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Abstract
By using nonstandard analysis, we prove embeddability properties of di↵erences
A� B of sets of integers. (A set A is “embeddable” into B if every finite configu-
ration of A has shifted copies in B.) As corollaries of our main theorem, we obtain
improvements of results by I.Z. Ruzsa about intersections of di↵erence sets, and of
Jin’s theorem (as refined by V. Bergelson, H. Fürstenberg and B. Weiss), where a
precise bound is given on the number of shifts of A�B which are needed to cover
arbitrarily large intervals.

Introduction

In several areas of combinatorics of numbers, diverse non-elementary techniques
have been successfully used, including ergodic theory, Fourier analysis, (discrete)
topological dynamics, and algebra on the space of ultrafilters (see e.g. [14, 6, 19,
34, 15] and references therein). Also nonstandard analysis has been applied in this
context, starting from some early work that appeared in the last years of the 80s
(see [20, 26]), and recently producing interesting results in density problems (see
e.g., [22, 23, 24]).

An important topic in combinatorics of numbers is the study of sumsets and of
di↵erence sets. In 2000, R. Jin [21] proved by nonstandard methods the following
beautiful property: If A and B are sets of natural numbers with positive upper
Banach density, then the corresponding sumset A + B is piecewise syndetic. (A
set C is piecewise syndetic if it has “bounded gaps” in arbitrarily long intervals;
equivalently, if a suitable finite union of shifts C+xi covers arbitrarily long intervals.
The upper Banach density is a refinement of the upper asymptotic density. See
below for precise definitions.)

Jin’s result raised the attention of several researchers, who tried to translate his
nonstandard proof into more familiar terms, and to improve on it. In 2006, by using
ergodic-theoretical tools, V. Bergelson, H. Furstenberg and B. Weiss [9] gave a new
proof by showing that the set A + B is in fact piecewise Bohr, a property stronger
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than piecewise syndeticity. In 2008, V. Bergelson, M. Beiglböck and A. Fish found
a shorter proof of that theorem, and extended its validity to countable amenable
groups. They showed also that a converse result holds, namely that every piecewise
Bohr set includes a sumset A + B for suitable sets A,B of positive density (see
[1]). This result was then extended by J.T. Griesmer [18] to cases where one of the
summands has zero upper Banach density. In 2010, M. Beiglböck [2] found a very
short and neat ultrafilter proof of the afore-mentioned piecewise Bohr property.

In this paper, we work in the setting of the hyperintegers of nonstandard analy-
sis, and we prove some “embeddability properties” of sets of di↵erences. (General
results on di↵erence sets of integers A�B immediately imply corresponding results
on sumsets A + B since B and �B have the same upper Banach density.) A set
A is “embeddable” into B if every finite configuration of A has shifted copies in
B, so that the finite combinatorial structure of B is at least as rich as that of A.
As corollaries to our main theorem, we obtain at once improvements of results by
I.Z. Rusza about intersections of di↵erence sets, and a sharpening of Jin’s theorem
(as refined by V. Bergelson, H. Fürstenberg and and B. Weiss). We remark that
many of the results proved here for sets of integers can be generalized to amenable
groups (see [13]).

The first section of this paper contains the basic notions and notation, and the
statements of the main results. In the second section, characterizations of several
combinatorial notions in the nonstandard setting of hyperintegers are presented,
which will be used in the sequel. Section 3 is focused on delta sets A�A and, more
generally, on density-delta sets. In the fourth section, we isolate notions of finite
embeddability for sets of integers, and show their basic properties. The main results
of this paper about di↵erence sets A�B, along with several corollaries, are proved
in the last Section 5.

1. Preliminaries and Statement of the Main Results

If not specified otherwise, throughout the paper by “set” we shall always mean a set
of integers. By the set N of natural numbers we mean the set of positive integers,
so that 0 /2 N.

We recall the following basic definitions (see e.g., [34]). The di↵erence set and
the sumset of A and B are respectively:

A�B = {a� b | a 2 A, b 2 B} ; A + B = {a + b | a 2 A, b 2 B}.

The set of di↵erences �(A) = A�A when the two sets are equal, is called the delta
set of A. Clearly, delta sets are symmetric around 0, i.e., t 2 �(A) , �t 2 �(A).1

1 Some authors include in �(A) only the positive numbers of A�A.
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A set is thick if it includes arbitrarily long intervals; it is syndetic if it has bounded
gaps, i.e., if its complement is not thick; it is piecewise syndetic if A = B\C where
B is syndetic and C is thick. The following characterizations directly follow from
the definitions: A is syndetic if and only if A + F = Z for a suitable finite set F ; A
is piecewise syndetic if and only if A + F is thick for a suitable finite set F .

The lower asymptotic density d(A) and the upper asymptotic density d(A) of a
set A of natural numbers are defined by putting:

d(A) = lim inf
n!1

|A \ [1, n]|
n

and d(A) = lim sup
n!1

|A \ [1, n]|
n

.

Another notion of density for sets of natural numbers that is widely used in
number theory is the Schnirelmann density:

�(A) = inf
n2N

|A \ [1, n]|
n

.

The upper Banach density BD(A) (known also as uniform density) generalizes
the upper density by considering arbitrary intervals in place of initial intervals:

BD(A) = lim
n!1

✓
max
x2Z

|A \ [x + 1, x + n]|
n

◆
= inf

n2N

⇢
max
x2Z

|A \ [x + 1, x + n]|
n

�
.

We shall consider also the lower Banach density:

BD(A) = lim
n!1

✓
min
x2Z

|A \ [x + 1, x + n]|
n

◆
= sup

n2N

⇢
min
x2Z

|A \ [x + 1, x + n]|
n

�
.

(See e.g., [17], for details about equivalent definitions of Banach density.) All the
above densities are shift invariant, that is a set A has the same density of any shift
A + t . It is readily verified that �(A)  d(A) and that

BD (A)  d(A)  d(A)  BD(A).2

Notice that d(Ac) = 1� d(A) and BD(Ac) = 1�BD(A). We remark also that a
set A is thick if and only if BD(A) = 1, and hence, a set A is syndetic if and only
if BD(A) > 0. The following is a well-known intersection property of delta sets.

Proposition 1.1. Assume that BD(A) > 0. Then �(A) \ �(B) 6= ; for any
infinite set B. In consequence, �(A) is syndetic.

Proof. The proof essentially consists of a direct application of the pigeonhole princi-
ple argument. Precisely, one considers the family of shifts {A+ bi | i = 1, . . . , n} by
distinct elements bi 2 B. As each A + bi has the same upper Banach density as A,

2 Actually, for any choice of real numbers 0  r1  r2  r3  r4  1, it is not hard to find sets
A such that BD(A) = r1, d(A) = r2, d(A) = r3 and BD(A) = r4.
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if n is su�ciently large, then those shifts cannot be pairwise disjoint, as otherwise
BD(

Sn
i=1 A + bi) =

Pn
i=1 BD(A + bi) = n · BD(A) > 1, a contradiction. But then

(A + bi) \ (A + bj) 6= ; for suitable i 6= j, and hence �(A) \�(B) 6= ;, as desired.
Now assume by contradiction that the complement of �(A) is thick. By symmetry,
its positive part T = �(A)c \ N is thick as well. For any thick set T ✓ N, it is not
hard to construct an increasing sequence B = {b1 < b2 < . . .} such that bj � bi 2 T
for all j > i. But then �(B) ✓ �T [ {0} [ T = �(A)c, i.e., �(B) \�(A) = ;, a
contradiction.

The above property is just a hint of the rich combinatorial structure of sets of
di↵erences, whose investigation seems to still be far from complete (see e.g., the
recent papers [30, 10, 27]).

Suitable generalizations of delta sets are the following.

Definition 1.2. Let A be a set of integers. For ✏ � 0, the following are called the
✏-density-Delta sets (or more simply ✏-Delta sets) of A:

• �✏(A) = {t 2 Z | d(A \ (A� t)) > ✏}.

• �✏(A) = {t 2 Z | BD(A \ (A� t)) > ✏}.

Similarly to delta sets, ✏-Delta sets also are symmetric around 0. Moreover, it
is readily seen that �✏(A) ✓ �✏(A) ✓ �(A) for all ✏ � 0. We remark that if
t 2 �✏(C) (or if t 2 �✏(C)), then t is indeed the common di↵erence of “many”
pairs of elements of A, in the sense that the set {x 2 Z | x, x + t 2 A} has upper
Banach density (or upper asymptotic density, respectively) greater than ✏.

We shall find it convenient to isolate the following notions of embeddability for
sets of integers X,Y .

Definition 1.3. Let X,Y be sets of integers.

• X is (finitely) embeddable in Y , denoted X � Y , if every finite configuration
F ✓ X has a shifted copy t + F ✓ Y .

• X is densely embeddable in Y , denoted X�dY , if every finite configuration F ✓
X has “densely-many” shifted copies included in Y , i.e., if the intersectionT

x2F (Y � x) = {t 2 Z | t + F ✓ Y } has positive upper Banach density.

Trivially X�dY ) X�Y , and it is easily seen that the converse implication does
not hold. Finite embeddability preserves several of the fundamental combinatorial
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notions that are commonly considered in combinatorics of integer numbers (see
Section 4).3

The main results obtained in this paper are contained in the following three
theorems. The first one is about the syndeticity property of ✏-Delta sets.

Theorem I. Let BD(A) = ↵ > 0 (or d(A) = ↵ > 0), and let 0  ✏ < ↵2. Then for
every infinite X ✓ Z and for every x 2 X there exists a finite subset F ⇢ X such
that:

1. x 2 F ;

2. |F |  b ↵�✏
↵2�✏c = k;

3. X ✓ �✏(A) + F (or X ✓ �✏(A) + F , respectively).

In consequence, the set �✏(A) (or �✏(A), respectively) is syndetic, and its lower
Banach density is not smaller than 1/k.

The second theorem is a general property that holds for all sets of positive upper
Banach density.

Theorem II. Let BD(A) = ↵ > 0. Then there exists a set E ✓ N such that:

1. �(E) � ↵;

2. E �d A, and hence �(E) ✓ �0(A) and �✏(E) ✓ �✏(A) for all ✏ � 0.

The main result in this paper concerns an embeddability property of di↵erence
sets.

Theorem III. Let BD(A) = ↵ > 0 and BD(B) = � > 0. Then there exists a set
E ✓ N such that:

1. The Schnirelmann density �(E) � ↵�;

2. For every finite F ⇢ E there exists ✏ > 0 such that for arbitrarily large
intervals J one finds a suitable shift AJ = A� tJ with the property that

|
�T

e2F (AJ \B)� e
�
\ J |

|J | � ✏ ;

3 The notions of embeddability isolated above seem to be of interest for their own sake. E.g.,
one can extend finite embeddability to ultrafilters on N, by putting U � V when for every B 2 V
there exists A 2 U with A � B. The resulting relation in the space of ultrafilters �N satisfies
several nice properties, which are investigated in [11].



INTEGERS: 14 (2014) 6

3. Both E �d A and E �d B, and hence:

• �(E) ✓ �0(A) \�0(B);

• �✏(E) ✓ �✏(A) \�✏(B) for all ✏ � 0;

• �(E) �d A�B.

Several corollaries can be derived from the above theorems. The first one is a
sharpening of a result about intersections of Delta sets by I.Z. Ruzsa [29], which
improved on a previous theorem by C.L. Stewart and R. Tijdeman [32].

Corollary. Assume that A1, . . . , An ✓ Z have positive upper Banach densities
BD(Ai) = ↵i. Then there exists a set E ✓ N with �(E) �

Qn
i=1 ↵i and such that

�✏(E) ✓
Tn

i=1 �✏(Ai) for every ✏ � 0.
A second corollary is about the syndeticity of intersections of density-Delta sets.

Corollary. Assume that BD(A) = ↵ > 0 and BD(B) = � > 0. Then for every
0  ✏ < ↵2�2, for every infinite X ✓ Z, and for every x 2 X, there exists a finite
subset F ⇢ X such that

1. x 2 F ;

2. |F |  b ↵��✏
↵2�2�✏c = k ;

3. X ✓ (�✏(A) \�✏(B)) + F .

In consequence, the set �✏(A)\�✏(B) is syndetic, and its lower Banach density is
not smaller than 1/k.

A similar result is obtained also about the syndeticity of di↵erence sets.

Corollary. Assume that BD(A) = ↵ > 0 and BD(B) = � > 0. Then for every
infinite X ✓ Z and for every x 2 X, there exists a finite subset F ⇢ X such that

1. x 2 F ;

2. |F |  b 1
↵� c ;

3. X �d (A�B) + F .

If we let X = Z, we obtain a refinement of Jin’s theorem [21] where a precise
bound on the number of shifts of A � B which are needed to cover a thick set is
given.

Corollary. Assume that BD(A) = ↵ > 0 and BD(B) = � > 0. Then there exists a
finite set F such that |F |  b1/↵�c and A�B + F is thick.
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Finally, by the embedding �(E) �d A�B where E has a positive Schnirelmann
density, we can also recover the Bohr property of di↵erence sets proved by V. Bergel-
son, H. Fürstenberg and B. Weiss in [9].

Corollary. Let A and B have positive upper Banach density. Then the di↵erence
set A�B is piecewise Bohr.

2. Nonstandard Characterizations of Combinatorial Properties

In the proofs of this paper, we shall use the basics of nonstandard analysis, including
the transfer principle and the notion of internal set and of hyperfinite set. In
particular, the reader is assumed to be familiar with the fundamental properties
of the hyperintegers ⇤Z and of the hyperreals ⇤R. The hyperintegers are special
elementary extensions of the integers, namely complete extensions. (See §3.1 and
6.4 of [12] for the definitions.) Informally, one could say that the hyperintegers
are a sort of “weakly isomorphic extension” of the integers, in the sense that they
share the same “elementary” (i.e., first-order) properties of Z; in particular, ⇤Z is a
discretely ordered ring whose positive part is the set ⇤N of hypernatural numbers.
We recall that the natural numbers N are an initial segment of ⇤N. Similarly, the
hyperreal numbers ⇤R � R have the same first-order properties as the reals, and so
they are an ordered field. As a proper extension of the real line, ⇤R is necessarily
non-Archimedean, and hence it contains infinitesimal and infinite numbers. We
recall that a number ⇠ 2 ⇤R is infinitesimal if �1/n < ⇠ < 1/n for all n 2 N; ⇠ is
infinite if its reciprocal 1/⇠ is infinitesimal, i.e., if |⇠| > n for all n 2 N; ⇠ is finite
if it is not infinite, i.e., if �n < ⇠ < n for some n 2 N. In one occasion (proof of
Proposition 4.3), we shall apply the overspill principle, namely the property that if
an internal set contains arbitrarily large (finite) natural numbers, then it necessarily
contains also an infinite hypernatural number.

A semi-formal introduction to the basic ideas of nonstandard analysis can be
found in the first part of the survey [3]; as for the general theory, several books
can be used as references, including the classical monographies [31, 25], or the
more recent textbook [16]; finally, we refer the reader to §4.4 of [12] for the logical
foundations.

Let us now fix our notation. If ⇠, ⇣ 2 ⇤R are hyperreal numbers, we write ⇠ ⇡ ⇣
when ⇠ and ⇣ are infinitely close, i.e., when their distance |⇠ � ⇣| is infinitesimal.
If ⇠ 2 ⇤R is finite, then its standard part st(⇠) = inf{r 2 R | r > ⇠} is the unique
real number which is infinitely close to ⇠. For x 2 R, bxc = max{k 2 Z | k  x} is
the integer part of x; and the same notion transfers to the hyperinteger part of an
hyperreal number b⇠c = max{⌫ 2 ⇤Z | ⌫  ⇠}. The notions of sumset C + D and
of di↵erence set C �D for sets of integers, transfer to internal sets C,D ✓ ⇤Z. If
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C is a hyperfinite set, we shall abuse notation and denote by |C| 2 ⇤N its internal
cardinality. An infinite interval of hyperintegers is an interval I = [⌦+1,⌦+N ] ⇢ ⇤Z
whose length N is an infinite hypernatural number. Clearly, the internal cardinality
|I| = N .

We shall use the following nonstandard characterizations (see e.g., [21, 22]).

• A is thick , I ✓ ⇤A for some infinite interval I of hyperintegers.

• A is syndetic , ⇤A has only finite gaps, i.e., the distance of consecutive
elements of ⇤A is always a (finite) natural number.

• A is piecewise syndetic , there is an infinite interval I of hyperintegers where
⇤A has only finite gaps.

• d(A)  ↵ (or d(A) � ↵) , there is an infinite hypernatural number N such
that st(|⇤A \ [1, N ]|/N)  ↵ (or st(|⇤A \ [1, N ]|/N) � ↵, respectively).

• d(A) = ↵ , |⇤A \ [1, N ]|/N ⇡ ↵ for all infinite N .

• BD(A) � ↵ , there exists an infinite interval of hyperintegers I ⇢ ⇤Z such
that st(|⇤A \ I|/|I|) � ↵ , for every infinite N 2 ⇤N there exists an interval
I ⇢ ⇤Z of length N such that st(|⇤A \ I|/|I|) � ↵.

• BD(A) � ↵ , st(|⇤A \ I|/|I|) � ↵ for every infinite interval of hyperintegers
I ⇢ ⇤Z.

As a warm-up for the use of the above nonstandard characterizations, let us
prove a property which will be used in the sequel.

Proposition 2.1. Let A be a set of integers and let F be a finite set with |F | = k.

1. If A + F = Z, then BD (A) � 1/k ;

2. If A + F is thick, then BD(A) � 1/k.

Proof. (1). For every interval I of infinite length N , we have that:

I = ⇤Z \ I = ⇤

 [
x2F

(A + x)

!
\ I =

[
x2F

((⇤A + x) \ I) .

By the pigeonhole principle, there exists x 2 F such that |(⇤A + x) \ I| � |I|/k,
and hence st (|⇤A \ I|/|I|) = st (|(⇤A + x) \ I|/|I|) � 1/k. By the nonstandard
characterization of lower Banach density, this yields the thesis BD(A) � 1/k.
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(2). By the nonstandard characterization of thickness, there exists an infinite
interval I with I ✓ ⇤(A + F ) =

S
x2F (⇤A + x). Exactly as above, we can pick an

element x 2 F such that |(⇤A + x) \ I| � |I|/k, and hence st (|⇤A \ I|/|I|) � 1/k.
By the nonstandard characterization of Banach density, we conclude that BD(A) �
1/k.

3. Density-Delta Sets

In Section 1, we recalled the well-known property that all intersections of delta sets
�(A)\�(B) are non-empty, whenever A has positive upper Banach density and B
is infinite (see Proposition 1.1). By the same pigeonhole principle argument used
in the proof of that result, one also shows that:

• If d(A) > 0, then �0(A) is syndetic.

• If BD(A) > 0, then �0(A) is syndetic.

This section aims at sharpening the above results by considering ✏-Delta sets (see
Definition 1.3). To this end, we shall use the following combinatorial lemma, which
is proved by a straight application of the Cauchy-Schwartz inequality. The main
point here is that this result holds in the nonstandard setting of hyperintegers.

Lemma 3.1. Let N 2 ⇤N be an infinite hypernatural number, let {Ci | i 2 ⇤}
be a family of internal subsets of [1, N ], and assume that every standard part
st(|Ci|/N) � �, where � is a fixed positive real number. Then for every 0  ✏ < �2

and for every F ✓ ⇤ with |F | > ��✏
�2�✏ , there exist distinct elements i, j 2 F such

that st(|Ci \ Cj |/N) > ✏.

Proof. Assume for the sake of contradiction that there exists a finite subset F ✓ I
with cardinality k = |F | > ��✏

�2�✏ and such that st(|Ci \ Cj |/N)  ✏ for all distinct
i, j 2 F . To simplify matters, let us assume, without loss of generality, that all
standard parts st(|Ci|/N) = �. By our hypotheses, we have the following:

• ci = |Ci|/N = � + ⌘i where ⌘i ⇡ 0.

•
P

i2F ci = k � + ⌘ where ⌘ =
P

i2F ⌘i ⇡ 0.

• cij = |Ci \ Cj |/N  ✏ + �ij where �ij ⇡ 0.

•
P

i6=j cij 
�k
2

�
· ✏ + � where � =

P
i6=j �ij ⇡ 0.
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Now let us denote by �i : [1, N ] ! {0, 1} the characteristic function of Ci. Clearly
ci = (1/N)·

PN
⇠=1 �i(⇠) and cij = (1/N)·

PN
⇠=1 �i(⇠)�j(⇠). By the Cauchy-Schwartz

inequality, we obtain:

k2�2 ⇡ (k � + ⌘)2 =

 X
i2F

ci

!2

=
1

N2
·

0
@X

i2F

0
@ NX

⇠=1

�i(⇠)

1
A
1
A

2

=
1

N2
·

0
@ NX

⇠=1

1 ·
 X

i2F

�i(⇠)

!1
A

2

 1
N2

·

0
@ NX

⇠=1

12

1
A ·

NX
⇠=1

 X
i2F

�i(⇠)

!2

=
1
N

·
NX

⇠=1

0
@X

i,j2F

�i(⇠) · �j(⇠)

1
A =

X
i,j2F

0
@ 1

N
·

NX
⇠=1

�i(⇠) · �j(⇠)

1
A

=
X
i2F

ci + 2 ·
X
i<j

cij  k · � + ⌘ + 2
✓

k

2

◆
✏ + 2 �

⇡ k � + k (k � 1) ✏ = k (� + (k � 1) ✏) ,

and hence k �2  � + (k � 1) ✏. This contradicts the assumption k > ��✏
�2�✏ .

A consequence of the above lemma that is relevant to our purposes, is the fol-
lowing one.

Lemma 3.2. Let N 2 ⇤N be an infinite hypernatural number, let C ✓ [1, N ] be
an internal set with st(|C|/N) = � > 0, let 0  ✏ < �2 be a real number, and let
k = b ��✏

�2�✏c. Then for every infinite set X ✓ Z and for every x 2 X, there exists a
finite subset F ⇢ X with x 2 F , |F |  k, and such that X ✓ D✏(C) + F , where

D✏(C) =
⇢

t 2 Z
��� st
✓
|C \ (C � t)|

N

◆
> ✏

�
.

Proof. We proceed by induction, and define the finite subset F = {xi}m
i=1 ⇢ X as

follows. Let x1 = x. If X ✓ D✏(C) + x1, then let F = {x1} and stop. Otherwise
pick x2 2 X such that x2 /2 D✏(C) + x1. Then x2 � x1 does not belong to D✏(C).
So, st(|C \ (C � x2 + x1)|/N)  ✏, and hence also st(|(C � x1) \ (C � x2)|/N) 
✏, because x1/N ⇡ 0. Next, if X ✓

S2
i=1 (D✏(C) + xi), let F = {x1, x2} and

stop. Otherwise pick a witness x3 2 X such that x3 /2
S2

i=1 D✏(C) + xi. Then
st(|C\(C�x3 +xi)|/N)  ✏ for i = 1, 2, and so also st(|(C�xi)\(C�x3)|/N)  ✏,
because xi/N ⇡ 0. We iterate this process. We now show that the procedure must
stop before step k + 1. If not, one could consider the family {Ci | i = 1, . . . , k + 1}
where Ci = (C � xi) \ [1, N ]. Clearly, st(|Ci|/N) = st(|C|/N) = � for all i, and
by the previous lemma one would have st(|(C � xi)\ (C � xj)|/N) > ✏ for suitable
i 6= j, a contradiction. We conclude that the cardinality of F = {xi}m

i=1 has the
desired bound and X ✓ D✏(C) + F .
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We now use the above nonstandard properties to prove a general result for sets
of positive density.

Theorem 3.3. Let BD(A) = ↵ > 0 (or d(A) = ↵ > 0), and let 0  ✏ < ↵2. Then
for every infinite X ✓ Z and for every x 2 X there exists a finite subset F ⇢ X
such that:

1. x 2 F ;

2. |F |  b ↵�✏
↵2�✏c;

3. X ✓ �✏(A) + F (or X ✓ �✏(A) + F , respectively).

Proof. By the hypothesis BD(A) = ↵, there exists an infinite hypernatural number
N 2 ⇤N and a hyperinteger ⌦ 2 ⇤Z such that

|⇤A \ [⌦ + 1,⌦ + N ]|
N

⇡ ↵.

Then C = (⇤A� ⌦) \ [1, N ] is an internal subset of [1, N ] with st(|C|/N) = ↵ > 0.
By Lemma 3.2, there exists a finite set F ⇢ X with x 2 F , |F |  b(↵� ✏)/(↵2 � ✏)c
and such that X ✓ D✏(C) + F . To reach the thesis, it is now enough to show that
D✏(C) ✓ �✏(A). To see this, take an arbitrary t 2 D✏(C). Then

BD(A \ (A� t)) � st
✓
|⇤(A \ (A� t)) \ [⌦ + 1,⌦ + N ]|

N

◆
=

= st
✓
|C \ (C � t)|

N

◆
> ✏ .

Under the assumption that the upper asymptotic density d(A) = ↵ > 0, one
applies the same argument as above where ⌦ = 0, and obtains D✏(C) ✓ �✏(A).

As the particular case when X = Z and ✏ = 0, the above theorem gives a small
improvement of a result by I.Z. Ruzsa (cf. [29] Theorem 2), which was a refinement
of a previous result by C.L. Stewart and R. Tijdeman [32].4

For h 2 N, denote by:

• hB = {h b | b 2 B} the set of h-multiples of elements of B ;

• B/h = {x | hx 2 B} the set of integers whose h-multiples belong to B.

By taking X = h Z as the set of multiples of a number h, one gets the following.
4 The improvement here is that under the hypothesis BD(A) = ↵ > 0, in [29] it is proved the

weaker property that b1/↵c-many shifts of {t 2 Z | |A \ (A + t)| = 1} cover Z.
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Corollary 3.4. Let BD(A) = ↵ > 0 (or d(A) = ↵ > 0), let 0  ✏ < ↵2, and
let k = b ↵�✏

↵2�✏c. Then for every h 2 Z there exists a finite set |F |  k such that
Z = �✏(A)/h + F (or Z = �✏(A)/h + F , respectively). In consequence, �✏(A)/h
is syndetic and BD (�✏(A)/h) � 1/k (or �✏(A)/h is syndetic and BD (�✏(A)/h) �
1/k, respectively).

Proof. Assume first that BD(A) = ↵ > 0. By applying the above theorem with
X = h Z, one obtains the existence of a finite set hF ⇢ h Z with |hF | = |F |  k
and such that h Z ✓ �✏(A) + hF .5 But then it follows that Z = �✏(A)/h + F ,
and thus �✏(A)/h is syndetic. Finally, the last property in the statement follows
by Proposition 2.1. The second part of the proof where one assumes d(A) = ↵ > 0
is entirely similar.

There are potentially many examples to illustrate consequences of Theorem 3.3.
For instance, assume that a set A has Banach density BD(A) = ↵ = 1/2 + � for
some � > 0. Then we can conclude that BD(A \ (A � t)) � � + 2�2 for all t 2 Z.
Indeed, given ✏ < � + 2 �2, we have that (↵� ✏)/(↵2 � ✏) < 2 and so, by taking
X = Z, it follows that �✏(A) = Z. It seems worth investigating the possibility of
deriving other consequences from Theorem 3.3, by means of suitable choices of the
set X.

4. Finite Embeddability

As we already remarked in Section 1, the finite embeddability relation (see Defini-
tion 1.2) preserves the finite combinatorial structure of sets, including many familiar
notions considered in combinatorics of integer numbers. A first list is given below.
(All proofs follow from the definitions in a straightforward manner, and are omit-
ted.)

Proposition 4.1.

1. A set is �-maximal if and only if it is �d-maximal if and only if it is thick;

2. If X � Y and X is piecewise syndetic, then Y also is piecewise syndetic;

3. If X � Y and X contains an arithmetic progression of length k, then Y also
contains an arithmetic progression of length k;

4. If X�dY and if X contains an arithmetic progression of length k and common
distance d, then Y contains “densely-many” such arithmetic progressions, i.e.,
BD ({x 2 Z | x, x + d, . . . , x + (k � 1)d 2 Y }) > 0;

5 We assumed h 6= 0. Notice that if h = 0, then trivially �✏(A)/h = Z because 0 2 �✏(A).
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5. If X � Y , then BD(X)  BD(Y ).

We remark that while piecewise syndeticity is preserved under �, the property of
being syndetic is not. Similarly, the upper Banach density is preserved or increased
under �, but the upper asymptotic density is not. Another list of basic properties
of embeddability that are relevant to our purposes is itemized below.

Proposition 4.2.

1. If X � Y and Y � Z, then X � Z;

2. If X � Y and Y �d Z, then X �d Z;

3. If X �d Y and Y � Z, then X �d Z;

4. If X � Y , then �(X) ✓ �(Y );

5. If X �d Y , then �(X) ✓ �0(Y );

6. If X � Y and X 0 � Y 0, then X �X 0 � Y � Y 0;

7. If X �d Y and X 0 � Y 0, then X �X 0 �d Y � Y 0;

8. If X � Y , then
T

t2G(X � t) �
T

t2G(Y � t) for every finite G;

9. If X �d Y , then
T

t2G(X � t) �d
T

t2G(Y � t) for every finite G;

10. If X � Y , then �✏(X) ✓ �✏(Y ) for all ✏ � 0.

Proof. (1) is straightforward from the definition of �.

(2). Given a finite F ✓ X, pick t such that t + F ✓ Y . As the Banach density
is shift invariant, we have:

BD

 \
x2F

Z � x

!
= BD

 \
x2F

Z � x� t

!
= BD

 \
s2t+F

Z � s

!
> 0.

(3). Given a finite F ✓ X, let A =
T

x2F (Y � x) and let B =
T

x2F (Z � x).
By the hypothesis X �d Y , we know that BD(A) > 0. If we show that A � B,
then the thesis will follow from item (5) of the previous proposition. Let G ✓ A be
finite; then for all x 2 F and for all ⇠ 2 G, we have x + ⇠ 2 Y , i.e., F + G ✓ Y .
By the hypothesis Y � Z, we can pick t such that t + F + G ✓ Z, and hence
t + G ✓

T
x2F (Z � x), as desired.

(4). Given x, x0 2 X, by the hypothesis we can pick a number t such that
t + {x, x0} ✓ Y . But then x� x0 = (t + x)� (t + x0) 2 �(Y ).
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(5). For x, x0 2 X, we have that BD(Y \(Y �x+x0)) = BD((Y �x0)\(Y �x)) > 0,
and so x� x0 2 �0(Y ).

(6). Given a finite F ✓ X � X 0, let G ✓ X and G0 ✓ X 0 be finite sets such
that F ✓ G � G0. By the hypotheses, there exist t, t0 such that t + G ✓ Y and
t0 + G0 ✓ Y 0. Then, (t� t0) + F ✓ (t + G)� (t0 + G0) ✓ Y � Y 0.

(7). As above, given a finite F ✓ X �X 0, pick finite G ✓ X and G0 ✓ X 0 such
that F ✓ G�G0. By the hypothesis X�dY , the set � = {t | t+G ✓ Y } has positive
upper Banach density; and by the hypothesis X 0 � Y 0, there exists an element s
such that s + G0 ✓ Y 0. For all t 2 �, we have that t� s + F ✓ t� s + (G�G0) =
(t + G)� (t0 + G0) ✓ Y � Y 0. This shows that �� s ✓ {w | w + F ✓ Y � Y 0}, and
we conclude that the latter set also has positive upper Banach density, as desired.

(8). Let a finite set F ✓
T

t2G(X � t) be given. Notice that F + G ✓ X, so we
can pick an element w such that w + (F + G) ✓ Y . Then, w + F ✓

T
t2G Y � t.

(9). Proceed as above, by noticing that the set {w | w + F ✓
T

t2G Y � t} has
positive Banach density, because it is a superset of {w | w + F + G ✓ Y }.

(10). By property (8), it follows that (X \ (X � t)) � (Y \ (Y � t)) for every t.
This implies that BD(X \ (X � t))  BD(Y \ (Y � t)), and the desired inclusion
follows.

In a nonstandard setting, the finite embeddability X � Y amounts to the prop-
erty that a (possibly infinite) shift of X is included in the hyper-extension ⇤Y .
This notion can be also characterized in terms of ultrafilter-shifts, as defined by
M. Beiglböck in [2].

Proposition 4.3. Let X,Y ✓ Z. Then the following are equivalent:

1. X � Y ;

2. µ + X ✓ ⇤Y for some µ 2 ⇤Z;

3. There exists an ultrafilter U on Z such that X is a subset of the “U-shift” of
Y , namely Y � U = {t 2 Z | Y � t 2 U} ◆ X.

Proof. (1) ) (2). Let X = {xn | n 2 N}. By the hypothesis X � Y , for every
n 2 N, the finite intersection

Tn
i=1(Y � xi) 6= ;. Then, by overspill, there exists an

infinite N 2 ⇤N such that
TN

i=1(
⇤Y �xi) is non-empty. If µ 2 ⇤Z is any hyperinteger

in that intersection, then clearly µ + xi 2 ⇤Y for all i 2 N.
(2) ) (3). Let U = {A ✓ Z | µ 2 ⇤A}. It is readily verified that U is actually an

ultrafilter on Z. For every x 2 X, by the hypothesis, µ + x 2 ⇤Y ) µ 2 ⇤(Y � x),
and hence Y � x 2 U , i.e., x 2 Y � U , as desired.

(3) ) (1). Given a finite F ✓ X, the set
T

x2F (Y � x) is nonempty, because it
is a finite intersection of elements of U . If t 2 Z is any element in that intersection,
then t + F ✓ Y .
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An interesting nonstandard property discovered by R. Jin [22] is the fact that if
an internal set of hypernatural numbers C ✓ [1, N ] ⇢ ⇤N has a non-infinitesimal
relative density st(|C|/N) = � > 0, then C must include a translated copy of a
set E ✓ N whose Schnirelmann density is at least �. Below, we prove the related
property that one can find a set E ✓ N with Schnirelmann density at least �, and
such that “many” translated copies of its initial segments E\[1, n] are exactly found
in C.6

Lemma 4.4. Let N 2 ⇤N be an infinite hypernatural number, and let C ✓ [1, N ] be
an internal set with st(|C|/N) = � > 0. Then, there exists a set E ✓ N such that

1. The Schnirelmann density �(E) � �;

2. Every internal set ⇥n = {✓ 2 [1, N ] | (C � ✓) \ [1, n] = E \ [1, n]} is such that
st(|⇥n|/N) > 0.

Proof. For every n 2 N, let

�n =
⇢

✓ 2 [1, N ]
��� min

1in

|C \ [✓ + 1, ✓ + i]|
i

� �

�
,

and let ⇤n = [1, N ] \ �n be its complement. Notice that

⇤n =
⇢

✓ 2 [1, N ]
��� min

1in

|C \ [✓ + 1, ✓ + i]|
i

 �n

�
,

where �n < � is the rational number �n = max{ j
i < � | 1  i  n, 0  j  i}. We

define the internal map F on [1, N ] by putting:

F (✓) =

(
1 if ✓ 2 �n

s if ✓ 2 ⇤n and s = min
n
1  i  n

�� |C\[✓+1,✓+i]|
i  �n

o
.

By internal induction, we define a hyperfinite sequence by letting ✓0 = 1, and
✓m+1 = ✓m + F (✓m) as long as ✓l+1  N + 1. Notice that, since F (✓)  n for all ✓,
the set [1, N ] \ [✓0, ✓l+1) contains less than n-many elements. Then we have:

|C| < |C \ [✓0, ✓l+1)| + n =
lX

i=0

|C \ [✓i, ✓i+1)| + n

=
X

0il
✓i2�n

|C \ [✓i, ✓i+1)| +
X

0il
✓i2⇤n

|C \ [✓i, ✓i+1)| + n


X

0il
✓i2�n

|C \ {✓i}| +
X

0il
✓i2⇤n

|C \ [✓i, ✓i+1)| + n.

6 The argument used in this proof is essentially due to C.L. Stewart and R. Tijdeman (see
Theorem 1 of [32]).
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Now, let X = {✓i | i = 0, . . . , l}. In the last line above, the first term equals
|C \X \ �n|  |X \ �n|, and the second term:

X
0il
✓i2⇤n

|C \ [✓i, ✓i+1)| 
X

0il
✓i2⇤n

F (✓i) · �n

= �n ·

0
BB@
X

0il

F (✓i)�
X

0il
✓i2�n

1

1
CCA

= �n · (✓l+1 � 1� |X \ �n|)  �n · (N � |X \ �n|).

So, we have the inequality |C| < Mn + �n(N �Mn) + n where Mn = |X \ �n|,
and we obtain that:

|�n|
N

� Mn

N
>

|C|/N � �n � n/N

1� �n
.

Notice that the last quantity has a positive standard part. As there are 2n-many
subsets of [1, n], by the pigeonhole principle there exists a subset �0n ✓ �n with
|�0n| � |�n|/2n, and a set Bn ✓ [1, n] with the property that (C � ✓) \ [1, n] = Bn

for all ✓ 2 �0n.

Now fix a non-principal ultrafilter U on N, and define the set E ✓ N by putting

n 2 E , Bn = {k � n | n 2 Bk} 2 U .

We claim that E is the desired set. Given n, the following set belongs to U ,
because it is a finite intersection of elements of U :

\
i2E\[1,n]

Bi \
\

i2[1,n]\E

Bc
i 2 U .

(Notice that, since � > 0, we have 1 2 Bk for all k, and so 1 2 E \ [1, n] 6= ;.) If k
is any number in the above intersection, then Bk \ [1, n] = E \ [1, n]. Moreover, for
every ✓ 2 �0k,

|E \ [1, n]|
n

=
|Bk \ [1, n]|

n
� min

1ik

|Bk \ [1, i]|
i

= min
1ik

|C \ [✓ + 1, ✓ + i]|
i

� �.

This proves that �(E) � �. Moreover, ✓ 2 �0k ) (C � ✓) \ [1, k] = Bk ) (C � ✓) \
[1, n] = E \ [1, n], and hence ✓ 2 ⇥n. Therefore, we conclude that

|⇥n|
N

� |�0k|
N

>
|C|/N � �k � k/N

2k(1� �k)
,

where the standard part of the last quantity is ���k

2k(1��k) > 0.
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In consequence of the previous nonstandard lemma, we obtain an embeddability
property that holds for all sets of positive density. It is a small refinement of a
result by V. Bergelson [4], which improved on a previous result by C.L. Stewart and
R. Tijdeman [33].7

Theorem 4.5 (Cf. [4] Theorem 2.2; [33] Theorem 1). Let BD(A) = ↵ > 0.
Then there exists a set E ✓ N such that:

1. �(E) � ↵.

2. E �d A, and hence �(E) ✓ �0(A) and �✏(E) ✓ �✏(A) for all ✏ � 0.

Proof. Pick an infinite interval [⌦+1,⌦+N ] such that |⇤A \ [⌦ + 1,⌦ + N ]|/N ⇡ ↵.
By applying the above theorem where C = (⇤A�⌦)\ [1, N ], one gets the existence
of a set E ✓ N such that �(E) � ↵ and st(|⇥n|/N) > 0 for all n, where

⇥n = {✓ 2 [1, N ] | (⇤A� ⌦� ✓) \ [1, n] = E \ [1, n]} .

Now, given a finite F ✓ E \ [1, n] and given an element e 2 F , for every ✓ 2 ⇥n

we have ⌦ + ✓ + e 2 ⇤A. This shows that ⌦ + ⇥n ✓
T

e2F
⇤(A� e)\ [⌦ + 1,⌦ + N ].

But then

BD

 \
e2F

(A� e)

!
� st

✓ |
T

e2F
⇤(A� e) \ [⌦ + 1,⌦ + N ]|

N

◆

� st
✓
|⌦ + ⇥n|

N

◆
= st

✓
|⇥n|
N

◆
> 0.

5. Di↵erence Sets A � B

In this final section, we generalize the results of Section 3 by considering sets of
di↵erences A�B where A 6= B. We remark that, while �(A) = A�A is syndetic
whenever A has a positive upper Banach density, the same property does not extend
to the case of di↵erence sets A�B where A 6= B. (E.g., it is not hard to construct
thick sets A,B,C such that their complements Ac, Bc, Cc are thick as well, and
A�B ⇢ C.)

We shall use the following elementary inequality.

Lemma 5.1. Let C ✓ [1, N ] and D ✓ [1, ⌫] be sets of natural numbers. Then there
exists 1  x  N such that

|(C � x) \D|
⌫

� |C|
N

· |D|
⌫

� |D|
N

.

7 The improvement here is that we have �(E) � ↵ instead of d(E) � ↵.
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Proof. Let �C : [1, N ] ! {0, 1} be the characteristic function of C. For every d 2 D,
we have

1
N

·
NX

x=1

�C(x + d) =
|C \ [1 + d,N + d]|

N
=

|C|
N

+
e(d)
N

where |e(d)|  d. Then:

1
N

·
NX

x=1

 
1
⌫
·
X
d2D

�C(x + d)

!
=

1
⌫
·
X
d2D

 
1
N

·
NX

x=1

�C(x + d)

!
=

=
1
⌫
·
X
d2D

|C|
N

+
1

N · ⌫ ·
X
d2D

e(d) =
|C|
N

· |D|
⌫

+ e

where

|e| =

�����
1

N · ⌫
X
d2D

e(d)

����� 
1

N · ⌫
X
d2D

|e(d)|  1
N · ⌫ ·

X
d2D

d  1
N · ⌫

X
d2D

⌫ =
|D|
N

.

By the pigeonhole principle, there must exist at least one number 1  x  N
such that

1
⌫
·
X
d2D

�C(x + d) � |C|
N

· |D|
⌫

� |D|
N

.

The thesis is reached by noticing that

1
⌫
·
X
d2D

�C(x + d) =
|(D + x) \ C|

⌫
=

|(C � x) \D|
⌫

.

We are now ready to prove the main result of this paper.

Theorem 5.2. Let BD(A) = ↵ > 0 and BD(B) = � > 0. Then there exists a set
E ✓ N such that:

1. The Schnirelmann density �(E) � ↵�;

2. For every finite F ⇢ E there exists ✏ > 0 such that for arbitrarily large
intervals J one finds a suitable shift AJ = A� tJ with the property that

|
�T

e2F (AJ \B)� e
�
\ J |

|J | � ✏ ;

3. Both E �d A and E �d B, and hence:
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• �(E) ✓ �0(A) \�0(B);

• �✏(E) ✓ �✏(A) \�✏(B) for all ✏ � 0;

• �(E) �d A�B.

Proof. (1). Fix ⌫, N 2 ⇤N infinite numbers with ⌫/N ⇡ 0, and pick intervals
[⌦ + 1,⌦ + N ] and [⌅ + 1,⌅ + ⌫] of length N and ⌫ respectively, such that

|⇤A \ [⌦ + 1,⌦ + N ]
N

⇡ ↵ and
|⇤B \ [⌅ + 1,⌅ + ⌫]|

⌫
⇡ �.

Then consider the internal sets

• C = (⇤A� ⌦) \ [1, N ] ;

• D = (⇤B � ⌅) \ [1, ⌫].

Clearly, |C|/N ⇡ ↵ and |D|/⌫ ⇡ �. The property of Lemma 5.1 transfers to the
internal sets C ✓ [1, N ] and D ✓ [1, ⌫], and so we can pick a hyperinteger element
1  ⇣  N such that

|(C � ⇣) \D|
⌫

� |C|
N

· |D|
⌫

� |D|
N

.

Now let W = (C � ⇣) \D ✓ [1, ⌫]. Since |D|/N  ⌫/N ⇡ 0, we have that

� = st
✓
|W |
⌫

◆
� st

✓
|C|
N

· |D|
⌫

◆
= st

✓
|C|
N

◆
· st
✓
|D|
⌫

◆
= ↵ · �.

By applying Theorem 4.5 to the internal set W ✓ [1, ⌫], one gets the existence
of a set E ✓ N that satisfies the following properties:

• �(E) � � � ↵�;

• For every n, the internal set ⇥n = {✓ 2 [1, ⌫] | (W � ✓) \ [1, n] = E \ [1, n]}
is such that st(|⇥n|/⌫) > 0.

(2). Given a finite set F = {e1 < . . . < ek} ✓ E \ [1, n], for every ✓ 2 ⇥n and
for every i, we have that ✓ + ei 2 W = (⇤A� ⌦� ⇣) \ (⇤B � ⌅) \ [1, ⌫], and so

⌅ + ⇥n ✓
k\

i=1

[((⇤A� µ) \ ⇤B)� ei] \ I

where µ = ⌦ + ⇣ � ⌅ and I = [⌅ + 1,⌅ + ⌫]. Then,

(?) st

 
|
Tk

i=1[((
⇤A� µ) \ ⇤B)� ei] \ I|

|I|

!
� st(|⇥n|/⌫) = ✏ > 0.
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We now want to extract a standard property out of the above nonstandard in-
equality (?). Notice that, since |I| = ⌫ is infinite, the following is true for every
fixed m 2 N:

9I ⇢ ⇤Z interval s.t. |I| > m & 9µ 2 ⇤Z s.t.
|
Tk

i=1[((
⇤A� µ) \ ⇤B)� ei] \ I|

|I| � ✏.

By transfer, we obtain the existence of an interval J ⇢ Z of length |J | > m and of
an element tJ 2 Z that satisfies:

|
Tk

i=1[((A� tJ) \B)� ei] \ J |
|J | � ✏.

(3). With the same notation as above, by (?) one directly gets that

st

 
|
Tk

i=1(
⇤A� ei) \ I 0|
|I 0|

!
� ✏ and st

 
|
Tk

i=1(
⇤B � ei) \ I|
|I|

!
� ✏,

where I 0 = µ+I = [⌦+⇣ +1,⌦+⇣ +⌫]. Since ⇤
⇣Tk

i=1(A� ei)
⌘

=
Tk

i=1(
⇤A�ei), by

the nonstandard characterization of the upper Banach density, we obtain the thesis
BD

�T
e2F (A� e)

�
> 0. The other inequality BD

�T
e2F (B � e)

�
> 0 is proved in

the same way.

By a recent result obtained by M. Beiglböck, V. Bergelson and A. Fish in the
general context of countable amenable groups (see [1] Proposition 4.1.), one gets
the existence of a set E of positive upper Banach density with the property that
�(E) � A � B. Afterwards, M. Beiglböck found a short ultrafilter proof of that
property, with the refinement that one can take BD(E) � ↵�. Our improvement
here is that one can assume also the Schnirelmann density �(E) � ↵�, and that
there are dense embeddings E �d A and E �d B (and hence, a dense embedding
�(E) �d A�B).

As a first corollary to our main theorem, we obtain a sharpening of a result by
I.Z. Rusza [29] about intersections of di↵erence sets, which improved on a previous
result by C.L. Stewart and R. Tijedman [32].

Corollary 5.3 (cf. [29] Theorem 1; [33] Theorem 4). Assume A1, . . . , An ✓ Z
have positive upper Banach densities BD(Ai) = ↵i. Then there exists a set E ✓ N
with �(E) �

Qn
i=1 ↵i and such that �✏(E) ✓

Tn
i=1 �✏(Ai) for every ✏ � 0.

Proof. We proceed by induction on n. The basis n = 1 is given by Theorem 4.5.
At step n + 1, by the inductive hypothesis we can pick a set E0 ✓ N such that
�(E0) �

Qn
i=1 ↵i and �✏(E0) ✓

Tn
i=1 �✏(Ai). Now apply the above theorem to the

sets E0 and An+1, and obtain the existence of a set E ✓ N whose Schnirelmann
density �(E) � BD(E0) · BD(An+1) �

Qn+1
i=1 ↵i, and such that �✏(E) ✓ �✏(E0) \

�✏(An+1) ✓
Tn+1

i=1 �✏(Ai), as desired.
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Two more corollaries are obtained by combining Theorem 5.2 with Theorem 3.3.

Corollary 5.4. Assume that BD(A) = ↵ > 0 and BD(B) = � > 0. Then for every
0  ✏ < ↵2�2, for every infinite X ✓ Z, and for every x 2 X, there exists a finite
subset F ⇢ X such that

1. x 2 F ;

2. |F |  b ↵��✏
↵2�2�✏c = k ;

3. X ✓ (�✏(A) \�✏(B)) + F .

In consequence, for every h, the intersection �✏(A)/h \ �✏(B)/h is syndetic and
has a lower Banach density not smaller than 1/k.

Proof. Pick a set E ✓ N as given by Theorem 5.2. As d(E) � �(E) � ↵�, we can
apply Theorem 3.3 and obtain the existence of a finite F ⇢ X such that x 2 F ,
|F |  k, and X ✓ �✏(E) + F (in fact, X ✓ �✏(E) + F ). As E � A and E � B
(in fact, E �d A and E �d B), we have the inclusion �✏(E) ✓ �✏(A) \�✏(B), and
the thesis follows. Finally, by taking as X = h Z the set of h-multiples, one obtains
that Z = (�✏(A)/h \�✏(B)/h) + G for a suitable |G|  k and so, by Proposition
2.1, the last statement in the corollary is also proved.

Corollary 5.5. Assume that BD(A) = ↵ > 0 and BD(B) = � > 0. Then for every
infinite X ✓ Z and for every x 2 X, there exists a finite subset F ⇢ X such that

1. x 2 F ;

2. |F |  b 1
↵� c ;

3. X �d (A�B) + F .

Proof. With the same notation as in the proof of the previous corollary, let ✏ = 0,
and pick a set E ✓ N such that �(E) � ↵�, and a set F such that |F |  b1/↵�c
and X ✓ �0(E) + F . Now, E �d A and E �d B imply that �(E) �d A�B, which
in turn implies that �(E)+F �d (A�B)+F . As �0(E) ✓ �(E), we can conclude
that X ✓ �(E) + F �d (A�B) + F .

By the above result where X = Z, one can improve Jin’s theorem about the
piecewise syndeticity of a di↵erence set, by giving a precise bound on the number
of shifts of A�B which are needed to cover a thick set.

Corollary 5.6 (cf. [21] Corollary 3). Assume that BD(A) = ↵ > 0 and
BD(B) = � > 0, and let k = b1/↵�c. Then there exists a finite set |F |  k
such that A�B + F is thick, and hence A�B is piecewise syndetic.
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Proof. Apply the above Corollary with X = Z, and recall that Z �d Y if and only
if Y is �d-maximal if and only if Y is thick.

We remark that the above corollary implies the same property for sumsets A+B
with A,B ✓ N.

Bohr sets are commonly used in applications of Fourier analysis in combinatorial
number theory. We recall that A ✓ Z is called a Bohr set if it contains a non-empty
open set of the topology induced by the embedding into the Bohr compactification
of the discrete topological group (Z,+). The following characterization holds: A is
a Bohr set if and only if there exist r1, . . . , rk 2 [0, 1) and a positive ✏ > 0 such that
a shift of {x 2 Z | kr1 · xk, . . . , krk · xk < ✏} is included in A, where kzk denotes the
distance of z from the nearest integer. A set is piecewise Bohr if it is the intersection
of a Bohr set with a thick set. We remark that Bohr sets are syndetic, and hence
piecewise Bohr sets are piecewise syndetic, but there are syndetic sets that are not
piecewise Bohr. (For a proof of this fact, and for more information about Bohr sets,
we refer the reader to [9] and references therein.)

As a consequence of Theorem 5.2, one can recover also the following theorem by
V. Bergelson, H. Fürstenberg and B. Weiss about the Bohr property of di↵erence
sets.

Corollary 5.7 (cf. [9] Theorem I). Let A and B have positive upper Banach
density. Then the di↵erence set A�B is piecewise Bohr.

Proof. By Theorem 5.2, we can pick a set E ✓ N with �(E) � ↵� > 0 and such
that �(E) �d A � B. Then apply Proposition 4.1 of [1], where it was shown that
if �(E) � A � B for some set E of positive upper Banach density, then A � B is
piecewise Bohr.

As a final remark, we point out that the nonstandard methods used in this paper
for sets of integers, work also in more abstract settings. Indeed, many of the results
presented here can be extended to the general framework of amenable groups (see
[13]).
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Prague and Borová Lada (Czech Republic) in January 2007: those lectures were
mostly responsible for my interest in combinatorics of numbers; a grateful thanks is
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