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Abstract
The derivative of an ideal in a number ring is defined and the relation between
the ideal derivative and the arithmetic derivative of a number in Z is discussed.
Some simple ideal di↵erential equations are also studied. Further, the definition of
the ideal derivative is extended to the derivative of a fractional ideal in a number
ring. Again, the relation between the fractional ideal derivative and the arithmetic
derivative of a rational number is discussed.

1. Introduction

Ufnarovski and Åhlander [4] define the arithmetic derivative for the integers and
the rational numbers. They further define the arithmetic derivative in a unique
factorization domain (UFD). For the sake of convenience, both of the definitions
are given below.

1.1. Arithmetic Derivative in Z and in Q

Let n 2 Z. The arithmetic derivative of n, denoted by n0, is defined [1, 4] as follows:

(i) 00 = 10 = (�1)0 := 0;

(ii) If n = up1p2 · · · pk, where u = ±1 and the pi’s are primes (some of them may
be equal), then

n0 := u
kX

j=1

p1 · · · pj�1p̂j · · · pk,

where in each summand the term p̂j is deleted.
1Research fellowship is supported by the University Grants Commission of India
2Corresponding author



INTEGERS: 14 (2014) 2

The arithmetic derivative satisfies the following properties:

(i) p0 = 1 for all primes p;

(ii) (�n)0 = �n0 for all n 2 Z;

(iii) (mn)0 = mn0 + m0n for all m,n 2 Z (we will refer to this as “the Leibnitz
rule”).

The arithmetic derivative of m
n 2 Q, denoted by (m

n )0, is defined [4] by
⇣m

n

⌘0
:=

m0n�mn0

n2
.

1.2. Arithmetic Derivative in a UFD

Let D be a UFD and P be a set of positive atoms of D (irreducible elements of D)
such that each atom of D is an associate of a unique element of P. Further, let U
be the set of units of D. Given a 2 D, the arithmetic derivative of a, denoted by
a0, is defined [1, 4] as follows:

(i) 00 := 0 and a0 := 0 for all a 2 U ;

(ii) If a = up1p2 · · · pk, where pi 2 P for i = 1, 2 . . . , k and u 2 U , then

a0 := u
kX

j=1

p1 · · · pj�1p̂j · · · pk,

where in each summand the term p̂j is deleted.

Since the arithmetic derivative in a UFD is defined for a chosen set P of positive
atoms, the arithmetic derivative depends on P. This is illustrated in Example 1.
Hence to be precise, we write a0P to denote the arithmetic derivative of a corre-
sponding to the set P of positive atoms.

The arithmetic derivative in a UFD satisfies the following properties:

(i) p0 = 1 for all primes p 2 P;

(ii) (ua)0 = ua0 for all u 2 U and a 2 D;

(iii) (ab)0 = ab0 + a0b for all a, b 2 D.

Example 1. Let D = Z, P1 be the set of positive primes and P2 = {2,�3, 5,�7, . . .}.
Then

60P1
= (2 · 3)0 = 2 · 30 + 20 · 3 = 2 + 3 = 5,

and

60P2
=

�
(�1) · 2 · (�3)

�0 = (�1){2 · (�3)0 + 20 · (�3)} = (�1)(2� 3) = 1.
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Therefore, 60P1
6= 60P2

.
The authors ([1], Theorem 6) show that it is not possible in general to define

an arithmetic derivative in a non-UFD. This can be shown with the help of the
following particular example which is a special case of Theorem 6 in [1].

Example 2. Let D = Z[
p
�5]. Then U = {�1, 1}. We can show that Z[

p
�5] is a

non-UFD by considering the two di↵erent prime factorizations of 6 in Z[
p
�5] given

as
6 = 2 · 3 = (1 +

p
�5)(1�

p
�5).

We consider the following cases for the di↵erent sets P of positive atoms.

Case 1. Assume that P is such that 2, 3, 1 +
p
�5, 1�

p
�5 2 P. Then

6 = 2 · 3 implies 60 = 2 + 3 = 5,

whereas,

6 = (1 +
p
�5)(1�

p
�5) implies 60 = (1 +

p
�5) + (1�

p
�5) = 2.

Hence, the derivative is not well defined in this case.

Case 2. Assume that P is such that �2, 3, 1 +
p
�5, 1�

p
�5 2 P. Then

6 = (�1) · (�2) · 3 implies 60 = (�1){(�2) + 3} = �1,

whereas,

6 = (1 +
p
�5)(1�

p
�5) implies 60 = (1 +

p
�5) + (1�

p
�5) = 2.

Hence, in this case also the derivative is not well-defined .

Case 3. Assume that P is such that 2,�3, 1 +
p
�5, 1�

p
�5 2 P. Then

6 = (�1) · 2 · (�3) implies 60 = (�1){2 + (�3)} = 1,

whereas,

6 = (1 +
p
�5)(1�

p
�5) implies 60 = (1 +

p
�5) + (1�

p
�5) = 2.

Hence, in this case also the derivative is not well-defined .

Case 4. Assume that P is such that �2,�3, 1 +
p
�5, 1�

p
�5 2 P. Then

6 = (�2) · (�3) implies 60 = {(�2) + (�3)} = �5,

whereas,

6 = (1 +
p
�5)(1�

p
�5) implies 60 = (1 +

p
�5) + (1�

p
�5) = 2.
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Hence, in this case also the derivative is not well-defined .

Case 5. Assume that P is such that 2, 3, 1 +
p
�5,�1 +

p
�5 2 P. Then

6 = 2 · 3 implies 60 = 2 + 3 = 5,

whereas, 6 = (�1) · (1 +
p
�5)(�1 +

p
�5) implies 60 = (�1){(1 +

p
�5) + (�1 +p

�5)} = �2
p
�5. Hence, in this case also the derivative is not well-defined . Sim-

ilarly, we can verify that the derivative is not well-defined in all other cases.
The rings Z and Z[

p
�5] can be viewed as the number rings of the number fields

Q and Q(
p
�5), respectively. Let m 2 Z. Instead of considering the arithmetic

derivative of m, we consider the derivative of the principal ideal hmi generated by
m, denoted by hmi0, which is defined as the principal ideal generated by m0 (see
the Remark 2.8). This motivates us to define the derivative of an ideal in a general
number ring which is defined in Section 2. In this section, we investigate some
properties of this ideal derivative and establish a relation between the arithmetic
derivative and the ideal derivative in Z. Furthermore, we discuss some di↵erential
equations for the ideal derivative. In Section 3, we extend the definition of the ideal
derivative to the derivative of a fractional ideal and investigate some similar results
as in Section 2.

2. Derivative of an Ideal

Let K be a number field and R be the corresponding number ring. Let I be a non-
trivial ideal of R. By the unique factorization theorem, the ideal I can be factorized
uniquely as a product of prime ideals and it is known that every nonzero prime
ideal contains a unique prime integer ([2], Exercise 4.4.4, pp 49). Consequently, the
derivative of an ideal can be defined in such a way that the ideal derivative in Z
gives the usual arithmetic derivative in Z in the sense of Theorem 2.7.

Before we define the derivative of an ideal, we define a couple of functions and
give some properties of these functions.

Definition 1 (Prime Indicator Function). Let R be the number ring of a
number field K. Let S be the set of nonzero prime ideals of R and N be the set
of natural numbers. The prime indicator function is a function ⇡ : S ! N which
associates each prime ideal P in S a unique prime integer contained in P .

Definition 2 (Representative Function). Let R be the number ring of a number
field K and I be the set of ideals in R. The representative function is a function
⌫ : I ! N [ {0} defined by

⌫(h0i) := 0, ⌫(h1i) = ⌫(R) := 1,
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and if I 2 I is a nontrivial ideal such that I = P1P2 · · ·Pr is the factorization of I
into prime ideals (some Pi’s may be equal), then

⌫(I) := ⇡(P1)⇡(P2) · · ·⇡(Pr),

where ⇡ is the prime indicator function.
The following properties are satisfied by the representative function.

Theorem 2.1. (i) Let I and J be ideals in R. Then ⌫(IJ) = ⌫(I)⌫(J).

(ii) Let P be a nonzero prime ideal in R. Then ⌫(P ) = ⇡(P ).

Proof. For (i), let either I = h0i or J = h0i. Without loss of generality, assume that
I = h0i. Then IJ = h0i. Thus

⌫(IJ) = ⌫(h0i) = 0 = ⌫(h0i)⌫(J) = ⌫(I)⌫(J).

Now, let either I = R or J = R. Without loss of generality, assume that I = R.
Then IJ = J . Thus

⌫(IJ) = ⌫(J) = ⌫(R)⌫(J) = ⌫(I)⌫(J).

Next, let I and J be nontrivial ideals in R. Then IJ 6= R. Let I = P1P2 · · ·Pr and
J = Pr+1Pr+2 · · ·Pr+s be the factorizations of I and J into prime ideals. Let pi =
⇡(Pi) for i = 1, 2, . . . , r + s. Then ⌫(I) = p1p2 · · · pr and ⌫(J) = pr+1pr+2 · · · pr+s.
Now, IJ = P1P2 · · ·PrPr+1Pr+2 · · ·Pr+s implies ⌫(IJ) = p1p2 · · · prpr+1pr+2 · · · pr+s.
Hence, ⌫(IJ) = (p1p2 · · · pr)(pr+1pr+2 · · · pr+s) implies ⌫(IJ) = ⌫(I)⌫(J).

Statement (ii) is a consequence of the definition of ⌫.

Definition 3 (Derivative of an Ideal). Let I be an ideal in R and let I 0 denote
the ideal derivative of I. Define

(i) I 0 := h0i if either I = h0i or I = h1i = R;

(ii)

I 0 := h
kX

j=1

⇡(P1) · · ·⇡(Pj�1)⇡̂(Pj) · · ·⇡(Pk)i,

if I = P1P2 · · ·Pr, where in each summand the term ⇡̂(Pj) is deleted. Here,
hai denote the principal ideal generated by a in R.

Since the function ⇡ is well-defined , the derivative I 0 is well-defined . Note also
that the derivative of an ideal is always a principal ideal by definition.

In the following discussion, the same notation is used for the ideal derivative and
for the usual arithmetic derivative. Thus I 0 denote the ideal derivative of the ideal
I and ha0i denote the principal ideal generated by the usual arithmetic derivative
of a.
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2.1. Properties of Ideal Derivative

Theorem 2.2. Let I be an ideal in R and h⌫(I)0i be the principal ideal generated
by the usual arithmetic derivative of ⌫(I). Then I 0 = h⌫(I)0i.

Proof. Let I = h0i. Then ⌫(I) = 0 implies ⌫(I)0 = 00 = 0 so I 0 = h0i = h⌫(I)0i.
Let I = R. Then ⌫(I) = 1 implies ⌫(I)0 = 10 = 0 so I 0 = h0i = h⌫(I)0i. Now,
let I be a nontrivial ideal and I = P1P2 · · ·Pr be the factorization of I into prime
ideals. Let pi = ⇡(Pi) for i = 1, 2, . . . , r. Then ⌫(I) = p1p2 · · · pr. Therefore,
I 0 = h

Pr
j=1 p1 · · · pj�1p̂j · · · pri. Since ⌫(I)0 =

Pr
j=1 p1 · · · pj�1p̂j · · · pr, it follows

that h⌫(I)0i = h
Pr

j=1 p1 · · · pj�1p̂j · · · pri. Thus I 0 = h⌫(I)0i.

Corollary 2.3. Let P be a nonzero prime ideal in R. Then P 0 = h1i = R.

Proof. We have P 0 = h⌫(P )0i = h⇡(P )0i = hp0i = h1i = R, where p = ⇡(P ).

Corollary 2.4. Let I = P k, where P is a nonzero prime ideal and k 2 N. Then
I 0 = hk⌫(P )k�1i.

Proof. Clearly, I = P k implies ⌫(I) = ⌫(P k) = ⌫(P )k, which implies ⌫(I)0 =
k⌫(P )k�1. Hence, I 0 = h⌫(I)0i = hk⌫(P )k�1i.

Corollary 2.5. Let I be an ideal in R and k 2 N. Then (Ik)0 = hk⌫(I)k�1⌫(I)0i.

Proof. By the Leibnitz rule of the arithmetic derivative, ⌫(Ik) = ⌫(I)k implies
⌫(Ik)0 = k⌫(I)k�1⌫(I)0. Therefore, (Ik)0 = h⌫(Ik)0i = hk⌫(I)k�1⌫(I)0i.

Theorem 2.6. Let I and J be ideals in R. Then (IJ)0 = h⌫(I)0⌫(J) + ⌫(I)⌫(J)0i.

Proof. We have (IJ)0 = h⌫(IJ)0i = h
�
⌫(I)⌫(J)

�0i = h⌫(I)0⌫(J) + ⌫(I)⌫(J)0i.

Example 3. Let K = Q(
p
�5). Then R = Z[

p
�5]. We have shown in Example

2 that 6 has not well-defined arithmetic derivative in Z[
p
�5]. Since Z[

p
�5] is the

number ring of Q(
p
�5) and h6i is a principal ideal in Z[

p
�5], we can find the

derivative of this ideal in Z[
p
�5]. We can factor the ideal h6i into prime ideals ([3],

pp 214-216) as follows:

h6i = h2, 1 +
p
�5i2h3, 1 +

p
�5ih3, 1�

p
�5i.

Now, 2 2 h2, 1 +
p
�5i, 3 2 h3, 1 +

p
�5i, and 3 2 h3, 1 �

p
�5i. Since 2 and

3 are prime integers, we have ⇡(h2, 1 +
p
�5i) = 2, ⇡(h3, 1 +

p
�5i) = 3, and

⇡(h3, 1�
p
�5i) = 3 ([2], Exercise 4.4.4, pp 49). Therefore, ⌫(h6i) = 22·3·3 = 2·2·3·3

implies ⌫(h6i)0 = 2 · 3 · 3 + 2 · 3 · 3 + 2 · 2 · 3 + 2 · 2 · 3 = 18 + 18 + 12 + 12 = 60.
Thus h6i0 = h⌫(h6i)0i = h60i. Observe that, h60i ✓ h6i implies h6i | h60i. Thus
h6i | h6i0, i.e., the ideal h6i divides its ideal derivative h6i0. Note that this is not
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true in general. Take K = Q and R = Z, 5 2 Z, 50 = 1. Therefore, h5i0 = h50i = h1i
but h5i - h1i.

The arithmetic derivative and the ideal derivative in Z have the following relation.

Theorem 2.7. Let n 2 Z and P be the set of positive primes. Then hni0 = hmi if
and only if n0 = um, where u = ±1.

Proof. The case n 2 {0, 1,�1} is trivial. Let n 2 Z\{0, 1,�1}. Let n = up1p2 · · · pr,
where u = ±1 and pi 2 P for i = 1, 2, . . . , r. Then hni = hup1p2 · · · pri =
hp1p2 · · · pri = hp1ihp2i · · · hpri. Therefore, ⌫(hni) = ⇡(hp1i)⇡(hp2i) · · ·⇡(hpri) =
p1p2 · · · pr = un. Thus hni0 = h⌫(hni)0i = h(un)0i = hun0i = hn0i. Now, let n0 = um.
Then hni0 = hn0i = humi = hmi. Conversely, let hni0 = hmi. Then hn0i = hmi as
hni0 = hn0i. This implies either n0 = 0 (in which case m is also 0) or n0 = um,
where u = ±1. But n0 = 0 implies n = 0,±1 ([4], Theorem 7), which contradicts
our assumption. Hence, n0 = um.

Remark 2.8. From the above theorem, it follows that hni0 = hn0i.

Notice that the ideal derivative coincides with the arithmetic derivative in Z in
the sense of Theorem 2.7 for the set P of positive atoms in Z, which contains only
positive primes. For the other set P 0 of atoms, we can modify the definition of ideal
derivative in Z by defining ⇡(hpi) = up, where u 2 {�1, 1} such that up 2 P 0. Note
that this definition of ⇡ is also well defined. For, if p 2 hpi, then its associate up 2
hpi. A similar argument is also valid in case of the general number rings.

2.2. Some Di↵erential Equations

Theorem 2.9. Let I be an ideal in a number ring R. Then I 0 = h1i if and only if
I is a nonzero prime ideal in R.

Proof. Let I be a nonzero prime ideal of R. Then by Corollary 2.3, I 0 = h1i. Con-
versely, assume that I 0 = h1i and I is not a nonzero prime ideal. Let I = h0i. Then
I 0 = h0i0 = h0i. Hence, I 6= h0i. Also, I 6= h1i as h1i0 = h0i. Let I = P1P2 · · ·Pr

be the prime ideal factorization of I. Then we have that r � 2. Let ⇡(Pi) = pi for
i = 1, 2, . . . , r. Then ⌫(I) = p1p2 · · · pr. Therefore, ⌫(I)0 =

Pr
j=1 p1 · · · pj�1p̂j · · · pr.

Now I 0 = h1i implies h⌫(I)0i = h1i. Thus h
Pr

j=1 p1 · · · pj�1p̂j · · · pri = h1i. There-
fore, for some unit u 2 R,

1 = u
rX

j=1

p1 · · · pj�1p̂j · · · pr

so

NK(1) = NK(u)NK(
rX

j=1

p1 · · · pj�1p̂j · · · pr),
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which implies

NK(
rX

j=1

p1 · · · pj�1p̂j · · · pr) = ±1.

Hence, |NK(
Pr

j=1 p1 · · · pj�1p̂j · · · pr)| = 1 (here NK(↵) denote the norm of the
algebraic integer ↵ with respect to the number field K ). Thus

(
rX

j=1

p1 · · · pj�1p̂j · · · pr)d = 1,

where d = [K : Q]. On the other hand, we have that
Pr

j=1 p1 · · · pj�1p̂j · · · pr =
p1p3p4 · · · pr +

Pr
j=1,j 6=2 p1 · · · pj�1p̂j · · · pr > p1p3p4 · · · pr > p1 � 2. Therefore,

1 = (
Pr

j=1 p1 · · · pj�1p̂j · · · pr)d � 2d, a contradiction, as d � 1. This proves that I
must be a nonzero prime ideal in R.

Theorem 2.10. Let I be an ideal in a number ring R. Then I 0 = h0i if and only
if either I = h0i or I = h1i.

Proof. Let either I = h0i or I = h1i. Then by definition, I 0 = h0i. Conversely,
assume that I 0 = h0i. Let I 6= h0i and I 6= h1i. Then I is a nontrivial ideal
in R. Let I = P1P2 · · ·Pr be the prime ideal factorization. If r = 1, then I =
P1 is a prime ideal and hence I 0 = h1i, a contradiction. Therefore, r � 2. Let
⇡(Pi) = pi for i = 1, 2, . . . , r. Then ⌫(I) = p1p2 · · · pr. This implies ⌫(I)0 =Pr

j=1 p1 · · · pj�1p̂j · · · pr. Hence, I 0 = h⌫(I)0i = h
Pr

j=1 p1 · · · pj�1p̂j · · · pri. Now,
I 0 = h0i implies h

Pr
j=1 p1 · · · pj�1p̂j · · · pri = h0i. Therefore,

Pr
j=1 p1 · · · p̂j · · · pr =

0, which is not possible as
Pr

j=1 p1 · · · pj�1p̂j · · · pr � 2. Hence, I 0 6= h0i. This
completes the proof.

Theorem 2.11. The number of solutions in a number ring R of the di↵erential
equation I 0 = hmi, where m 2 Z \ {�1, 1}, is finite.

Proof. Let m = 0. Then the result follows from the previous theorem. So let
m 6= 0. Without loss of generality, we may consider the equation I 0 = hmi for
positive integers m, because hmi = h�mi for all m 2 Z. If there is no solution, we
are done. So assume that there is at least one solution. Let I be a solution. Then
I 6= h0i, h1i and also I is not a prime ideal because if I happens to be prime, then
I 0 = h1i = R 6= hmi (since the only units in R which are also in Z are ±1). Hence,
I is a nontrivial ideal. Next, assume that ⌫(I) = n. Then I 0 = h⌫(I)0i = hn0i.
Therefore, hn0i = hmi implies either n0 = 0 or n0 = um for some unit u in R. If
n0 = 0, then hmi = h0i. This implies m = 0, which contradicts our assumption
that m is positive. So n0 = um. Since n0 is a positive integer, um is also a positive
integer. Now, as um 2 Z, u 2 R, and m > 0, it follows that u = 1. Therefore,
n0 = m, which has a finite number of solutions for n ([4], Corollary 3, pp. 6). Hence
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it su�ces to show that there are a finite number of ideals I such that ⌫(I) is a
solution of n0 = m. So let n be a solution of the equation n0 = m. We show that
there are only finitely many ideals I such that ⌫(I) = n. Notice that n > 0 as I is
a nontrivial ideal. Let n = p1p2 · · · pr be the prime factorization of n. Then there
must be r nonzero prime ideals P1, P2, . . . , Pr in the prime factorization of I such
that ⇡(Pi) = pi for i = 1, 2, . . . , r. Hence it su�ces to show that for each prime pi

there are only finitely many nonzero prime ideals P such that ⇡(P ) = pi. Observe
that, pi 2 P implies hpii ✓ P, so N (P )  N (hpii) (here N (P ) denote the norm
of the ideal P ). Thus N (P )  |NK(pi)| ([2], Exercise 5.3.15, pp 61). It follows
that there are only a finite number of such prime ideals ([2], Exercise 6.2.4, pp 72).
Hence, there are only finitely many solutions of the di↵erential equation I 0 = hmi,
where m 2 Z \ {�1, 1}. This completes the proof.

3. Derivative of a Fractional Ideal

The definition of the ideal derivative can be extended to the derivative of a fractional
ideal in K in such a way that the ideal derivative in Q gives the usual arithmetic
derivative in Q in the sense of Theorem 3.6. Due to the di↵erent notation used in
this paper we mention the following already known definitions and results from [2].

Definition (Fractional Ideal). Let K be a number field and R be the corre-
sponding number ring. A fractional ideal A of R is an R-module contained in K
such that there exists a nonzero integer m such that mA ✓ R.

Any ideal of R is a fractional ideal by taking m = 1. Let P be a prime ideal
of R. Define P�1 := {x 2 K : xP ✓ R}. Then P�1 is a fractional ideal and
PP�1 = R. Note that the sum and the product of two fractional ideals are again
fractional ideals. Let P and Q be prime ideals. We shall write P

Q for Q�1P . We
shall also write P1P2···Pr

Q1Q2···Qs
to mean Q�1

1 Q�1
2 · · ·Q�1

s P1P2 · · ·Pr, where the Pi’s and
the Qj ’s are prime ideals.

Theorem 3.1. ([2], Exercise 5.3.7, p. 59) Any fractional ideal A can be written
uniquely in the form P1P2···Pr

Q1Q2···Qs
, where the Pi’s and the Qj’s may be repeated, but no

Pi = Qj.

Theorem 3.2. ([2], Exercise 5.3.8, p. 59) Given any nonzero fractional ideal A
in K, there exists a fractional ideal A�1 such that AA�1 = R.

3.1. Fractional Ideals of Q

Set K = Q and R = Z. Let P be a prime ideal in Z. Then P = hpi = pZ for
some prime p and P�1 = {x 2 Q : xpZ ✓ Z} = {x 2 Q : px 2 Z} = 1

pZ is a
fractional ideal. Now, let a

b 2 Q \ {0, 1,�1}. Then a
b Z = {ax

b 2 Q : x 2 Z} is a
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fractional ideal which can be written as a
b Z = p1p2···pr

q1q2···qs
Z, where the pi’s and the qj ’s

are primes and pi 6= qj for all i and j. Hence, a
b Z = 1

q1
Z 1

q2
Z · · · 1

qs
Zp1Zp2Z · · · prZ =

Q�1
1 Q�1

2 · · ·Q�1
s P1P2 · · ·Pr, where Pi = piZ = hpii and Qj = qjZ = hqji are prime

ideals and Pi 6= Qj for i = 1, 2, . . . , r and j = 1, 2, . . . , s. By Theorem 3.1, this
representation of a

b Z is unique. We shall also write ha
b i for a

b Z.

Definition 4 (Fractional Representative Function). Let R be the number
ring of a number field K. Let I⇤ be the set of fractional ideals in K. The fractional
representative function is a function ⌫⇤ : I⇤ ! Q defined by

⌫⇤(A) :=

8<
:

0, if A = h0i;
1, if A = h1i;
⇡(Q1)�1 · · ·⇡(Qs)�1⇡(P1) · · ·⇡(Pr), if A = Q�1

1 · · ·Q�1
s P1 · · ·Pr,

where A 2 I⇤.
It is clear that ⌫⇤(I) = ⌫(I) if I is an ideal of R. By Theorem 3.1, any fractional

ideal A in K can be uniquely written in the form IJ�1, where I and J are ideals
of R. Therefore, by the definition of ⌫⇤, it is clear that

⌫⇤(A) = ⌫⇤(IJ�1) = ⌫(I)⌫(J)�1.

The following properties are satisfied by the fractional representative function.

Theorem 3.3. (i) Let A and B be fractional ideals in K. Then ⌫⇤(AB) =
⌫⇤(A)⌫⇤(B).

(ii) Let A be a nonzero fractional ideal in K. Then ⌫⇤(A�1) = ⌫⇤(A)�1.

Proof. (i) Let A and B be fractional ideals in K. Then there exist ideals I1, I2, J1

and J2 in R such that A = I1J
�1
1 and B = I2J

�1
2 . Therefore, AB =

(I1J
�1
1 )(I2J

�1
2 ) = (I1I2)(J1J2)�1. We have

⌫⇤(AB) = ⌫⇤
�
(I1I2)(J1J2)�1

�
= ⌫(I1I2)⌫(J1J2)�1

= ⌫(I1)⌫(I2)
�
⌫(J1)⌫(J2)

��1

= ⌫(I1)⌫(J1)�1⌫(I2)⌫(J2)�1

= ⌫⇤(I1J
�1
1 )⌫⇤(I2J

�1
2 )

= ⌫⇤(A)⌫⇤(B).

(ii) Let A be a nonzero fractional ideal in K. Then by Theorem 3.2, there exists
a fractional ideal A�1 such that AA�1 = R. Therefore, ⌫⇤(AA�1) = ⌫⇤(R) =
⌫⇤(< 1 >) implies ⌫⇤(A)⌫⇤(A�1) = 1 (by (i)). Thus ⌫⇤(A�1) = ⌫⇤(A)�1.
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Definition 5 (Derivative of a Fractional Ideal). Let A be a fractional ideal
in K and let ⌫⇤(A)0 denote the arithmetic derivative of the rational number ⌫⇤(A).
Then the fractional ideal derivative of A, denoted by A0, is defined by A0 :=
h⌫⇤(A)0i. Here, h⌫⇤(A)0i is the cyclic R-module generated by the rational number
⌫⇤(A)0 in K.

Theorem 3.4. Let A and B be fractional ideals in K. Then (AB)0 = h⌫⇤(A)0⌫⇤(B)+
⌫⇤(A)⌫⇤(B)0i.

Proof. By the Leibnitz rule, (AB)0 = h⌫⇤(AB)0i = h(⌫⇤(A)⌫⇤(B))0i = h⌫⇤(A)0⌫⇤(B)+
⌫⇤(A)⌫⇤(B)0i.

Lemma 3.5. Let hq1i = q1Z and hq2i = q2Z be cyclic Z-modules generated by the
nonzero rational numbers q1 and q2, respectively. Then hq1i = hq2i if and only if
q1 = uq2, where u = ±1.

Proof. Let hq1i = hq2i. Then q1 2 hq2i implies q1 = q2m for some m 2 Z. Similarly,
q2 = q1n for some n 2 Z. Therefore, q1 = q2m = q1nm = mnq1 implies m = n = 1
or m = n = �1. Thus q1 = uq2, where u = ±1. Conversely, let q1 = uq2. Then
q1Z = uq2Z = q2Z implies hq1i = hq2i as Z-modules.

Theorem 3.6. Let a
b 2 Q and ha

b i0 denote the derivative of the fractional ideal
generated by a

b 2 Q. Let (a
b )0 denote the usual arithmetic derivative of a

b . Then
ha

b i0 = hqi if and only if (a
b )0 = uq, where u = ±1.

Proof. Let a
b = 0. Then ha

b i = a
b Z = h0i and (a

b )0 = 00 = 0. We have ⌫⇤(h0i) = 0.
Therefore, h0i0 = h⌫⇤(h0i)0i = h00i = h0i. Conversely, let h0i0 = hqi. Then hqi =
h0i0 = h⌫⇤(h0i)0i = h00i = h0i. This gives q = 0. Therefore, 00 = 0 = q. Thus the
theorem is true in the case a

b = 0.
Now, let a

b = 1. Then ha
b i = h1i = Z and (a

b )0 = 10 = 0. We have ⌫⇤(h1i) = 1.
Therefore, h1i0 = h⌫⇤(h1i)0i = h10i = h0i. Conversely, let h1i0 = hqi. Then hqi =
h1i0 = h⌫⇤(h1i)0i = h10i = h0i. This gives q = 0. Therefore, 10 = 0 = q. Thus the
theorem is true in the case a

b = 1 as well.
Similar argument holds for the case a

b = �1. Now, assume that a
b 2 Q\{0, 1,�1}.

Let a
b = up1p2···pr

q1q2···qs
, where the pi’s and the qj ’s are primes such that pi 6= qj

for all i, j and u = ±1. We have ha
b i = a

b Z = p1p2···pr

q1q2···qs
Z. Therefore, ha

b i =
Q�1

1 Q�1
2 · · ·Q�1

s P1P2 · · ·Pr, where Pi = hpii = piZ and Qj = hqji = qjZ are
prime ideals and Pi 6= Qj for i = 1, 2, . . . , r and j = 1, 2, . . . , s. Thus ⌫⇤(ha

b i) =
q�1
1 q�1

2 · · · q�1
s p1p2 · · · pr = ua

b . Now, let (a
b )0 = uq. Then ha

b i0 = h⌫⇤(ha
b i)0i =

h(ua
b )0i = hu(a

b )0i = h(a
b )0i. This implies ha

b i0 = huqi = hqi.
Conversely, let ha

b i0 = hqi. Then h⌫⇤(ha
b i)0i = hqi implies h(ua

b )0i = hqi. Hence,
hu(a

b )0i = hqi. This gives h(a
b )0i = hqi. If q = 0, then (a

b )0 = 0 = uq. If q 6= 0,
we claim that (a

b )0 = uq for some unit u. Let (a
b )0 = 0. Then h(a

b )0i = hqi implies
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hqi = h0i. Hence, q = 0, which contradicts our assumption. Therefore, (a
b )0 6= 0.

Thus by Lemma 3.5, h(a
b )0i = hqi implies (a

b )0 = uq, where u = ±1. This completes
the proof.

4. Concluding Remarks

We defined the ideal derivative in a number ring, where we used the facts that every
ideal in a number ring is uniquely representable as a product of prime ideals and
that every nonzero prime ideal in a number ring contains exactly one prime integer.
Because of the latter fact, we could define the prime indicator function which played
an important role in defining the concept of ideal derivative in a number ring.

The computation of ideal derivative may be di�cult because its computation
depends on the factorization of an ideal in a number ring into prime ideals which is
not an easy task. Further, finding the unique prime integer in a prime ideal is also
challenging.
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