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Abstract
For a finite abelian group G with exp(G) = n, the arithmetical invariant smn(G)
is defined to be the least integer k such that any sequence S with length k of
elements in G has a zero-sum subsequence of length mn. When m = 1, it is the
Erdős-Ginzburg-Ziv constant and is denoted by s(G). There are weighted versions
of these constants. Here, to obtain bounds on some particular constants of these
types corresponding to the cyclic group Zn, we shall modify a polynomial method
used by Rónyai for making some progress towards the Kemnitz conjecture, and also
a method of Gri�ths which had been used to attack a problem for some weighted
version of the constant.

1. Introduction

Consider a finite abelian group G (written additively). By a sequence over G we
mean a finite sequence of terms from G which is unordered and repetition of terms
is allowed. We view sequences over G as elements of the free abelian monoid F(G)
and use multiplicative notation (so our notation is consistent with [[13], [15], [17]]).

A sequence S = g1 · . . . ·gl 2 F(G) is called a zero-sum sequence if g1+· · ·+gl = 0,
where 0 is the identity element of the group.

If G is a finite abelian group with exp(G) = n, then the Erdős-Ginzburg-Ziv
constant s(G) is defined to be the least integer k such that any sequence S with
length k of elements in G has a zero-sum subsequence of length exp(G) = n; to know
some known facts about this constant, one may look into the expository article of
Gao and Geroldinger [13] and Section 4.2 in the survey of Geroldinger [14].
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For integers m < n, we shall use the notation [m,n] to denote the set {m,m +
1, . . . , n}. For a finite set A, we denote its size by |A|, which is the number of
elements of A.

If G is a finite abelian group with exp(G) = n, then for a non-empty subset A
of [1, n � 1], one defines sA(G) to be the least integer k such that any sequence S
with length k of elements in G has an A-weighted zero-sum subsequence of length
exp(G) = n, that is, for any sequence x1 · . . . · xk with xi 2 G, there exists a subset
I ⇢ [1, k] with |I| = n and, for each i 2 I, some element ai 2 A such that

X
i2I

aixi = 0.

Taking A = {1}, one recovers the classical Erdős-Ginzburg-Ziv constant s(G).
The above weighted version and some other invariants with weights were initiated
by Adhikari, Chen, Friedlander, Konyagin and Pappalardi [4], Adhikari and Chen
[3] and Adhikari, Balasubramanian, Pappalardi and Rath [2]. For developments
regarding bounds on the constant sA(G) in the case of abelian groups G with higher
rank and related references, we refer to the recent paper of Adhikari, Grynkiewicz
and Sun [6].

When A = Z⇤n = {a 2 [1, n� 1]|(a, n) = 1}, the set of units of Zn = Z/nZ, Luca
[21] and Gri�ths [16] proved independently the following result which had been
conjectured in [4]:

sA(Zn)  n + ⌦(n), (1)

where ⌦(n) denotes the number of prime factors of n, counted with multiplicity.

An example in [4] had already established the inequality in the other direction:

sA(Zn) � n + ⌦(n).

Now we state the following result of Gri�ths [16] which generalizes the result (1)
for an odd integer n:

Let n = pa1
1 · · · pak

k be an odd integer and let a =
P

s as. For each s, let As ⇢ Zpas
s

be a subset with its size |As| > pas
s /2, and let A = A1 ⇥ · · ·⇥Ak. Then for m > a,

every sequence x1 · . . . · xm+a over Zn has 0 as an A-weighted m-sum.

Gri�ths [16] also had a similar result when n is even; we only need to mention
the case when n is odd.

With suitable modifications of the method of Gri�ths [16], we establish the
following result:

Theorem 1. Let n = pa1
1 · · · pak

k be an odd integer and let a =
P

s as. For each s,
let As ⇢ Zpas

s
be a subset with |As| > (4/9)pas

s , and let A = A1 ⇥ · · · ⇥ Ak. Then
for m > 2a, every sequence x1 · . . . · xm+2a over Zn has 0 as an A-weighted m-sum.
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Since n � 3a > 2a, from Theorem 1 it follows that any sequence of length n+2a
of elements of Zn has 0 as an A-weighted n-sum. In other words, if A is as in the
statement of Theorem 1, sA(Zn)  n + 2⌦(n).

Clearly, Theorem 1 covers many subsets A = A1 ⇥ · · · ⇥ Ak with As ⇢ Zpas
s

,
which are not covered by the result of Gri�ths. We proceed to give one such
example where it determines the exact value of sA(Zn).

When n = p, a prime, and A is the set of quadratic residues (mod p), Adhikari
and Rath [7] proved that

sA(Zp) = p + 2. (2)

For general n, considering the set A of squares in the group of units in the cyclic
group Zn, it was proved by Adhikari, Chantal David and Urroz [5] that if n is a
square-free integer, coprime to 6, then

sA(Zn) = n + 2⌦(n). (3)

Later, removing the requirement that n is a square-free, Chintamani and Moriya
[8] showed that if n is a power of 3 or n is coprime to 30 = 2 ⇥ 3 ⇥ 5, then the
result (3) holds, where A is again the set of squares in the group of units in Zn.
However, Chintamani and Moriya [8] had only to prove that sA(Zn)  n + 2⌦(n),
the corresponding inequality in the other direction for odd n (and so for n coprime
to 30) had already been established by Adhikari, Chantal David and Urroz [5]. We
mention that a lower bound for sA(Zn) when n is even has been given by Grundman
and Owens [18].

Considering an odd integer n = pa1
1 · · · pak

k , the set A of squares in the group of
units in Zn is A = A1⇥ · · ·⇥Ak, where As is the set of squares in the group of units
in Zpas

s
and it satisfies |As| = pas

s
2

⇣
1� 1

ps

⌘
. Observing that 1

2

⇣
1� 1

ps

⌘
> (4/9), if

ps � 11, Theorem 1 gives the required upper bound in the above mentioned result
of Chintamani and Moriya [8] when n is coprime to 2⇥ 3⇥ 5⇥ 7.

In the next section we shall give a proof of our Theorem 1.

To describe the result in Section 3, we need the following definition. For a finite
abelian group G with exp(G) = n, smn(G) is defined (see [13], for instance) to be
the least integer k such that any sequence S with length k of elements in G has a
zero-sum subsequence of length mn. Putting m = 1, one observes that the constant
s(G) is the same as sn(G).

As before, for a non-empty subset A of [1, n � 1], one defines smn,A(G) to be
the least integer k such that any sequence S with length k of elements in G has an
A-weighted zero-sum subsequence of length mn.

In Section 3, we obtain an upper bound for s3p,A(Z3
p), where p is an odd prime

and A = {±1}.
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We state some known results for the case A = {±1}.
When A = {±1}, for any positive integer n it was proved by Adhikari, Chen,

Friedlander, Konyagin and Pappalardi [4] that

s{±1}(Zn) = n + blog2 nc.

When n is odd, and A = {±1}, it was observed by Adhikari, Balasubramanian,
Pappalardi and Rath [2] that

s{±1}(Z2
n) = 2n� 1.

Later, for any finite abelian group G of rank r and even exponent it was proved
by Adhikari, Grynkiewicz and Zhi-Wei Sun [6], that there exists a constant kr,
dependent only on r, such that

s{±1}(G)  exp(G) + log2 |G| + kr log2 log2 |G|.

In Section 3, we shall take up the problem for the rank 3 case and after some
preliminary remarks, we shall observe that a suitable modification of a polynomial
method used by Rónyai [24] yields the following.

Theorem 2. For A = {±1}, and an odd prime p, we have

s3p,A(Z3
p) 

(9p� 3)
2

.

We remark that a polynomial method has been successfully employed to tackle
questions in additive number theory and, in particular, to zero-sum problems; we
refer to the monographs [15, Chapter 5.5] and [17, Chapters 17 and 22].

There is much recent work on s(G) (e.g., [10], [26], [12], [9], [11]). The plus-minus
weighted analogue of a di↵erent constant has been taken up in the recent paper [22].
While many of the ideas in the above papers do not work in our situation, we feel
that it will be worth investigating the method in [26]; more precisely one may
look into plugging in some ideas from the paper [25], which would involve some
structural insight into weighted zero-sum subsequences. However, adapting some
of these ideas in the weighted case will not be straightforward as one will run into
obvious di�culties; for instance while in the classical case, existence of a zero sum
subsequence of length 2p of a sequence of length 3p implies the existence a zero sum
subsequence of length p, that will no longer be valid in the weighted case. It will
be worthwhile to explore the possibility of suitable modifications of some ideas in
some of the above papers in the weighted situation.
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2. Proof of Theorem 1

For our proof of Theorem 1, we shall closely follow the method of Gri�ths [16].
Though we shall be able to use many of the ideas in [16] with straight forward
modifications, some modifications need some work and some new observations have
to be made to make things work.

We start this section with a couple of basic lemmas.

Lemma 1. Let pa be an odd prime power and A ⇢ Zpa be a subset such that
|A| > 4

9pa. If x, y, z 2 Z⇤pa , the group of units in Zpa , then given any t 2 Zpa , there
exist ↵,�, � 2 A such that

↵x + �y + �z = t.

Proof. Considering the sets

A1 = {↵x : ↵ 2 A}, B1 = {�y : � 2 A}, C1 = {�z : � 2 A},

and observing that |A1| = |B1| = |C1| = |A|, by Kneser’s theorem ([20], may also
see Chapter 4 of [23]) we have

|A1 + B1| � |A1| + |B1|� |H| >
8pa

9
� |H|, (4)

where H = H(A1 + B1) is the stabilizer of A1 + B1.

Now, H = Zpa would imply A1 + B1 = Zpa , which in turn would imply that
A1 + B1 + C1 = Zpa and we are through.

Otherwise, |H| being a power of an odd prime p � 3, we have

|H|  pa�1 =
pa

p
 pa

3

and hence from (4),

|A1 + B1| >
8pa

9
� pa

3
=

5pa

9
.

Therefore, we have

|A1 + B1| + |t� C1| >
5pa

9
+

4pa

9
= pa,

which implies that the sets A1 + B1 and t� C1 intersect and we are through.

Lemma 2. Let pa be an odd prime power and let A ⇢ Zpa be such that |A| >
(4/9)pa. Let x1 · . . . ·xm be a sequence over Zpa such that for each b 2 [1, a], writing
Tb = {i|xi 6= 0 (mod pb)}, its cardinality |Tb| /2 {1, 2}. Then x1 · . . . · xm is an
A-weighted zero-sum sequence.
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Proof. Let c be minimal such that {i|xi 6= 0 (mod pc)} is non-empty. If no such c
exists then Tb = ; for all b and we are done.

Therefore, {i|xi 6= 0 (mod pc)} has at least three elements; without loss of gen-
erality let x1, x2, x3 6= 0 (mod pc).

Set
x0i = xi/pc�1 2 Zpa�(c�1) ,

for i 2 [1,m].

If elements of A meets less than (4/9)pa�(c�1) congruence classes modulo pa�(c�1),
then |A| < (4/9)pa�(c�1) ⇥ p(c�1) = (4/9)pa, which is a contradiction to our as-
sumption.

Therefore, the elements of A must meet more than (4/9)pa�(c�1) congruence
classes modulo pa�(c�1).

Picking up arbitrarily ↵4,↵5, · · · ,↵m 2 A, by Lemma 1, there exist ↵1,↵2,↵3 2
A satisfying

↵1x
0
1 + ↵2x

0
2 + ↵3x

0
3 = �↵4x

0
4 � · · ·� ↵mx0m

in Zpa�(c�1) , and hence
↵1x1 + · · · + ↵mxm = 0

in Zpa .

Let n = pa1
1 · · · pak

k . Then, Zn is isomorphic to Zp
a1
1
⇥ · · ·⇥ Zp

ak
k

and an element
x 2 Zn can be written as x = (x(1), . . . , x(k)), where x(s) ⌘ x (mod pas

s ) for each s.
As has been observed in [16], it is not di�cult to see that if A = A1⇥A2⇥ · · ·⇥Ak

is a subset of Zn, where As ⇢ Zpas
s

for each s 2 [1, k], then a sequence of x1 · . . . ·xm

over Zn is an A-weighted zero-sum sequence in Zn if and only if for each s 2 [1, k],
the sequence x(s)

1 · . . . · x(s)
m is an As-weighted zero-sum sequence in Zpas

s
.

We shall need the following definitions.

Given subsets X1, · · · ,Xa of the set V = [1,m + 2a], a path is a sequence of
distinct vertices v1, · · · , vl and distinct sets Xi1 , · · · ,Xil+1 such that v1 2 Xi1 \
Xi2 , · · · , vl 2 Xil \Xil+1 . A cycle is a sequence of distinct vertices v1, · · · , vl and
distinct sets Xi1 , · · · ,Xil such that v1 2 Xi1 \Xi2 , · · · , vl 2 Xil \Xi1 .

Lemma 3. Given subsets X1, · · · ,Xa of the set V = [1,m + 2a], where m > 2a,
there exists a set I ⇢ [1,m + 2a] with |I| = m and |I \ Xs| /2 {1, 2}, for all
s = 1, · · · , a.

Proof. Given a ground set V = [1,m+2a] and subsets X1, · · · ,Xa of V , for I ⇢ V ,
we define S(I) to be the set {s : |I \Xs| � 3} and I will be called valid if |I \Xs| /2
{1, 2}, for all s 2 [1, a].
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We proceed by induction on a.
In the case a = 1, we have V = [1,m + 2] where m > 2.
If 0  |X1|  2, then we can take I ⇢ V \ X1, such that |I| = m and we have

|I \X1| = 0 /2 {1, 2}.
Now, let |X1| > 2. If |X1| � m, we take I ⇢ X1 such that |I| = m, so that

|I \X1| = m > 2. If |X1| < m, we choose I with |I| = m and X1 ⇢ I ⇢ V so that
|I \X1| = |X1| > 2.

Now, assume that a > 1 and the statement is true when the number of subsets
is not more than a� 1.

If one of the sets, say Xa, has no more than two elements, then without loss of
generality, let Xa ⇢ {m + 2a,m + 2a� 1} and consider the sets X 0

i = Xi \ [1,m +
2(a � 1)], for i 2 [1, a � 1]. Since m > 2a > 2(a � 1), by the induction hypothesis
there exists I ⇢ [1,m+2(a�1)] with |I| = m and |I \X 0

i| /2 {1, 2}, for i 2 [1, a�1].
Clearly, |I \Xi| /2 {1, 2}, for i 2 [1, a� 1] and |I \Xa| = 0. So, we are through.

Hence we assume that
|Xs| � 3, for all s.

If there exists a non-empty valid set J ⇢ V = [1,m+2a] such that 2|S(J)| � |J |,
then considering the ground set V \ J and the subsets {Xs : s /2 S(J)}, observing
that |V \ J | = m + 2a� |J | � m + 2(a� |S(J)|), by the induction hypothesis there
is a set J 0 ⇢ V \ J with |J 0| = m� |J | such that |J 0 \Xs| /2 {1, 2}, for all s /2 S(J).

Since J ⇢ V is valid, J \ Xs is empty for any Xs with s /2 S(J). Therefore,
it is clear that I = J [ J 0 is valid for the ground set V = [1,m + 2a] and subsets
X1, · · · ,Xa. Since |I| = m, we are through.

Now, let J(6= ;) be a subset of V such that 2|S(J)| � |J |. If J is not valid, then
there exists Xs such that |J \Xs| 2 {1, 2}.

If |J \ Xs| = 1, then since |Xs| � 3, we can choose i, j 2 Xs \ J and consider
the set K = J [ {i, j}. Then, |K| = |J | + 2 and |S(K)| � |S(J)| + 1 so that
2|S(K)| � 2|S(J)| + 2 � |J | + 2 = |K|.

Similarly, if |J\Xs| = 2, we can choose i 2 Xs\J and consider the set K = J[{i}.
We have |K| = |J | + 1 and |S(K)| � |S(J)| + 1 so that 2|S(K)| � 2|S(J)| + 2 �
|J | + 2 > |K|.

Therefore, iterating this process we arrive at a valid set L with 2|S(L)| � |L|
and by our previous argument L can be extended to a valid set I with |I| = m.

So, we assume that for all non-empty J ⇢ [1,m + 2a] we have

2|S(J)| < |J |.

If there are Xu,Xv, u 6= v, such that i, j 2 Xu \Xv, then taking k 2 Xu \ {i, j}
and l 2 Xv \ {i, j} and considering I = {i, j, k, l}, we have 2|S(I)| � 4 � |I|,
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contradicting the above assumption. So, we assume that for every pair Xu,Xv for
u 6= v, we have

|Xu \Xv|  1.

If there is a cycle, consisting of distinct vertices v1, · · · , vl and distinct sets
Xi1 , · · · ,Xil such that v1 2 Xi1 \ Xi2 , · · · , vl 2 Xil \ Xi1 , then considering the
set K = {v1, · · · , vl} and observing that |Xs| � 3 for all s, we can choose tj 2 Xij

for j 2 [1, l] so that taking J = K [{t1, · · · , tl}, |Xij \J | � 3 for all j 2 [1, l]. Then
2|S(J)| � 2l � |J |, which is a contradiction to our assumption.

Therefore, it is assumed that there is no cycle.

Define a leaf to be a set Xs such that |Xs \ ([t6=sXt)|  1.

We claim that there must be at least two leaves.

If the sets Xs are pairwise disjoint, then for any s, |Xs \ ([t6=sXt)| = 0; since
a > 1, we have two leaves. So we assume that there are two sets which meet.
Without loss of generality, let X1 \X2 6= ;.

Now we consider a path of maximum length involving X1; by the assumption
above, its length is at least 2. Let Xi1 , · · · ,Xil be the distinct sets corresponding to
this path, where Xi1 ,Xil are end sets and v1 2 Xi1\Xi2 , · · · , vil�1 2 Xil�1\Xil . By
the maximality condition, Xi1 \{v1} and Xil \{vl�1} cannot intersect with the sets
not on the path and since there are no cycles, they cannot intersect with the sets on
the path as well. Therefore, |Xi1\([t6=i1Xt)| = 1 and similarly, |Xil\([t6=ilXt)| = 1.
This establishes the claim that there are at least two leaves.

Consider the case a = 2 so that m � 2a + 1 = 5. If either Xa�1 \ Xa 6= ;, or
Xa�1 \ Xa = ; and m � 6, in both these cases, one can easily find I ⇢ V , such
that |I| = m � 5 and |I \ Xi| � 3 for i = 1, 2. If Xa�1 \ Xa = ; and m = 5,
then m + 2a = 9 and at least one of the sets Xa�1,Xa, say Xa, has no more than 4
elements. Therefore there is I ⇢ V \Xa with |I| = 5 = m such that |I \Xa�1| � 3,
|I \Xa| = 0 and we are through. So, henceforth we assume that a > 2.

We call a point t 2 Xi a free vertex if t /2 [j 6=iXj .

First we consider the case where there are two sets, say Xa�1,Xa, each having at
least four free vertices. Let m+2a,m+2a�1,m+2a�2,m+2a�3 be free vertices
in Xa and m + 2a� 4,m + 2a� 5,m + 2a� 6,m + 2a� 7 be free vertices in Xa�1.
Considering the set W = [1,m + 2a� 8], by the induction hypothesis there is a set
J ⇢ W such that |J | = m� 4 and |J \Xi| /2 {1, 2}, for i 2 [1, a� 2]. If J intersects
both Xa�1 and Xa, we take I = J [ {m + 2a,m + 2a� 1,m + 2a� 4,m + 2a� 5}.
If J does not intersect at least one of them, say Xa, we take I = J [ {m + 2a �
4,m + 2a� 5,m + 2a� 6,m + 2a� 7}. Clearly, I is a valid set with |I| = m.

Next, suppose there is exactly one set, say Xa, which has more than three free
vertices. Let m + 2a,m + 2a� 1,m + 2a� 2,m + 2a� 3 be free vertices in Xa. As
there are two leaves, there must be one leaf among the other sets; let Xa�1 be a leaf,
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without loss of generality. Now, |Xa�1| � 3 and |Xa�1 \ ([t6=a�1Xt)|  1. Since by
our assumption Xa�1 does not have more than three free vertices, |Xa�1| 2 {3, 4}.

If Xa�1 has three elements, say m + 2a � 4,m + 2a � 5,m + 2a � 6, by the
induction hypothesis there exists J ⇢ [1,m+2a�7] such that |J | = m�3 > 2(a�2)
and |J \ Xi| /2 {1, 2} for i 2 [1, a � 2]. Since J does not intersect Xa�1, taking
I = J [ {m + 2a,m + 2a� 1,m + 2a� 2}, I is a valid set with |I| = m.

If Xa�1 has four elements, say m+2a�4,m+2a�5,m+2a�6,m+2a�7, by the
induction hypothesis there exists J ⇢ [1,m+2a�8] such that |J | = m�4 > 2(a�2)
and |J \ Xi| /2 {1, 2} for i 2 [1, a � 2]. Since J does not intersect Xa�1, taking
I = J [ {m + 2a,m + 2a� 1,m + 2a� 2,m + 2a� 3}, I is a valid set with |I| = m.

Now we assume that no set Xs has more than three free vertices.

We claim that for a > 1,
| [s Xs|  4a� 1.

We proceed by induction. For a = 2, since no set has more than three free
vertices and |X1 \X2|  1, |X1 [X2|  7 = 4a� 1.

Now, assume a > 2. By the induction hypothesis, |X1[· · ·[Xa�1|  4(a�1)�1 =
4a�5. Since no set has more than three free vertices, |[sXs|  4a�5+3 = 4a�2 
4a� 1. Hence the claim is established.

Since, m > 2a, for a > 1, we have 4a� 1 < 4a < m+2a and hence there are two
vertices, say m + 2a,m + 2a� 1, which are not in any of the sets X1, · · · ,Xa.

Let Xa be one of the leaves. As had been observed earlier, by our assumptions,
|Xa| 2 {3, 4}.

If |Xa| = 3, then Xa has two free vertices, say m + 2a � 2,m + 2a � 3. By the
induction hypothesis there exists J ⇢ [1,m+2a�4] such that |J | = m�2 > 2(a�1)
and |J \Xi| /2 {1, 2} for i 2 [1, a� 1]. If J meets Xa, we take I = J [ {m + 2a�
2,m + 2a � 3} and if J does not meet Xa, we take I = J [ {m + 2a,m + 2a � 1}
and in either case we obtain a valid set I with |I| = m.

Now, let |Xa| = 4 so that Xa has three free vertices; let m + 2a � 2,m + 2a �
3,m+2a�4 be free vertices in Xa. As we have at least two leaves, let the other leaf
be Xa�1. By the above argument we are done except when |Xa�1| = 4 in which
case Xa�1 has three free vertices; and let m+2a� 5,m+2a� 6,m+2a� 7 be free
vertices in Xa�1.

By the induction hypothesis there exists J ⇢ [1,m + 2a � 8] such that |J | =
m� 4 > 2(a� 2) and |J \Xi| /2 {1, 2} for i 2 [1, a� 2]. If J meets both Xa,Xa�1,
we take I = J[{m+2a�2,m+2a�3,m+2a�5,m+2a�6}. If J does not meet one
of these two sets, say Xa�1, we take I = J[{m+2a�2,m+2a�3,m+2a�4,m+2a}.
In either case we obtain a valid set I with |I| = m.
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Proof of Theorem 1. Given a sequence x1 · . . . · xm+2a over Zn, we define X(s)
b ⇢

[1,m + 2a] for s 2 [1, k] and b 2 [1, as] by

X(s)
b = {i : xi 6= 0 (mod pb

s)}.

By Lemma 3, there exists I ⇢ [1,m + 2a] with |I| = m and |I \X(s)
b | /2 {1, 2}

for all s,b. Let I = {i1, · · · , im}. Then by Lemma 2 and the observation made
after the proof of Lemma 2, it follows that xi1 , · · · , xim is an A-weighted zero-sum
sequence.

3. Proof of Theorem 2

Throughout this section, p will be an odd prime and we shall have A = {±1}. Here,
an A-weighted zero-sum sequence will be called a plus-minus zero-sum sequence.

Before we proceed to prove Theorem 2, we make some observations regarding
srp,A(Z3

p) for r = 1, 2, 3.

Let (e1, e2, e3) be a basis of Z3
p and let e0 = e1 + e2 + e3.

Observation 1. The sequence

S =
3Y

⌫=0

ep�1
⌫

has no plus-minus zero-sum subsequence of length p since obtaining (0, 0, 0) happens
either by adding an element with its additive inverse (if the inverse is not in the
sequence, but the element repeats, it can be obtained by multiplying with (�1)) or
by adding the sum of the elements e1, e2, e3 with the additive inverse of e0. Each
involves an even number of elements in the sequence and p is an odd prime.

Thus,
sp,A(Z3

p) � 4p� 3. (5)

Observation 2. We consider the sequence

T = e3
0

3Y
⌫=1

ep�1
⌫ .

Since T is a subsequence of S, it does not have a plus-minus zero-sum subsequence
of length p. However, multiplying one of the e0’s by (�1) and then adding with the
remaining elements, it follows that the sequence is a plus-minus zero-sum sequence
of length 3p.
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However, observing that the sequence

S = 03p�1
rY

⌫=0

(2⌫e1)
rY

⌫=0

(2⌫e2)
rY

⌫=0

(2⌫e3)

where r is defined by 2r+1  p < 2r+2, does not have any plus-minus zero-sum
subsequence of length 3p, we obtain:

s3p,A(Z3
p) � 3p + 3blog2 pc. (6)

Similarly, one can observe that

s2p,A(Z3
p) � 2p + 3blog2 pc. (7)

Observation 3. Given a sequence
Qt

i=1 wi over Z3
p, where t = (5p�3)

2 and wi =
(ai, bi, ci) with ai, bi, ci in Zp, consider the following system of equations over Fp,
where Fp is the finite field with p elements.

tX
i=1

aix
p�1
2

i = 0,
tX

i=1

bix
p�1
2

i = 0,
tX

i=1

cix
p�1
2

i = 0,
tX

i=1

xp�1
i = 0.

Since sum of the degrees of the polynomials on the left hand side is (5p�5)
2 < t

and x1 = x2 = · · · = xt = 0 is a solution, by Chevalley-Warning theorem (see
[1], [19] or [23], for instance) there is a nontrivial solution (y1, · · · , yt) of the above
system. By Fermat’s little theorem, writing I = {i : yi 6= 0}, from the first three
equations it follows that

P
i2I ✏i(ai, bi, ci) = (0, 0, 0), where ✏i 2 {1,�1} and from

the second equation we have |I| = p or |I| = 2p.

Thus, a sequence of (5p�3)
2 elements of Z3

p must have a plus-minus zero-sum
subsequence of length p or 2p.

Observation 4. Suppose we are given a sequence
Qt

i=1 wi over Z3
p, where t =

(7p�3)
2 and wi = (ai, bi, ci), with ai, bi, ci in Zp.
By Observation 3, the subsequence

Qk
i=1 wi, where k = (5p�3)

2 , must have a plus-
minus zero-sum subsequence of length p or 2p. If it does not have a plus-minus zero-
sum subsequence of length 2p, after removing a plus-minus zero-sum subsequence
of length p from the original sequence, the length of the remaining subsequence is
(5p�3)

2 , and by Observation 3, it must have a plus-minus zero-sum subsequence of
length p or 2p and in either case, the original sequence has a plus-minus zero-sum
subsequence of length 2p.

Therefore, we have

s2p,A(Z3
p) 

(7p� 3)
2

. (8)
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Remarks. One can observe that there is a big gap between the lower bound
3p + 3blog2 pc of s3p,A(Z3

p) given in (6) and the corresponding upper bound (9p�3)
2

in the statement of Theorem 2.
Similarly, there is a gap between the upper and lower bounds of s2p,A(Z3

p) given
respectively in (8) and (7).

For the constant sp,A(Z3
p), obtaining any reasonable upper bound would be rather

di�cult.

For the proof of Theorem 2, we shall modify the proof of a result of Rónyai [24].
More precisely, we shall work with monomials of the form

Q
i2I xri

i , ri 2 {0, 1, 2},
where I is a finite set, in place of monomials of the form

Q
i2I xri

i , ri 2 {0, 1} as
had been employed in [24].

Lemma 4. Given a sequence (a1, b1, c1)·. . .·(at, bt, ct) over Z3
p, where t = (9p�3)

2 , if
it has a plus-minus zero-sum subsequence of length p then it must have a plus-minus
zero-sum subsequence of length 3p.

Proof. Since after removing a plus-minus zero-sum subsequence of length p, the
length of the remaining subsequence is (7p�3)

2 , the result follows from (8).

Lemma 5. Let F be a field which is not of characteristic 2 and m a positive
integer. Then the monomials

Q
1im xri

i , ri 2 {0, 1, 2} constitute a basis of the
F -linear space of all functions from D = {0, 1,�1}m to F .

Proof. It is easy to observe that the dimension of the space spanned by the monomi-
als
Q

1im xri
i , ri 2 {0, 1, 2} over F is 3m which is the same as that of the F -linear

space of all functions from D = {0, 1� 1}m to F .

If U, V,W are disjoint subsets of [1,m], such that their union is [1,m], then the
function

fU,V,W (x1, x2, · · · , xm) =
Y
j2U

xj(1 + xj)/2
Y
j2V

xj(xj � 1)/2
Y

j2W

(1� x2
j)

takes the value 1 precisely at the point (x1, x2, · · · , xm) of D where xj = 0 for
j 2 W , xj = 1 for j 2 U and xj = �1 for j 2 V .

Since the functions fU,V,W clearly span the linear space of functions from D to
F , we are through.

Proof of Theorem 2. Let S = (a1, b1, c1) · . . . · (am, bm, cm) be a sequence over Z3
p

where m = (9p�3)
2 . We proceed to show that it must have a plus-minus zero-sum

subsequence of length 3p.
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If possible, let there be no such subsequence. By Lemma 4, there is no plus-minus
zero-sum subsequence of length p.

Let
�(x1, x2, · · · , xm) :=

X
I⇢[1,m],|I|=p

Y
i2I

x2
i ,

the p-th elementary symmetric polynomial of the variables x2
1, x2

2, · · · , x2
m.

Next we consider the following polynomial in Fp[x1, x2, · · · , xm]:

P (x1, x2, · · · , xm)

:=

0
@
 

mX
i=1

aixi

!p�1

� 1

1
A
0
@
 

mX
i=1

bixi

!p�1

� 1

1
A
0
@
 

mX
i=1

cixi

!p�1

� 1

1
A

0
@
 

mX
i=1

x2
i

!p�1

� 1

1
A (�(x1, x2, · · · , xm)� 4)(�(x1, x2, · · · , xm)� 2).

Given ↵ = (↵1,↵2, · · · ,↵m) in {0, 1,�1}m, if the number of non-zero entries
of ↵ is 2p, then �(↵) =

�2p
p

�
= 2 2 Fp and therefore the last factor in P van-

ishes for (x1, x2, · · · , xm) = ↵. Similarly, if the number of non-zero entries of ↵
is 4p, then �(↵) =

�4p
p

�
= 4 2 Fp and therefore the fifth factor in P vanishes for

(x1, x2, · · · , xm) = ↵ in this case.

If the number of non-zero entries of ↵ is p or 3p, then by our assumption,0
@
 

mX
i=1

aixi

!p�1

� 1

1
A
0
@
 

mX
i=1

bixi

!p�1

� 1

1
A
0
@
 

mX
i=1

cixi

!p�1

� 1

1
A = 0,

for (x1, x2, · · · , xm) = ↵.

Finally, the fourth factor in P vanishes unless the number of non-zero entries of
↵ is divisible by p.

Therefore, P vanishes on all vectors in {0, 1,�1}m except at 0 and P (0) = 8.
Thus, with the notations used in the proof of Lemma 5, we have P = 8f;,;,[m] as
functions on {0, 1,�1}m. We observe that deg P  3(p� 1) + 2(p� 1) + 2p + 2p =
9p� 5.

We now reduce P into a linear combination of monomials of the form
Q

1im xri
i ,

ri 2 {0, 1, 2} by replacing each xr
i , r � 1 by xi if r is odd and by x2

i if r is even and
let Q denote the resulting expression.

We note that as functions on {0, 1,�1}m, P and Q are the same. Therefore, as
a function on {0, 1,�1}m, Q = 8f;,;,[m]. Also, since reduction can not increase the
degree, we have deg Q  9p� 5. But, because of the uniqueness part, Q has to be
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identical with 8(1� x2
1)(1� x2

2) · · · (1� x2
m). This leads to a contradiction since the

later has degree 2m = 9p� 3.
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