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Abstract
It is well known that Pascal’s triangle exhibits fractal behavior when reduced modulo
a prime. We show that the triangle of Fibonomial coefficients has a similar nature
modulo two. Specifically, for any m ≥ 0, the subtriangle consisting of the first
3 · 2m rows is duplicated on the left and right sides of the next 3 · 2m rows, with an
inverted triangle of zeros in between. We give three proofs of this fact. The first
uses a combinatorial interpretation of the Fibonomials due to Sagan and Savage.
The second employs an analogue of Lucas’ congruence for the parity of binomial
coefficients. The final one is inductive. We also use induction to show that the
Fibonomial triangle has a similar structure modulo three. We end with some open
questions and remarks.

1. Introduction

Let p be a prime and consider Pascal’s triangle modulo p, Tp. This array has fractal
properties; see, for example, the article of Sved [9]. We will describe this behavior
more precisely for p = 2 as the result will be needed in the sequel. We will use ≡n

to denote congruence modulo n. Let N denote the nonnegative integers and m ∈ N.
Consider the triangle T consisting of the first 2m rows of T2. Then the next 2m

rows consist of a copy of T against the left border, a copy of T against the right
border, and an inverted triangle of zeros between the two copies, see Figure 1. In
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Figure 1: Pascal’s triangle (above) and the Fibonomial triangle (below) modulo 2

terms of congruences, if 0 ≤ n < 2m and 0 ≤ k ≤ n+ 2m then

(
n+ 2m

k

)
≡2






(
n

k

)
if 0 ≤ k ≤ n,

0 if n < k < 2m,
(

n

k − 2m

)
if 2m ≤ k ≤ n+ 2m.

These three cases can be summarized by the single formula

(
n+ 2m

k

)
≡2

(
n

k

)
if 0 ≤ k < 2m.

To see why the second case follows just note that
(n
k

)
= 0 for k < 0 and k > n.

And the third case is obtained from the previous equation and the symmetry of the
binomial coefficients because, when 2m ≤ k ≤ n+ 2m,

(
n+ 2m

k

)
=

(
n+ 2m

n+ 2m − k

)
≡2

(
n

n+ 2m − k

)
=

(
n

k − 2m

)
.

We record this result for future use.

Theorem 1.1. Given m ≥ 0 and 0 ≤ n, k < 2m we have
(n+2m

k

)
≡2

(n
k

)
.



INTEGERS: 14 (2014) 3

We now turn to the Fibonomial coefficients. Consider the Fibonacci numbers as
defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. One then defines
Fibotorials and Fibonomial coefficients by

n!F = F1F2 · · ·Fn

and (
n

k

)

F

=
n!F

k!F (n− k)!F
,

respectively, where 0 ≤ k ≤ n. It is convenient to let
(
n
k

)
F

= 0 for k < 0 and
k > n. Also note that the Fibonomials obviously display the same symmetry as
the binomials in that

(
n
k

)
F

=
(

n
n−k

)
F
. The purpose of this paper is to prove that

the Fibonomial triangle displays a similar fractal behavior to Pascal’s triangle but
with triangles which have side length equal to 3 · 2m for some m ≥ 0. Again, see
Figure 1. Precisely stated, our main theorem (for which we will give three proofs)
is as follows.

Theorem 1.2. Given m ≥ 0 and 0 ≤ n, k < 3 · 2m we have
(
n+3·2m

k

)
F
≡2

(
n
k

)
F
.

The rest of this paper is organized as follows. In the next section we give an
enumerative proof of Theorem 1.2 using a combinatorial interpretation of the Fi-
bonomial coefficients due to Sagan and Savage [8]. Interestingly, we also need The-
orem 1.1 for this demonstration. Section 3 contains a proof of our main theorem
based on a Fibonomial analogue of Lucas’ congruence for binomial coefficients [6].
To prove this congruence, we use a result of Knuth and Wilf [4] giving the p-adic val-
uation of generalized binomial coefficients. In Section 4 we give our third, inductive
proof of Theorem 1.2. Section 5 is devoted to a discussion of the Fibonomial trian-
gle modulo three. We indicate how our inductive proof for p = 2 can be modified
to cover this case. We end with a section of open questions and remarks.

2. A Combinatorial Proof

We now give a combinatorial proof of Theorem 1.2. We start by reviewing one of
the standard combinatorial interpretations of the Fibonacci numbers themselves.

A tiling, T , of a row of squares is a covering of the squares with disjoint dominos
(covering two squares) and monominos (covering one square). We let

Tn = {T : T is a tiling of a row of n squares}.

The elements of T3 are given in Figure 2. We consider the squares as labeled 1, . . . , n
from left to right.

The next result is well known and follows directly from the definition of Tn and
the recursion for Fn. Keep in mind the difference between the two subscripts for
the future.
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Figure 2: The tilings in T3

Lemma 2.1. For n ≥ 1 we have Fn = |Tn−1|, where | · | denotes cardinality.

We must first investigate the behavior of Fn modulo two. While the following
proposition also follows easily by using the recursion, we will give a combinatorial
proof in keeping with the focus of this section and because it will be useful in the
sequel.

Proposition 2.2. We have

Fn ≡2

{
0 if n ≡3 0,
1 if n ≡3 1 or 2.

Proof. By Lemma 2.1, it suffices to construct an involution ι on Tn which has no
fixed points if n ≡3 2 and has exactly one fixed point otherwise. We define ι
inductively as follows.

Consider the first two squares of T ∈ Tn. If these squares are filled with two
monominos, then replace them with a domino and vice-versa, keeping all other tiles
the same. This pairs up all tilings beginning with two monominos or with a domino.
The remaining unpaired T must all begin with a monomino followed by a domino.
Now consider squares 4 and 5 of such a T . Again, the tilings where those two
squares contain two monominos or a domino are paired. This is illustrated by the
first diagram in Figure 3. This process is continued until only r squares remain,
where r is the remainder of n on division by 3. If r = 0 or 1 then we are left with
a single fixed tiling. The second drawing in Figure 3 illustrates this. If r = 2 then
the last two squares must contain two monominos or a domino and so the last two
tilings are paired leaving no fixed points.

We are now in a position to recall the combinatorial interpretation of
(n
k

)
F

dis-
covered by Sagan and Savage [8]. An (integer) partition is a weakly decreasing
sequence λ = (λ1, . . . ,λl) of positive integers called parts. The associated Ferrers
diagram is an array of squares with l left-justified rows and λi squares in row i.
We write our Ferrers diagrams in English notation with the largest row on top and
do not distinguish λ from its Ferrers diagram. The squares to the northwest of the
heavy line in Figure 4 are the Ferrers diagram for the partition (3, 2, 2, 2).

A tiling of λ is a tiling of the parts of its Ferrers diagram, i.e., an element of
Tλ1 × · · ·× Tλl . We let

Tλ = {T : T is a tiling of λ}.
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ι
←→

ι

Figure 3: A pair (above) and fixed point (below) of ι

The part of Figure 4 corresponding to λ shows such a tiling. We will also be
interested in a subset of Tλ:

Dλ = {T ∈ Tλ | each Tλi starts with a domino}.

Note that if λ has a part of size one then Dλ = ∅.
We say that λ fits in a c× d rectangle, λ ⊆ c× d, if the number of rows λ is at

most c and the number of columns at most d. So λ fits in the upper left corner of
the Ferrers diagram c× d consisting of c rows of length d. The squares in Figure 4
show the partition (3, 2, 2, 2) as it fits in a 4 × 5 rectangle. In this case, there is
a complementary partition, λ∗, whose parts are the columns of the set difference
(c× d) − λ. In Figure 4 we have λ∗ = (4, 4, 3). Since the parts of λ∗ are columns,
dominos in tilings of λ∗ will be vertical. Figure 4 shows an element of Tλ × Dλ∗

which are the objects we need.

Theorem 2.3 (Sagan and Savage [8]). We have

(
n

k

)

F

=

∣∣∣∣∣∣

⋃

λ⊆k×(n−k)

Tλ ×Dλ∗

∣∣∣∣∣∣
.

We can extend the action of the involution ι in the proof of Proposition 2.2 to
Tλ×Dλ∗ as follows. Suppose λ = (λ1, . . . ,λl). Apply ι to the first row of λ, leaving
the rest of the rectangle fixed. If λ1 ≡3 2 then this will pair up all elements of
Tλ × Dλ∗ . If not, then the unpaired tilings are exactly those whose first row is the
unique fixed point of ι acting on Tλ1 . Now iterate the process by applying ι to the
second row and subsequent rows if necessary. If after finishing the rows of λ we
still have unpaired tilings, then we start with the columns of λ∗. We first apply
ι to the portion of λ∗

1 above the leading domino and then continue until we have
either paired up all tilings or have exactly one fixed point. From Proposition 2.2 it
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Figure 4: A tiling in Tλ ×Dλ∗ for λ = (3, 2, 2, 2) ⊆ 4× 5

is immediate that we will have a fixed point if and only if

λi ≡3 0 or 1 for all i and λ∗
j ≡3 0 or 2 for all j. (1)

This is a key step in the proof of the next result.

Lemma 2.4. We have

(
n

k

)

F

≡2






0 if n ≡3 0 and k ≡3 1,
(
+2n/3,
+2k/3,

)
if n ≡3 1 and k ≡3 0,

(
-2n/3.
-2k/3.

)
else,

where +·, and -·. are the ceiling and floor functions, respectively.

Proof. From Theorem 2.3 and the discussion before this lemma, it suffices to show
that the right-hand side of the above congruence is the number of fixed points
f(n, k) of the action of ι on Tλ ×Dλ∗ for all λ ⊆ k × (n− k). To this end, consider
the first quadrant of the plane together with the lines x = c for c ≡3 0 or 1 and
the lines y = d for d ≡3 0 or 2. Comparing this description with (1), we see that
the vertical lines give exactly the row lengths for rows fixed by ι and the horizontal
lines do the same for the columns of λ∗. It follows that f(n, k) is just the number
of lattice paths from (0, 0) to (n− k, k) taking unit steps east or north and staying
on the given lines. Thus f(n, k) = 0 if n ≡3 0 and k ≡3 1 since then (n− k, k) is on
none of the lines. The other cases are handled similarly.

Proof 1 (of Theorem 1.2). This is just a matter of combining Theorem 1.1 and
Lemma 2.4. There are three cases, all of them similar, so we will only do the one
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corresponding to the third expression in the lemma. If 0 ≤ n, k < 3 · 2m for some
m ≥ 0 then 0 ≤ -2n/3., -2k/3.< 2m+1. Thus

(
n+ 3 · 2m

k

)

F

≡2

(
-2n/3.+ 2m+1

-2k/3.

)
≡2

(
-2n/3.
-2k/3.

)
≡2

(
n

k

)

F

as desired.

3. An Analogue of a Congruence of Lucas

Our next proof of Theorem 1.2 will be number theoretic, based on Fibonomial
analogues of two well-known congruences for the ordinary binomial coefficients due
to Lucas and Kummer. To state these, we will need to discuss expansions of integers
in various bases.

Suppose b = (b0, b1, b2, . . .) is an infinite increasing sequence of positive integers
such that b0 = 1 and for i ≥ 1 we have bi−1|bi. Then every positive integer n has an
expansion in base b which is the unique way of writing n = n0b0+n1b1+ · · · where
0 ≤ ni < bi+1/bi for all i. In this case, we write (n)b = (n0, n1, n2, . . .) = (ni)i≥0.
If bi = mi for some integer m then we use (n)m for (n)b. In this case, one can
extend the expansion to all rational numbers in the usual way. There is another
base which will be useful to us as the reader might expect, namely

F = (1, 3, 3 · 2, 3 · 22, . . .).

There are two famous theorems due to Kummer and Lucas about congruence
properties of binomial coefficients. To state the former, we need the p-adic valuation
of an integer n which is

νp(n) = the highest power of p dividing n.

Theorem 3.1 (Kummer [5]). If p is prime then νp(
(
m+n
m

)
) is the number of carries

in doing the addition (m)p + (n)p.

Theorem 3.2 (Lucas [6]). Let p be prime and (n)p = (ni)i≥0, (k)p = (ki)i≥0. Then
(
n

k

)
≡p

(
n0

k0

)(
n1

k1

)(
n2

k2

)
· · ·

Knuth and Wilf generalized Kummer’s Theorem to a class of binomial coefficient
analogues. We will need the following particular case of one of their theorems.

Theorem 3.3 (Knuth and Wilf [4]). The valuation ν2(
(m+n

m

)
F
) is the number of

carries in doing the addition (m/3)2+(n/3)2 where carries to the right of the radix
point are not counted and an extra 1 is added if there is a carry from the one’s place
to the two’s place.
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We can now prove our analogue of Lucas’ Theorem for the prime p = 2 and the
base F.

Theorem 3.4. Let (n)F = (ni)i≥0 and (k)F = (ki)i≥0. Then
(
n

k

)

F

≡2

(
n0

k0

)

F

(
n1

k1

)

F

(
n2

k2

)

F

· · ·

Proof. It suffices to show that the right-hand side is 0 or 1 depending on whether
there is a carry or not as described in Theorem 3.3. The proof now becomes a
case-by-case analysis depending on the congruence classes of n and k modulo 3.
Since they are all similar, we will just do the case n ≡3 1 and k ≡3 2 to illustrate.
But then n− k ≡3 2 and so there will be a carry across the radix point when doing
the addition (k/3)2 + ((n − k)/3)2. This implies

(n
k

)
F
≡2 0 on the left-hand side.

Considering the product on the right-hand side, we see that it will have a factor of(
n0

k0

)
F
=

(
1
2

)
F
= 0. Thus the two sides agree.

Proof 2 (of Theorem 1.2). Since 0 ≤ n, k < 3 · 2m we have (n)F = (n0, . . . , nm) and
(k)F = (k0, . . . , km) where final digits equal to zero have been ignored. It follows
that (n+ 3 · 2m)F = (n0, . . . , nm, 1). So applying Theorem 3.4

(
n+ 3 · 2m

k

)

F

≡2

(
n0

k0

)

F

· · ·
(
nm

km

)

F

(
1

0

)

F

=

(
n0

k0

)

F

· · ·
(
nm

km

)

F

≡2

(
n

k

)

F

which is what we want.

4. An Inductive Proof

In order to give our inductive proof, we need the recursion satisfied by the Fibono-
mials. One can find a proof of the following result, e.g., in [8].

Proposition 4.1. We have
(
0
0

)
F
= 1 and, for n ≥ 1,

(
n

k

)

F

= Fn−k+1

(
n− 1

k − 1

)

F

+ Fk−1

(
n− 1

k

)

F

.

Proof 3 (of Theorem 1.2). The base case is trivial, so assume the result for values
less than n+ 3 · 2m where 0 ≤ n < 3 · 2m. Also suppose 0 ≤ k < 3 · 2m. The proof
for n = 0 is only slightly different from the proof for 0 < n < 3 · 2m, so we will
just do the latter. Note that by Proposition 2.2, if the subscripts of two Fibonacci
numbers differ by a multiple of three, then the Fibonacci numbers themselves have
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the same parity. Using this observation, Proposition 4.1, and induction gives
(
n+ 3 · 2m

k

)

F

= Fn−k+3·2m+1

(
n+ 3 · 2m − 1

k − 1

)

F

+ Fk−1

(
n+ 3 · 2m − 1

k

)

F

≡2 Fn−k+1

(
n− 1

k − 1

)

F

+ Fk−1

(
n− 1

k

)

F

=

(
n

k

)

F

,

which is the desired conclusion.

5. The Modulo 3 Case

As mentioned in the introduction, one can extend Theorem 1.1 to Pascal’s triangle
modulo any prime p [9]. If one considers the triangle of the first pm rows, then the
triangle of the first pm+1 rows breaks into triangles which are scalar multiples of
the smaller triangle with inverted triangles of zeros in between.

For the the Fibonomial triangle, the situation is more complicated. Here we will
consider the case p = 3 and postpone discussion of general p until the next section.
For p = 3, the sides of the triangles are of size 4 · 3m, m ≥ 0. Figure 5 shows the
first 12 rows in this case where −1 is represented by 1 to save space. Note that the
triangle T of side 4 is repeated at the bottom left and bottom right of the triangle
of side 12. But the other three triangles alternate lines (either rows or diagonals) of
T with lines which are negatives of the corresponding line of T . One can prove that
this behavior continues by a messy case-by-base induction. Since the demonstration
of each case does not differ significantly from the third proof of Theorem 1.2, we
will suppress the details and just state the result.

Theorem 5.1. Given m ≥ 0 and 0 ≤ n, k < 4 · 3m we have

(
n+ 4 · 3m

k

)

F

≡3






(
n

k

)

F

if k is even,

−
(
n

k

)

F

if k is odd,

and (
n+ 8 · 3m

k

)

F

≡3

(
n

k

)

F

,

and

(
n+ 8 · 3m

k + 4 · 3m

)

F

≡3






−
(
n

k

)

F

if n is even,

(
n

k

)

F

if n is odd.
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1 1 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 1 1 0 1 1 1
1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 1 1

1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Figure 5: The Fibonomial triangle modulo 3

All other values in rows 4 · 3m, . . . , 4 · 3m+1 − 1 are determined by symmetry.

6. Open Questions and Remarks

6.1. Modulo 3 Redux

It would be interesting to find proofs of Theorem 5.1 using combinatorial or number
theoretic means. The combinatorial demonstration of Theorem 1.2 goes through
until the one gets to the analogue of Lemma 2.4. The fixed points are now counted
by lattice paths where the steps are weighted either 1 or 2 and there does not seem
to be an easy description of the sum of the weights of paths to a given vertex.

As far as the number theoretic proof, the obvious guess for a modulo 3 version of
Theorem 3.4 is false. More specifically, consider the base T = (1, 4, 4 · 3, 4 · 32, . . . ).
If (n)T = (ni)i≥0 and (k)T = (ki)i≥0 then one only appears to have

(
n

k

)

F

≡3 ±
(
n0

k0

)

F

(
n1

k1

)

F

(
n2

k2

)

F

· · ·

or, equivalently,
(n
k

)
F
= 0 if and only if the product on the right-hand side is zero.

Unfortunately, determining which sign to use does not seem to be an easy matter.
But maybe some other base is called for.

6.2. Higher Modulus

Having an analogue of Theorem 1.2 for any prime modulus p would be quite inter-
esting. However, this is probably a very difficult problem for the following reason.
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It is not hard to show that, given p, there must be a least positive integer p∗ such
that p divides Fp∗ . We have seen that 2∗ = 3 and 3∗ = 4. In fact, p divides Fn if and
only if p∗ divides n; see the paper of Robinson [7] for details. However, determining
p∗ for an arbitrary prime is a well-studied open problem.

6.3. Generalized Fibonomial Coefficients

One can generalize the Fibonacci numbers by considering a sequence of polynomials
{n}, n ≥ 0, in the variables s and t defined by {0} = 0, {1} = 1, and

{n} = s{n− 1}+ t{n− 2}

for n ≥ 2. The analogues of the Fibotorials and Fibonomial coefficients are

{n}! = {1}{2} . . .{n}

and {n

k

}
=

{n}!
{k}!{n− k}! ,

which are called generalized Fibotorials and generalized Fibonomial coefficients re-
spectively. One can show that these are polynomials in s, t. It was in this general
context that the combinatorial interpretation in [8] was given which we have used
in the case s = t = 1. We also note that if s = 2, t = −1 then {n} = n and we
recover the ordinary binomial coefficients.

One could ask for what other values of s and t does one observe fractal behavior
of the corresponding triangle. Obviously, the answer only depends on the parity of
s, t and so there are four cases. We have done the case s, t both odd. And by the
note at the end of the previous paragraph, the case s even and t odd is the same as
Pascal’s triangle. If s is odd and t is even, then it is easy to see that {n} is always
odd and so the triangle is trivially all ones. If s, t are both even, then clearly {n}
is even for n ≥ 2. An easy induction using Proposition 4.1 now shows that

(n
k

)
F
is

even for 0 < k < n, and again the triangle has no fractal properties.

6.4. Valuations

Together with Amdeberhan and Moll [1], we are considering 2-adic valuations of
generalized Fibonomial coefficients and related sequences. Louis Shapiro [personal
communication] suggested considering the following quotients

C{n} =
1

{n+ 1}

{
2n

n

}

which specialize to the Catalan numbers, Cn, when s = 2 and t = −1. It is not
hard to show, as done by Ekhad [3], that these are always polynomials in s, t, thus
answering one of the questions raised by Shapiro.
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The Cn themselves are known to be odd if and only if n = 2m − 1 for some
m ≥ 0. In fact, one can express the full 2-adic valuation using the function

ζb(n) = the number of nonzero digits in the base b expansion of n.

Theorem 6.1. We have ν2(Cn) = ζ2(n+ 1)− 1.

For a (mostly) combinatorial proof of this result, see the paper of Deutsch and
Sagan [2]. There is an analogue of Theorem 6.1 for C{n} using the base F, as well
as related theorems for other values of s and t. For example, we have the following.

Theorem 6.2 (Amdeberhan, Chen, Moll, and Sagan [1]). Let s be odd and t ≡ 1
(mod 8). Then

ν2(C{n}) =

{
ζF(n+ 1) if n ≡ 3 or 4 (mod 6),
ζF(n+ 1)− 1 else.

Shapiro also asked for a combinatorial interpretation of the C{n}. Despite the
plethora of combinatorial interpretations for the ordinary Catalan numbers, it is
still an open problem to give one for general s and t.

References

[1] Tewodros Amdeberhan, Xi Chen, Victor Moll, and Bruce E. Sagan. Properties of generalized
Fibonomial coefficients and related sequences. Annals Combin. To appear.

[2] Emeric Deutsch and Bruce E. Sagan. Congruences for Catalan and Motzkin numbers and
related sequences. J. Number Theory, 117(1):191–215, 2006.

[3] Shalosh Ekhad. The Sagan-Savage Lucas-Catalan polynomial have positive coefficients.
Preprint www.math.rutgers.edu/∼zeilberg.

[4] Donald E. Knuth and Herbert S. Wilf. The power of a prime that divides a generalized
binomial coefficient. J. Reine Angew. Math., 396:212–219, 1989.
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