rank Five

There is a variety of ways to solve the Davenport problems for the groups C4
2 � C2k.

Some of them di↵er considerably from the scheme followed here. Our conclusions
hold for k � 70, a restriction obtained from the general constraint (5.1) for r = 5.

Henceforth let G = C4
2 � C2k where k � 70, and let ↵ be a minimal

zero-sum sequence of maximum length in G with distinguished term a.

The preparatory work is not over yet. To say the least, the old example showing
that D(C4

2 � C2k) > D⇤(C4
2 � C2k) applies only to odd k � 3. No example to this

e↵ect turned up for even k, which suggests that the even case is di↵erent. So parity
considerations are likely to emerge at some point. There is no trace of them so far.

Our approach rests on three lemmas concerning rank 5. They explain the pres-
ence of several specific statements in Section 4. The lemmas are lengthy but provide
more structural insight than some shorter arguments. Naturally we rely on the con-
clusions from Section 4 and also on properties (i)–(iii) from Subsection 5.2.
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Lemma 5.5. Let a canonical factorization F of ↵ contain a (4, 2)-block B. Then
F contains neither an (l, s)-block with s � 2 apart from B nor a (2, 1)-block.

Proof. Suppose on the contrary that F contains a block C 6= B which is either an
(l, s)-block with s � 2 or a (2, 1)-block. By Lemma 4.4 C has a term c such that
�(c) � s; here s � 2 if C = (l, s) with s � 2 and s = 1 if C = (2, 1).

We claim that c 62
⌦
B
↵
. Otherwise c ⇠ S(X) for some proper nonempty X|B. If

C = (l, s) with s � 2, apply Lemma 4.2a to the decompositions B = XX 0, C = Y Y 0

where X 0 = BX�1, Y = c, Y 0 = Cc�1. This yields a block A dividing BC with
xa(A) = 1

2

�
2 + s � �(X) � �(c)

�
. Property (i) implies xa(A) � 2 which leads to a

contradiction in view of �(c) � s, �(X) � 0. For C = (2, 1) Corollary 4.3 provides
an order-2 element e such that C = e(e + a) and S(X) = S(X 0) = e + a. There is
no loss of generality in assuming |X| � 2, so we obtain a (minimal) block A = eX
dividing BC, with sum a and length � 3. Hence d(A) � 2 > d(C) which contradicts
property (i). In conclusion c 62

⌦
B
↵
, implying

⌦
Bc
↵

= G/ hai (since
⌦
B
↵

has index 2
in G/ hai ⇠= C4

2 ).
Let U |↵(BC)�1 be an (m, 1)-block in F . Such a block exists since d(WF ) � 2

(property (ii)). Take a proper nonempty subsequence X|U and note that S(X) 6⇠ c
by Lemma 4.8b. So, because

⌦
Bc
↵

= G/ hai, one of the following relations holds:

(a) S(X) + S(Y ) = 0, (b) S(X) + S(Y ) + c = 0,

with Y |B proper and nonempty. Apply the inequality in Lemma 4.2a to the re-
spective decompositions U = XX 0, B = Y Y 0, and, in case (b), C = ZZ0 where
Z = c, Z0 = Cc�1. In both (a) and (b) the inequality implies �(X) = 1, �(Y ) = 0,
and also �(Z) = s in (b). Hence the lower members of the pairs form a (⇤, 1)-block.
In (a) this is V1 = X⇤Y ⇤|UB, with xa(V1) = 1

2 (1 + 2� 1� 0) = 1. In (b) we have
V2 = X⇤Y ⇤Z⇤|UBC, with xa(V2) = 1

2 (1 + 2 + s� 1� 0� s) = 1. Either one of Y
and Y 0 can be taken as the lower member of the pair Y, Y 0 as �(Y ) = 0. Thus
we can assume |Y ⇤| = max(|Y |, |Y 0|) � 2, so that |V1| = |X⇤| + |Y ⇤| � |X⇤| + 2
in (a) and |V2| = |X⇤| + |Y ⇤| + |Z⇤| � |X⇤| + 3 in (b).

We proved that �(X) = 1 for all proper nonempty X|U , hence �(u) = 1 for each
term u 2 U . By Lemma 4.10 u 2 U can be chosen so that u = e + a, S(Uu�1) = e
for some e 2 G with ord(e) = 2. Apply the above to the subsequence X = u|U .
The lower member of the pair X,X 0 is X⇤ = Uu�1, with |X⇤| = m� 1.

In case (a) we obtain a block V1|UB with xa(V1) = 1, |V1| � (m�1)+2 = m+1
and d(V1) � m > d(U). The latter contradicts property (i). Similarly in case (b)
there is a block V2|UBC with xa(V2) = 1, |V2| � (m � 1) + 3 = m + 2 and
d(V2) � m + 1. However the (⇤, 1)-blocks among U,B and C have combined defect
d  m (d = m � 1 if C = (l, s) with s � 2 and d = m if C = (2, 1)). We reach a
contradiction with property (i) again. The proof is complete.
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Lemma 5.6. Suppose that there exists a canonical factorization of ↵ that con-
tains two blocks of the form (s + 1, s) with s 2 {2, 3, 4}. Then ↵ has a canonical
factorization that contains a (4, 2)-block.

Proof. Let a canonical factorization F of ↵ contain two blocks B and C of the
form (s + 1, s) with s 2 {2, 3, 4}. Consider three cases. In each one of them we find
a (4, 2)-block A that divides the product BC. To complete the proof, it remains to
replace B and C by A and the factors in any factorization of the complementary
block A0 = BCA�1. Let us remark that d(A0) = 0 because d(BC) = d(A) = 2.

Case 1: B is a (5, 4)-block and C an (s + 1, s)-block with s 2 {2, 3, 4}. Choose
c 2 C with �(c) � s (Lemma 4.4) and a proper nonempty X|B with c ⇠ S(X).
Apply Lemma 4.2a to the decompositions B = XX 0, C = Y Y 0 where Y = c. The
product A|BC of their lower members satisfies xa(A) = 1

2

�
4 + s � �(X) � �(c)

�
.

Now xa(A) � 2 by property (i), implying �(X) = 0, �(c) = s, xa(A) = 2. Since
�(X) = 0, either one of X and X 0 can be taken as the lower member X⇤. So
assume |X⇤| = max(|X|, |X 0|) � 3 to obtain |A| � |Y ⇤| + 3 � 4. On the other
hand A0 = BCA�1 has length s � |A| + 6 and sum (s + 2)a. Since d(A0) � 0
(Corollary 5.3), it follows that |A|  4. In conclusion |A| = 4, so A = (4, 2).

Case 2: B is a (4, 3)-block and C an (s + 1, s)-block with s 2 {2, 3}. There ex-
ists X|C with |X| = 2 and S(X) 2

⌦
B
↵
. This is so if C has two terms c1, c2

with c1, c2 in
⌦
B
↵
. If not there are terms c1, c2 2 C with c1, c2 62

⌦
B
↵

and X = c1c2

has the stated property (
⌦
B
↵

is an index-2 subgroup of G/ hai). Take a proper
nonempty Y |B such that S(X) ⇠ S(Y ) and apply Lemma 4.2a to the decomposi-
tions B = Y Y 0, C = XX 0. Their lower members yield a block A = X⇤Y ⇤|BC with
xa(A) = 1

2

�
3 + s� �(Y )� �(X)

�
. We have xa(A) � 2 by property (i) again. Now

�(Y ) � 1 because xa(B) = 3 is odd, which implies �(X)  s � 2. It follows from
s 2 {2, 3} that �(X) = s� 2, �(Y ) = 1. Let Y ⇤ = Y without loss of generality.

If s = 2 then �(X) = 0, �(Y ) = 1, so there is an order-2 element e 2 G such that
S(X) = S(X 0) = e + a, S(Y ) = e + a, S(Y 0) = e + 2a (Lemma 4.2b). If |Y | = 3
then A = XY is a (5, 2)-block; let A0 = BCA�1. Replace B and C by A and the
factors in a factorization of A0. Since WF is not a↵ected, we obtain a new canonical
factorization containing a (5, 2)-block, and this is impossible by property (iii). The
same reasoning rejects |Y | = 1 in which case XY 0 is a (5, 3)-block. Hence |Y | = 2;
then A = XY is a (4, 2)-block that divides BC, as needed.

We argue similarly for s = 3 where �(X) = �(Y ) = 1 and there is an order-2
element e 2 G such that S(X) = e + a = S(Y ), S(X 0) = e + 2a = S(Y 0) (there is
no loss of generality here as |X| = |X 0| = 2). If |Y | = 3 then XY is a (5, 2)-block;
if |Y | = 1 then XY 0 is a (5, 3)-block. Neither one is possible for the same reasons
like with s = 2. Hence |Y | = 2, so that A = XY is a (4, 2)-block dividing BC.
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Case 3: B and C are (3, 2)-blocks. We claim that
⌦
B
↵
\
⌦
C
↵
6= {0}. Once this is

proven, take decompositions B = XX 0, C = Y Y 0 with S(X) ⇠ S(Y ). Their lower
members form a block A|BC with xa(A) = 1

2 (4� �(X)� �(Y )) (Lemma 4.2a), and
xa(A) � 2 by property (i). Hence �(X) = �(Y ) = 0, so each one of X,X 0, Y, Y 0 can
serve as the lower member of its pair. Since {|X|, |X 0|} = {|Y |, |Y 0|} = {1, 2}, one
can ensure |A| = 4. Also �(X) = �(Y ) = 0 implies xa(A) = 2, so A is a (4, 2)-block.

Suppose that
⌦
B
↵
\
⌦
C
↵

= {0}; then
⌦
BC

↵
= G/ hai. Let U |WF be an (l, 1)-

block and X|U proper nonempty. We show that �(X) = 1. This follows from Corol-
lary 4.3a if S(X) is in

⌦
B
↵

or in
⌦
C
↵
. Otherwise, since

⌦
BC

↵
= G/ hai, a relation of

the form S(X) + S(Y ) + S(Z) = 0 holds, with proper nonempty Y |B, Z|C. Apply
Lemma 4.2a to the respective decompositions. The product A|UBC of their lower
members satisfies xa(A) = 1

2 (5� �(X)� �(Y )� �(Z)), and �(X) + �(Y ) + �(Z)  3
by the inequality in the lemma. Since �(X) is odd and �(Y ), �(Z) are even, we
have �(X) 2 {1, 3} and �(Y ), �(Z) 2 {0, 2}. If �(X) = 3 the argument gives
�(Y ) = �(Z) = 0, xa(A) = 1. Thus one can assume |Y ⇤| = max(|Y |, |Y 0|) = 2
and likewise |Z⇤| = 2, yielding |A| = |X⇤| + |Y ⇤| + |Z⇤| � 5. Now A is minimal by
xa(A) = 1. Hence it is a (5, 1)-block and so d⇤(↵) � d(A) = 4. Then d⇤(↵) = 4
by property (ii), implying d(WF ) = 4. This contradicts Corollary 4.9 as ↵W�1

F is
divisible by blocks with positive defect.

Hence �(X) = 1 for each proper nonempty X|U , in particular �(u) = 1 for each
u 2 U . Then there is a term u 2 U such that Uu�1 is the lower member of the
decomposition U = (u)(Uu�1) (Lemma 4.10). Apply the above with X = Uu�1.

Let S(X) 2
⌦
B
↵

or S(X) 2
⌦
C
↵
, say S(X) 2

⌦
B
↵
. Then S(X) ⇠ S(Y ) for a

proper nonempty Y |B. Apply Corollary 4.3 to the decompositions U = u(Uu�1),
B = Y Y 0 to obtain an order-2 element e such that S(Y ) = S(Y 0) = e + a,
S(Uu�1) = e and u = e+a. Choose Y ⇤ so that |Y ⇤| = 2. The block A = (Uu�1)Y ⇤

divides UB and xa(A) = 1, |A| = l + 1. Hence d(A) = l > d(U), contradicting (i).
Now suppose that S(X) /2

⌦
B
↵

and S(X) /2
⌦
C
↵
. Since

⌦
BC

↵
= G/ hai, we

have S(X) + S(Y ) + S(Z) = 0 with proper nonempty Y |B, Z|C. The respective
lower members form a block A|UBC with xa(A) = 1

2 (5 � �(X) � �(Y ) � �(Z)),
�(X) = 1. Also �(Y ) + �(Z)  2 (Lemma 4.2a) and so �(Y ), �(Z) 2 {0, 2}. Now
|X⇤| = l � 1, implying |A| � l + 1. If one of �(Y ), �(Z) is 2 then xa(A) = 1 and
d(A) > d(U), contradicting property (i). Let �(Y ) = �(Z) = 0, then xa(A) = 2.
Assuming |Y ⇤| = 2, |Z⇤| = 2 like before, we have |A| = l + 3. Observe that A is
a minimal block. Otherwise it decomposes into a product of at least two factors
whose a-coordinates have sum 2, implying that the factors are two (⇤, 1)-blocks.
Hence A is a unit block with d(A) = l +1 > d(U), which contradicts (i) again. The
minimality of A gives l + 3  5 and so l = 2.

We may assume now that WF contains only (2, 1)-blocks, at least two of them by
property (ii). Let U1 and U2 be such blocks. The previous argument yields a (5, 2)-
block A|U1BC. Apply the last part of Lemma 4.11a to U2 and A. It provides a
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(⇤, 1)-block V |U2A with d(V ) > d(U2)+1 = d(U1U2). Because V divides U1U2BC,
we reach a contradiction with property (i) one more time. The proof is complete.

The conclusions so far hold for every su�ciently large k regardless of its parity.
The next statement reveals (at long last) why only the odd case is “excessive.”

Lemma 5.7. Let a factorization of ↵ contain a (4, 1)-block U =
Q4

i=1 ui and a
(4, 2)-block B =

Q4
i=1 bi. Then:

a) bi 62
⌦
U
↵

and ui 62
⌦
B
↵

for all i = 1, 2, 3, 4;

b) k is odd and there exist order-2 elements g1, g2, g3, g4 2 G with sum 0 such
that bi = gi + k+1

2 a for i = 1, 2, 3, 4.

Proof. a) Since
P4

i=1 bi = 0, there is an even number of terms bi in the index-2
subgroup

⌦
U
↵

of G/ hai. So if b1 2
⌦
U
↵

we may also assume b2 2
⌦
U
↵

and hence
b1 + b2 2

⌦
U
↵
. Let b1 ⇠ S(X) with proper nonempty X|U . Apply Corollary 4.3b

to the decompositions U = XX 0, B = (b1)(b2b3b4) to obtain an e 2 G with order 2
such that b1 = e+a. Hence 2b1 = 2a and likewise 2b2 = 2a, 2(b1+b2) = 2a. However
the three equalities cannot hold simultaneously. Thus bi 62

⌦
U
↵

for i = 1, 2, 3, 4.
Next, suppose that u1 2

⌦
B
↵

and let u2 2
⌦
B
↵

like above; then u1 + u2 2
⌦
B
↵
.

Because bi 62
⌦
U
↵

for all i, up to relabeling one can also assume u1 ⇠ b1 + b3,
u2 ⇠ b2 + b3; then u1 + u2 ⇠ b1 + b2. Apply Corollary 4.3 to the decompositions
U = (u1)(u2u3u4) and B = (b1b3)(b2b4). There is an e1 2 G with order 2 such
that {u1, u2 + u3 + u4} = {e1, e1 + a} and b1 + b3 = b2 + b4 = e1 + a. In our case
u1 = e1. Indeed if u2 + u3 + u4 = e1 then u2u3u4b1b3 and u1b2b4 are a (5, 1)- and a
(3, 2)-block respectively. However this contradicts Corollary 4.9. Thus ord(u1) = 2
and b1 + b3 = u1 + a. Similarly ord(u2) = 2 and b2 + b3 = u2 + a. Now consider
the decompositions U = (u1u2)(u3u4) and B = (b1b2)(b3b4). There is an e 2 G,
ord(e) = 2, such that {u1 + u2, u3 + u4} = {e, e + a} and b1 + b2 = b3 + b4 = e + a.
Note that e = u1 + u2 since ord(u1) = ord(u2) = 2, and so b1 + b2 = u1 + u2 + a.
But also b1 + b3 = u1 + a, b2 + b3 = u2 + a, and we obtain 2(b1 + b2 + b3) = 3a.
This is false as 3a 62 2G. Hence ui 62

⌦
B
↵

for i = 1, 2, 3, 4.
b) Since all bi are outside the index-2 subgroup

⌦
U
↵

of G/ hai, for each pair i, j
with 1  i < j  4 there is a proper nonempty X|U such that bi+bj ⇠ S(X). Apply
Corollary 4.3b to the decompositions U = XX 0, B = (bibj)(B(bibj)�1). This yields
an element g 2 G with order 2 such that bi + bj = g + a. On the other hand each bi

has a (unique) representation bi = gi +xia where gi 2 bi has order 2 and 0  xi < k
(i = 1, 2, 3, 4). So the integers xi, xj 2 [0, k) satisfy gi + gj + (xi + xj)a = g + a
for appropriately chosen order-2 elements gi, gj , g 2 G. Multiplication by 2 leads to
2(xi +xj �1)a = 0, meaning that xi +xj ⌘ 1 (mod k). Fix i = 1 and set j = 2, 3, 4
to deduce that x2, x3, x4 are congruent mod k; by symmetry so are all xi. Because
xi 2 [0, k), all xi are equal. Their common value x 2 [0, k) satisfies the congruence
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2x ⌘ 1 (mod k), which has a solution only if k is odd. In the latter case the unique
solution in [0, k) is x = k+1

2 . Therefore bi = gi + k+1
2 a for i = 1, 2, 3, 4, as stated.

In addition
P4

i=1 bi = 2a leads to
P4

i=1 gi = 0.

Finally we are ready to approach the Davenport problems for the groups C4
2�C2k.

Theorem 5.8. For each k � 70 the Davenport constant of the group C4
2 � C2k is

D(C4
2 � C2k) =

(
2k + 4 = D⇤(C4

2 � C2k) if k is even;
2k + 5 = D⇤(C4

2 � C2k) + 1 if k is odd.

Proof. Suppose that a group C4
2 �C2k with k � 70 satisfies the “excessive” inequal-

ity D(C4
2 �C2k) > D⇤(C4

2 �C2k) = 2k +4. Let ↵ be an arbitrary minimal zero-sum
sequence of maximum length over this group, and let a 2 ↵ be a distinguished term.

To begin with, D(C4
2�C2k) > D⇤(C4

2�C2k) gives d(↵) > 4. Recall the concluding
remark in Subsection 5.2. For r = 5 it implies d⇤(↵)  3; also d(↵W�1

F ) � 2 for
each canonical hai-factorization F of ↵. The blocks of F whose product is ↵W�1

F
are either of the form (⇤, s) with s � 2 or with defect 0. Hence d(↵W�1

F ) � 2 implies
that F contains blocks B = (l, s) with 2  s < l  5 and with combined defect
at least 2. Property (iii) rejects B = (5, 2) and B = (5, 3), so every such block is
either B = (4, 2) or B = (s + 1, s) with s 2 {2, 3, 4}.

We claim that there is a canonical hai-factorization of ↵ with a block B = (4, 2).
Indeed let F be a canonical hai-factorization without a (4, 2)-block. Its (⇤, s)-blocks
with s � 2 are of the form (s + 1, s) where s 2 {2, 3, 4}, so each one has defect 1.
Since their combined defect is at least 2, there are at least two of them. Hence
Lemma 5.6 applies and proves the claim.

Let F be a canonical hai-factorization of ↵ with a (4, 2)-block. By Lemma 5.5 and
Corollary 4.9 each remaining block with positive defect in F is a (3, 1)- or a (4, 1)-
block. Such a block exists as WF 6= ; and is unique as d(WF ) = d⇤(↵)  3. Hence
F has exactly two blocks U,B with nonzero defect. There are two alternatives:
U = (3, 1), B = (4, 2) and U = (4, 1), B = (4, 2), with d(↵) = 4 and d(↵) = 5
respectively. Because d(↵) > 4, the only possibility is the second one.

Now we see how the parity of k makes a di↵erence. Since F contains a (4, 1)-
and a (4, 2)-block, Lemma 5.7b shows that k is odd.

In summary, for k � 70 the inequality D(C4
2 �C2k) > D⇤(C4

2 �C2k) implies that
k is odd and d(↵) = 5 for each longest minimal zero-sum sequence ↵ over C4

2 �C2k.
Therefore D(C4

2 � C2k) = 2k + d(↵) = 2k + 5 = D⇤(C4
2 � C2k) + 1.

By a standard example D(C4
2 � C2k) � D⇤(C4

2 � C2k) for all k � 1, which
settles the even case of the theorem. The example of Geroldinger and Schneider
in [4, Theorem 4] shows that D(C4

2 � C2k) > D⇤(C4
2 � C2k) for odd k � 3, which

completes the proof of the odd case.
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Let us state a conclusion implied by the proof of Theorem 5.8 for odd k > 70.
Each longest minimal zero-sum sequence over C4

2 � C2k, with a distinguished term a,
has a canonical hai-factorization F that contains a (4, 1)-block and a (4, 2)-block; all
remaining blocks in F have defect zero. We use this statement to solve the inverse
Davenport problem in the odd case.

Theorem 5.9. Let k > 70 be an odd integer. A sequence ↵ over C4
2 � C2k is a

minimal zero-sum sequence of maximum length D(C4
2 �C2k) = 2k +5 if and only if

there exists a basis {e1, e2, e3, e4, a} of C4
2 � C2k, with ord(ei) = 2 for i = 1, 2, 3, 4

and ord(a) = 2k, such that ↵ = a2k�3UB where

U =
3Y

i=1

�
ei + k+1

2 a
� �

e1 + e2 + e3 + k�1
2 a
�
, (5.2)

B =
3Y

i=1

�
ei + e4 + k+1

2 a
� �

e1 + e2 + e3 + e4 + k+1
2 a
�
. (5.3)

Proof. The justification of the su�ciency is standard. For the necessity consider a
minimal zero-sum sequence ↵ of maximum length 2k + 5 over G = C4

2 � C2k, with
k > 70 odd. Let a 2 ↵ be a distinguished term. By the remark after Theorem 5.8
there is a canonical hai-factorization F of ↵ in which the only factors with nonzero
defect are a (4, 1)-block U =

Q4
i=1 ui and a (4, 2)-block B =

Q4
i=1 bi. We invoke

Lemma 5.7. In view of its part (a) suitable relabeling ensures ui + uj ⇠ bi + bj for
1  i < j  4. By part (b) of the lemma there are order-2 elements g1, g2, g3, g4 2 G
with sum 0 such that bi = gi + k+1

2 a for i = 1, 2, 3, 4. Note that g1, g2, g3, g4 are
uniquely determined.

Consider the decompositions U = (u1u2)(u3u4) and B = (b1b2)(b3b4). By Corol-
lary 4.3 there is an order-2 element e 2 G such that {u1+u2, u3+u4} = {e, e+a} and
b1 + b2 = b3 + b4 = e+a. Without loss of generality let u3 +u4 = e, u1 +u2 = e+a.
Then the blocks U 0 = u3u4b1b2 and B0 = u1u2b3b4 are respectively a (4, 1)- and
a (4, 2)-block in a new factorization F 0, to which we apply Lemma 5.7b. Because
the gi’s are unique, the lemma provides elements e1, e2 2 G with order 2 such that
e1 + e2 = g1 + g2 and u1 = e1 + k+1

2 a, u2 = e2 + k+1
2 a. Again, e1 and e2 are unique.

Analogous reasoning for the decompositions U = (u1u3)(u2u4) and B = (b1b3)(b2b4)
yields an order-2 element e3 2 G such that e1 + e3 = g1 + g3 and u3 = e3 + k+1

2 a.
In the application of Corollary 4.3 here we assume u2 + u4 = e, u1 + u3 = e + a; up
to relabeling, there is no loss of generality. Since ui = ei + k+1

2 a for i = 1, 2, 3 andP4
i=1 ui = a, we also obtain u4 = e1 + e2 + e3 + k�1

2 a.
Furthermore e1 + e2 = g1 + g2, e1 + e3 = g1 + g3 and g1 + g2 + g3 + g4 = 0

imply g4 � (e1 + e2 + e3) = gi � ei for i = 1, 2, 3. The common value e4 of the four
di↵erences is a group element with order 2. It is straightforward that e1, e2, e3, e4
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form a basis of G together with a. In summary,

ui = ei + k+1
2 a for i = 1, 2, 3, u4 = e1 + e2 + e3 + k�1

2 a;
bi = ei + e4 + k+1

2 a for i = 1, 2, 3, b4 = e1 + e2 + e3 + e4 + k+1
2 a.

Hence (5.2) and (5.3) hold true for U and B. In addition observe that �(ui) and
�(bi) are large; more exactly

�(ui) = k for i = 1, 2, 3, �(u4) = k � 2; �(bi) = k � 1 for i = 1, 2, 3, 4.

It remains to show that the terms of ↵ not in UB are all equal to a. Equivalently,
all blocks with defect 0 in F have length 1. Suppose on the contrary that F contains
a block C with d(C) = 0 and |C| � 2; in other words |C| = xa(C) � 2. Choose
any term c 2 C. Since u1, u2, u3, b4 generate G/ hai and c 62 hai, there is a relation
of the form c + ✏1u1 + ✏2u2 + ✏3u3 + ✏4b4 = 0 where ✏i 2 {0, 1}, i = 1, 2, 3, 4,
and not all ✏i’s are 0. We claim that ✏4 = 0. Otherwise c + S(X) + b4 = 0
for a proper X|U (possibly X = ;), and we refer to Lemma 4.2. Here the sumPm

i=1 xa(Bi) is xa(C) + xa(U) + xa(B) = |C| + 3 or xa(C) + xa(B) = |C| + 2.
Clearly |C| + 3 < k since C is minimal, so the lemma does apply. However the
inequality

Pm
i=1 �(Xi) 

Pm
i=1 xa(Bi)� 2 cannot hold in our case as �(b4) = k � 1

is too large. Therefore ✏4 = 0. For analogous reasons there is an even number
of 1’s among ✏1, ✏2, ✏3. Hence c is equal to one of the sums u1 +u2, u2 +u3, u3 +u1.
These are the nonzero elements of a rank-2 subgroup of G/ hai. It follows that
|C| = xa(C) 2 {2, 3}.

If, e.g., c ⇠ u1+u2, apply Corollary 4.3 to the decompositions U = (u1u2)(u3u4),
C = (c)(Cc�1) (the condition xa(U) + xa(C) < k holds true). There is an order-2
element e 2 G such that {u1 + u2, u3 + u4} = {e, e + a} and c 2 {e + a, e + 2a}.
Because u1 +u2 = e1 +e2 +(k+1)a, u3 +u4 = e1 +e2 +ka, we find e = e1 +e2 +ka.
Hence c = e1 + e2 + (k + ✏)a with ✏ 2 {1, 2}.

Now notice that A = cu2u3b3b1 is a block with sum

e1 + e2 + (k + ✏)a + e2 + e3 + (k + 1)a + e3 + e1 + (k + 1)a = (k + 2 + ✏)a.

So xa(A) = k+2+✏ as ✏ 2 {1, 2} and k is large, also xa(A) > k. Because |A| = 5 < k,
the defect of A is negative which is impossible. The proof is complete.

Needless to say, up to isomorphism the excessively long sequence from Theo-
rem 5.9 is just the example of Geroldinger and Schneider in [4].

6. Concluding Remarks

The approach-dependent condition k � 70 in Theorems 5.8 and 5.9 is certainly too
restrictive. In all likelihood it can be relaxed significantly (maybe even the trivial
k � 3 su�ces). The same remark applies to the general constraints (3.1) and (5.1).
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The well-known equalities D(Cr�1
2 �C2k) = D⇤(Cr�1

2 �C2k) with r = 3, 4 follow
directly from the considerations in Sections 4 and 5. Only a slight refinement in
Section 4 is needed for the case r = 4.

The uniqueness of the extremal sequence in Theorem 5.9 may be due to the
fact that it is excessively long (with length greater than D⇤(G)). In contrast, there
are quite a few longest minimal zero-sum sequences over the groups Cr�1

2 � C2k

whenever D(Cr�1
2 � C2k) = D⇤(Cr�1

2 � C2k) holds true—already for r = 3, 4 and
r = 5 with k even.

In principle the inverse Davenport problem for Cr�1
2 � C2k can be solved com-

pletely with the available tools for small r � 3, but a specific di�culty arises. As
r grows, the extremal sequences tend to be too numerous and too diverse to fit into
a unified description, at least for certain values of k. (See the concluding comment
to this e↵ect in [9, Section 3] where the simplest case r = 3 is considered.)

Our approach suggests a way to deal with this issue. We saw that the Daven-
port constant D(Cr�1

2 � C2k) is determined by the blocks with positive defect in
hai-factorizations. The blocks with defect zero are irrelevant. In a sense, longest
minimal zero-sum sequences di↵ering only in blocks of zero defect are not substan-
tially di↵erent with respect to the Davenport problems. One may accept the point
of view that they are to be regarded as the same sequence. With this convention
there are much fewer objects to search for. The inverse problem reduces to iden-
tifying the possible sets of blocks with positive defects in canonical factorizations.
Our rough description can be made more precise which we do not pursue here.

Let us remark in passing that for k large with respect to r the general results
obtained above imply D(Cr�1

2 �C2k)  2k + (r � 1)2. This upper bound improves
D(Cr�1

2 � C2k)  2k + 2r�1 � 1 (for the latter see the justification of (3.2) in
Section 3). Let ↵ be a longest minimal zero-sum sequence over Cr�1

2 � C2k and
F a factorization of ↵. There are at most r � 1 blocks with nonzero defects in F
(Corollary 4.6, Corollary 5.3), and these defects do not exceed r � 1 (the blocks are
minimal). Therefore d(↵)  (r � 1)2 and so D(Cr�1

2 � C2k)  2k + (r � 1)2.

Acknowledgement We are grateful to the anonymous referee for pointing out that
(3.1) implies (3.2). It was hereby possible to remove a redundant assumption.
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