THE $\left(r_{1}, \ldots, r_{p}\right)$-BELL POLYNOMIALS

Mohammed Said Maamra
Faculty of Mathematics, RECITS's Laboratory, USTHB, Algiers, Algeria
mmaamra@usthb.dz or mmaamra@yahoo.fr
Miloud Mihoubi
Faculty of Mathematics, RECITS's laboratory, USTHB, Algiers, Algeria.
mmihoubi@usthb.dz or miloudmihoubi@gmail.com

Abstract

In a previous paper, Mihoubi et al. introduced the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers and the $\left(r_{1}, \ldots, r_{p}\right)$-Bell polynomials and gave some of their combinatorial and algebraic properties. These numbers and polynomials generalize, respectively, the r Stirling numbers of the second kind introduced by Broder and the r-Bell polynomials introduced by Mező. In this paper, we prove that the (r_{1}, \ldots, r_{p})-Stirling numbers of the second kind are log-concave. We also give generating functions and generalized recurrences related to the $\left(r_{1}, \ldots, r_{p}\right)$-Bell polynomials.

1. Introduction

In 1984, Broder [2] introduced and studied the r-Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$, which counts the number of partitions of the set $[n]=\{1,2, \ldots, n\}$ into k non-empty subsets such that the r first elements are in distinct subsets. In 2011, Mező [8] introduced and studied the r-Bell polynomials. In 2012, Mihoubi et al. [12] introduced and studied the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r_{1}, \ldots, r_{p}}$, which counts the number of partitions of the set $[n]$ into k nonempty subsets such that the elements of each of the p sets $R_{1}:=\left\{1, \ldots, r_{1}\right\}$, $R_{2}:=\left\{r_{1}+1, \ldots, r_{1}+r_{2}\right\}, \ldots, R_{p}:=\left\{r_{1}+\cdots r_{p-1}+1, \ldots, r_{1}+\cdots+r_{p}\right\}$ are in distinct subsets.

This work is motivated by the study of the r-Bell polynomials [8] and the $\left(r_{1}, \ldots, r_{p}\right)$ Stirling numbers of the second kind [12], in which we may establish

- the log-concavity of the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers of the second kind,
- generalized recurrences for the $\left(r_{1}, \ldots, r_{p}\right)$-Bell polynomials, and
- the ordinary generating functions of these numbers and polynomials.

To begin, by the symmetry of the $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers with respect to r_{1}, \ldots, r_{p}, let us suppose that $r_{1} \leq r_{2} \leq \cdots \leq r_{p}$, and throughout this paper we use the following notation and definitions

$$
\begin{aligned}
\mathbf{r}_{p} & :=\left(r_{1}, \ldots, r_{p}\right), \quad\left|\mathbf{r}_{p}\right|:=r_{1}+\cdots+r_{p}, \\
P_{t}\left(z ; \mathbf{r}_{p}\right) & :=\left(z+r_{p}\right)^{t}\left(z+r_{p}\right)^{\underline{r_{1}} \cdots\left(z+r_{p}\right)^{\underline{r_{p-1}}}, \quad t \in \mathbb{R}} \\
B_{n}\left(z ; \mathbf{r}_{p}\right) & :=\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{k}, \quad n \geq 0
\end{aligned}
$$

and \mathbf{e}_{i} denotes the i-th vector of the canonical basis of \mathbb{R}^{p}.
In [12], the following were proved:

$$
\begin{align*}
& B_{n}\left(z ; \mathbf{r}_{p}\right)=\exp (-z) \sum_{k \geq 0} P_{n}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!}, \tag{1}\\
& P_{n}\left(z ; \mathbf{r}_{p}\right)=\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{\underline{k}} . \tag{2}
\end{align*}
$$

For later use we define the following numbers

$$
a_{k}\left(\mathbf{r}_{p-1}\right)=(-1)^{\left|\mathbf{r}_{p-1}\right|-k} \sum_{\left|\mathbf{j}_{p-1}\right|=k}\left[\begin{array}{l}
r_{1} \\
j_{1}
\end{array}\right] \cdots\left[\begin{array}{l}
r_{p-1} \\
j_{p-1}
\end{array}\right], \quad\left|\mathbf{j}_{p-1}\right|=j_{1}+\cdots+j_{p-1}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]$ are the absolute Stirling numbers of the first kind.
Upon using the known identity

$$
(u)^{\underline{r}}=\sum_{j=0}^{r}(-1)^{r-j}\left[\begin{array}{l}
r \\
j
\end{array}\right] u^{j}
$$

we may state that we have

$$
\begin{equation*}
\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) u^{k}=(u)^{\underline{r_{1}}} \cdots(u)^{\underline{r_{p-1}}} \tag{3}
\end{equation*}
$$

In our contribution, we give more properties for the \mathbf{r}_{p}-Stirling numbers and the \mathbf{r}_{p}-Bell polynomials. The paper is organized as follows. In the next section we prove that the sequence $\left(\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}} ; 0 \leq k \leq n+\left|\mathbf{r}_{p-1}\right|\right)$ is strongly log-concave and we
give an approximation of $\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}$ when $n \rightarrow \infty$ for a fixed k. In the third section we write $B_{n}\left(z ; \mathbf{r}_{p}\right)$ in the basis $\left\{B_{n+k}\left(z ; r_{p}\right): 0 \leq k \leq\left|\mathbf{r}_{p-1}\right|\right\}$ and $B_{n+m}\left(z ; \mathbf{r}_{p}\right)$ in the family of bases $\left\{z^{j} B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right): 0 \leq j \leq n\right\}$. As consequences, we also give some identities for the \mathbf{r}_{p}-Stirling numbers. In the fourth section we give the ordinary generating functions of the \mathbf{r}_{p}-Stirling numbers of the second kind and the \mathbf{r}_{p}-Bell polynomials.

2. Log-Concavity of the \mathbf{r}_{p}-Stirling Numbers

In this section we discuss the real roots of the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$, the \log concavity of the sequence $\left(\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}, 0 \leq k \leq n+\left|\mathbf{r}_{p-1}\right|\right)$, the greatest maximizing index of $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{\mathbf{r}_{p}}$, and we give an approximation of $\left\{\begin{array}{l}n+\left|\mathbf{r}_{p}\right| \\ m+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}$ when n tends to infinity. The case $p=1$ was studied by Mező [9] and another study is done by Zhao [15] for a large class of the Stirling numbers.

In what follows, for illustration or if the order of r_{1}, \ldots, r_{p} is unknown, we write the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$ as $B_{n}\left(z ; r_{1}, \ldots, r_{p}\right)$ for which r_{1}, \ldots, r_{p} are taken in any order.

Theorem 1. The roots of the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$ are real and non-positive.

To prove this theorem, we use the following lemma.
Lemma 2. Let j, p be nonnegative integers and set

$$
B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right):=\exp (-z) \frac{d^{j}}{d z^{j}}\left(z^{r_{p}} \exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right)
$$

where $r_{0}:=0$ and $B_{n}\left(z ; \mathbf{r}_{0}\right):=B_{n}(z)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} z^{k}$. Then, we have

$$
\begin{aligned}
& B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right)=z^{r_{p}-j} B_{n}\left(z ; r_{1}, \ldots, r_{p}, j\right) \quad \text { if } j<r_{p}, \\
& B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right)=B_{n}\left(z ; r_{1}, \ldots, r_{p}, j\right) \quad \text { if } j \geq r_{p}
\end{aligned}
$$

with $\operatorname{deg} B_{n}^{(j)}=n+\left|\mathbf{r}_{p}\right|$. In particular, we have $B_{n}^{\left(r_{p+1}\right)}\left(z ; \mathbf{r}_{p}\right)=B_{n}\left(z ; \mathbf{r}_{p+1}\right)$.

Proof. The definition of $B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right)$ and the identity (1) show that we have

$$
\begin{aligned}
& \exp (z) B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right) \\
& =\frac{d^{j}}{d z^{j}}\left(\sum_{k \geq 0} P_{n}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k+r_{p}}}{k!}\right) \\
& =\sum_{k \geq \max \left(0, j-r_{p}\right)}\left(k+r_{p}\right)^{n}\left(k+r_{p}\right)^{\underline{r_{1}}} \cdots\left(k+r_{p}\right)^{\frac{r_{p-1}}{(}}\left(k+r_{p}\right)^{\underline{j}} \frac{z^{k+r_{p}-j}}{k!} .
\end{aligned}
$$

Then, for $0 \leq j<r_{p}$ we obtain

$$
\begin{aligned}
\exp (z) B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right) & =\sum_{k \geq 0}\left(k+r_{p}\right)^{n}\left(k+r_{p}\right)^{\underline{r_{1}} \cdots\left(k+r_{p}\right) \frac{r_{p-1}}{}\left(k+r_{p}\right)^{\underline{j}} \frac{z^{k+r_{p}-j}}{k!}} \\
& =z^{r_{p}-j} \exp (z) B_{n}\left(z ; r_{1}, \ldots, r_{p}, j\right)
\end{aligned}
$$

and for $j \geq r_{p}$ we obtain

$$
\begin{aligned}
\exp (z) B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right) & =\sum_{k \geq j-r_{p}}\left(k+r_{p}\right)^{n}\left(k+r_{p}\right)^{\underline{r_{1}}} \cdots\left(k+r_{p}\right) \frac{r_{p-1}}{}\left(k+r_{p}\right)^{\underline{j}} \frac{z^{k+r_{p}-j}}{k!} \\
& =\sum_{k \geq 0}(k+j)^{n}(k+j)^{\underline{r_{1}}} \cdots(k+j) \underline{r_{p-1}}(k+j)^{\underline{r_{p}}} \frac{z^{k}}{k!} \\
& =\exp (z) B_{n}\left(z ; r_{1}, \ldots, r_{p}, j\right) .
\end{aligned}
$$

It is obvious that we have $\operatorname{deg} B_{n}^{(j)}=n+\left|\mathbf{r}_{p}\right|$ and for $j=r_{p+1} \geq r_{p}$ we obtain $B_{n}^{\left(r_{p+1}\right)}\left(z ; \mathbf{r}_{p}\right)=B_{n}\left(z ; r_{1}, \ldots, r_{p}, r_{p+1}\right)=B_{n}\left(z ; \mathbf{r}_{p+1}\right)$.

Proof of Theorem 1. We will show by induction on p that the roots of the polynomials $B_{n}\left(z ; \mathbf{r}_{p}\right)$ are real and non-positive. Indeed, for $p=0$ the classical Bell polynomial $B_{n}\left(z ; \mathbf{r}_{0}\right)=B_{n}(z)$ has only real non-positive roots and for $p=1$ the polynomial $B_{n}\left(z ; \mathbf{r}_{1}\right)$ is the r_{1}-Bell polynomial introduced in [8] and has only real non-positive roots. Assume, for $1 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{p}$, that the roots of the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$ are real and negative, denoted by $z_{1}, \ldots, z_{n+\left|\mathbf{r}_{p-1}\right|}$ with $0>z_{1} \geq$ $\cdots \geq z_{n+\left|\mathbf{r}_{p-1}\right|}$. We will prove that the polynomial $B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right)$ has only real nonpositive roots and we conclude that the polynomial $B_{n}\left(z ; \mathbf{r}_{p+1}\right)=B_{n}^{\left(r_{p+1}\right)}\left(z ; \mathbf{r}_{p}\right)$ (see Lemma 2) has only real non-positive roots.

Firstly, we examine the polynomials $B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right)$ for $j<r_{p}$. Indeed, the above statements show that the function

$$
f_{n}\left(z ; \mathbf{r}_{p}\right):=\exp (z) B_{n}^{(0)}\left(z ; \mathbf{r}_{p}\right)=z^{r_{p}} \exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)
$$

vanishes at $z_{0}, z_{1}, \ldots, z_{n+\left|\mathbf{r}_{p-1}\right|}$ with $z_{0}=0>z_{1} \geq \cdots \geq z_{n+\left|\mathbf{r}_{p-1}\right|}$ and $z_{0}=0$ is of multiplicity r_{p}. Lemma 2 gives

$$
\frac{d}{d z}\left(f_{n}\left(z ; \mathbf{r}_{p}\right)\right)=\exp (z) B_{n}^{(1)}\left(z ; \mathbf{r}_{p}\right)=z^{r_{p}-1} \exp (z) B_{n}\left(z ; r_{1}, \ldots, r_{p-1}, r_{p}, 1\right)
$$

and by applying Rolle's theorem to the function $f_{n}\left(z ; \mathbf{r}_{p}\right)$ we conclude that its derivative $\frac{d}{d z}\left(f_{n}\left(z ; \mathbf{r}_{p}\right)\right)$ vanishes at some points $x_{1}, \ldots, x_{n+\left|\mathbf{r}_{p-1}\right|}$ with $0>x_{1} \geq$ $z_{1} \geq x_{2} \geq \cdots \geq x_{n+\left|\mathbf{r}_{p-1}\right|} \geq z_{n+\left|\mathbf{r}_{p-1}\right|}$. Consequently, the polynomial $B_{n}^{(1)}\left(z ; \mathbf{r}_{p}\right)$ vanishes at $x_{1}, \ldots, x_{n+\left|\mathbf{r}_{p-1}\right|}$ and at $x_{0}=0$ (with multiplicity $r_{p}-1$). The number of these roots is $\left(n+\left|\mathbf{r}_{p-1}\right|\right)+\left(r_{p}-1\right)=n+\left|\mathbf{r}_{p}\right|-1$. Because $B_{n}^{(1)}\left(z ; \mathbf{r}_{p}\right)$ is of degree $n+\left|\mathbf{r}_{p}\right|$ (see Lemma 2), it must have exactly $n+\left|\mathbf{r}_{p}\right|$ finite roots; the missing one, denoted by $x_{n+\left|\mathbf{r}_{p-1}\right|+1}$, cannot be complex. By the fact that the coefficients of z^{k} in $B_{n}\left(z ; r_{1}, \ldots, r_{p-1}, r_{p}, 1\right)$ are positive, the root $x_{n+\left|\mathbf{r}_{p-1}\right|+1}$ must be negative too. So, the polynomial $B_{n}^{(1)}\left(z ; \mathbf{r}_{p}\right)$ has $n+\left|\mathbf{r}_{p-1}\right|+1$ real negative roots and $z=0$ is a root with multiplicity $r_{p}-1$. Similarly, we apply Rolle's theorem to the function $\frac{d}{d z}\left(f_{n}\left(z ; \mathbf{r}_{p}\right)\right)$ to conclude that the polynomial $B_{n}^{(2)}\left(z ; \mathbf{r}_{p}\right)$ has $n+\left|\mathbf{r}_{p-1}\right|+2$ real negative roots and $z=0$ is a root with multiplicity $r_{p}-2$, and so on. So, the polynomials $B_{n}^{(0)}\left(z ; \mathbf{r}_{p}\right), B_{n}^{(1)}\left(z ; \mathbf{r}_{p}\right), \ldots, B_{n}^{\left(r_{p}-1\right)}\left(z ; \mathbf{r}_{p}\right)$ have only real non-positive roots.

Secondly, we examine the polynomials $B_{n}^{(j)}\left(z ; \mathbf{r}_{p}\right)$ for $r_{p} \leq j \leq r_{p+1}$. Indeed, we have $B_{n}^{\left(r_{p}\right)}\left(0 ; \mathbf{r}_{p}\right) \neq 0$ and consider the function

$$
\frac{d^{r_{p}-1}}{d z^{r_{p}-1}} f_{n}\left(z ; \mathbf{r}_{p}\right)=\exp (z) B_{n}^{\left(r_{p}-1\right)}\left(z ; \mathbf{r}_{p}\right)=z \exp (z) B_{n}\left(z ; r_{1}, \ldots, r_{p-1}, r_{p}, r_{p-1}\right)
$$

As it is shown above, this function has $n+\left|\mathbf{r}_{p}\right|-1$ real negative roots and the root $z=0$, then Rolle's theorem shows that its derivative

$$
\frac{d^{r_{p}}}{d z^{r_{p}}} f_{n}\left(z ; \mathbf{r}_{p}\right)=\exp (z) B_{n}^{\left(r_{p}\right)}\left(z ; \mathbf{r}_{p}\right)=\exp (z) B_{n}\left(z ; r_{1}, \ldots, r_{p-1}, r_{p}, r_{p}\right)
$$

has at least $n+\left|\mathbf{r}_{p}\right|-1$ real negative roots. This means that the polynomial

$$
B_{n}^{\left(r_{p}\right)}\left(z ; \mathbf{r}_{p}\right)=B_{n}\left(z ; r_{1}, \ldots, r_{p-1}, r_{p}, r_{p}\right)
$$

has at least $n+\left|\mathbf{r}_{p}\right|-1$ real negative roots and because it is of degree $n+\left|\mathbf{r}_{p}\right|$, the missing one cannot be complex. By the fact that the coefficients of z^{k} in $B_{n}\left(z ; r_{1}, \ldots, r_{p-1}, r_{p}, r_{p}\right)$ are positive, this root must be negative too. So, the polynomial $B_{n}^{\left(r_{p}\right)}\left(z ; \mathbf{r}_{p}\right)$ has $n+\left|\mathbf{r}_{p}\right|$ real negative roots. Similarly, apply Rolle's theorem to $\frac{d^{r_{p}}}{d z^{r p}} f_{n}\left(z ; \mathbf{r}_{p}\right)$ and conclude that the polynomial $B_{n}^{\left(r_{p}+1\right)}\left(z ; \mathbf{r}_{p}\right)$ has $n+\left|\mathbf{r}_{p}\right|$ real negative roots and so on. So, the polynomials $B_{n}^{\left(r_{p}\right)}\left(z ; \mathbf{r}_{p}\right), \ldots, B_{n}^{\left(r_{p+1}\right)}\left(z ; \mathbf{r}_{p}\right)$ vanish only at negative numbers. Then, the polynomial $B_{n}\left(z ; \mathbf{r}_{p+1}\right)=B_{n}^{\left(r_{p+1}\right)}\left(z ; \mathbf{r}_{p}\right)$ (see Lemma 2) has only real negative roots.

Upon using Newton's inequality [6, p. 52], which is given by
Theorem 3. (Newton's inequality) Let $a_{0}, a_{1}, \ldots, a_{n}$ be real numbers. If all the zeros of the polynomial $P(x)=\sum_{k=0}^{n} a_{i} x^{i}$ are real, then the coefficients of P satisfy

$$
a_{i}^{2} \geq\left(1+\frac{1}{i}\right)\left(1+\frac{1}{n-i}\right) a_{i+1} a_{i-1}, \quad 1 \leq i \leq n-1
$$

we may state that:
Corollary 4. The sequence $\left\{\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}, 0 \leq k \leq n+\left|\mathbf{r}_{p-1}\right|\right\}$ is strongly log-concave (and thus unimodal).

This property shows that the sequence $\left(\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r_{p}}, 0 \leq k \leq n\right)$ admits an index $K \in\{0,1, \ldots, n\}$ for which $\left\{\begin{array}{l}n \\ K\end{array}\right\}_{\mathbf{r}_{p}}$ is the maximum of $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{\mathbf{r}_{p}}$. An application of Darroch's inequality [3] will help us to localize this index.

Theorem 5. (Darroch's inequality) Let $a_{0}, a_{1}, \ldots, a_{n}$ be real numbers. If all the zeros of the polynomial $P(x)=\sum_{k=0}^{n} a_{i} x^{i}$ are real and negative and $P(1)>0$, then the value of k for which a_{k} is maximized is within one of $P^{\prime}(1) / P(1)$.

The following corollary gives a small interval for this index.
Corollary 6. Let $K_{n, \mathbf{r}_{p}}$ be the greatest maximizing index of $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{\mathbf{r}_{p}}$. We have

$$
\left|K_{n+\left|\mathbf{r}_{p}\right|, \mathbf{r}_{p}}-\left(\frac{B_{n+1}\left(1 ; \mathbf{r}_{p}\right)}{B_{n}\left(1 ; \mathbf{r}_{p}\right)}-\left(r_{p}+1\right)\right)\right|<1 .
$$

Proof. Since the sequence $\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}$ is strongly log-concave, there exists an index $K_{n+\left|\mathbf{r}_{p}\right|, \mathbf{r}_{p}}$ for which $\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ r_{p}\end{array}\right\}_{\mathbf{r}_{p}}<\cdots<\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ K_{n+\left|\mathbf{r}_{p}\right|, \mathbf{r}_{p}}\end{array}\right\}_{\mathbf{r}_{p}}>\cdots>\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ n+r_{p}\end{array}\right\}_{\mathbf{r}_{p}}$. Then, on applying Theorem 1 and Darroch's theorem, we obtain

$$
\left|K_{n+\left|\mathbf{r}_{p}\right|, \mathbf{r}_{p}}-\frac{\left.\frac{d}{d z} B_{n}\left(z ; \mathbf{r}_{p}\right)\right|_{z=1}}{B_{n}\left(1 ; \mathbf{r}_{p}\right)}\right|<1
$$

It remains to use the first identity given in [12, Corollary 12] by $z \frac{d}{d z}\left(B_{n}\left(z ; \mathbf{r}_{p}\right)\right)=$ $B_{n+1}\left(z ; \mathbf{r}_{p}\right)-\left(z+r_{p}\right) B_{n}\left(z ; \mathbf{r}_{p}\right)$.

3. Generalized Recurrences and Consequences

In this section, different representations of the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$ in different bases or families of basis are given by Theorems 7 and 10. Indeed, a representation in the basis $\left\{B_{n+k}\left(z ; r_{p}\right): 0 \leq k \leq n+\left|\mathbf{r}_{p-1}\right|\right\}$ is given by the following theorem.

Theorem 7. We have

$$
\begin{aligned}
B_{n}\left(z ; \mathbf{r}_{p}\right) & =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) B_{n+k}\left(z ; r_{p}\right), \\
B_{n}\left(z ; \mathbf{r}_{p+q}\right) & =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) B_{n+k}\left(z ; r_{p}, \ldots, r_{p+q}\right) .
\end{aligned}
$$

Proof. Upon using the fact that $\left(k+r_{p}\right)^{\underline{r_{m}}}=\sum_{j=0}^{r_{m}}(-1)^{r_{m}-j}\left[\begin{array}{c}r_{m} \\ j\end{array}\right]\left(k+r_{p}\right)^{j}$, we get

$$
\begin{aligned}
B_{n}\left(z ; \mathbf{r}_{p}\right) & =\exp (-z) \sum_{k \geq 0} P_{n}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!} \\
& =\exp (-z) \sum_{k \geq 0} \sum_{j=0}^{r_{m}}(-1)^{r_{m}-j}\left[\begin{array}{c}
r_{m} \\
j
\end{array}\right] \frac{P_{0}\left(k ; \mathbf{r}_{p}\right)}{\left(k+r_{p}\right)^{r_{m}}}\left(k+r_{p}\right)^{n+j} \frac{z^{k}}{k!} \\
& =\sum_{j=0}^{r_{m}}(-1)^{r_{m}-j}\left[\begin{array}{c}
r_{m} \\
j
\end{array}\right] B_{n+j}\left(z ; \mathbf{r}_{p}-r_{m} \mathbf{e}_{m}\right), \quad m=1,2, \ldots, p-1,
\end{aligned}
$$

and with the same process, we obtain

$$
\begin{aligned}
B_{n}\left(z ; \mathbf{r}_{p}\right) & =\sum_{j_{1}=0}^{r_{1}} \cdots \sum_{j_{p-1}=0}^{r_{p-1}}(-1)^{\left|\mathbf{r}_{p-1}\right|-\left|\mathbf{j}_{p-1}\right|}\left[\begin{array}{c}
r_{1} \\
j_{1}
\end{array}\right] \ldots\left[\begin{array}{c}
r_{p-1} \\
j_{p-1}
\end{array}\right] B_{n+\left|\mathbf{j}_{p-1}\right|}\left(z ; r_{p}\right) \\
& =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|}(-1)^{\left|\mathbf{r}_{p-1}\right|-k} B_{n+k}\left(z ; r_{p}\right) \sum_{\left|\mathbf{j}_{p-1}\right|=k}\left[\begin{array}{c}
r_{1} \\
j_{1}
\end{array}\right] \ldots\left[\begin{array}{c}
r_{p-1} \\
j_{p-1}
\end{array}\right] \\
& =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) B_{n+k}\left(z ; r_{p}\right) .
\end{aligned}
$$

This implies the first identity of the theorem.
Now, from Lemma 2 we can write

$$
\begin{aligned}
\exp (-z) \frac{d^{r_{p+1}}}{d z^{r_{p+1}}} & \left(z^{r_{p}} \exp (z) B_{n}\left(z ; \mathbf{r}_{p}\right)\right) \\
& =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) \exp (-z) \frac{d^{r_{p+1}}}{d z^{r_{p+1}}}\left(z^{r_{p}} \exp (z) B_{n+k}\left(z ; r_{p}\right)\right)
\end{aligned}
$$

which gives by utilizing Lemma 2: $B_{n}\left(z ; \mathbf{r}_{p+1}\right)=\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) B_{n+k}\left(z ; r_{p}, r_{p+1}\right)$. We can repeat this process q times to obtain the second identity of the theorem.

So, the \mathbf{r}_{p}-Stirling numbers admit an expression in terms of the usual r-Stirling numbers given by the following corollary.

Corollary 8. We have

$$
\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}=\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+j+r_{p} \\
k+r_{p}
\end{array}\right\}_{r_{p}} a_{j}\left(\mathbf{r}_{p-1}\right)
$$

Proof. Using Theorem 7, the polynomial $B_{n}\left(z ; \mathbf{r}_{p}\right)$ can be written as follows:

$$
\begin{aligned}
\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|} a_{j}\left(\mathbf{r}_{p-1}\right) B_{n+j}\left(z ; r_{p}\right) & =\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|} a_{j}\left(\mathbf{r}_{p-1}\right) \sum_{k=0}^{n+j}\left\{\begin{array}{c}
n+j+r_{p} \\
k+r_{p}
\end{array}\right\}_{r_{p}} z^{k} \\
& =\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|} z^{k} \sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|} a_{j}\left(\mathbf{r}_{p-1}\right)\left\{\begin{array}{c}
n+j+r_{p} \\
k+r_{p}
\end{array}\right\}_{r_{p}}
\end{aligned}
$$

and since $B_{n}\left(z ; \mathbf{r}_{p}\right)=\sum_{k=0}^{n+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}n+\left|\mathbf{r}_{p}\right| \\ k+r_{p}\end{array}\right\}_{\mathbf{r}_{p}} z^{k}$, the identity follows by identification.
In [12], we proved the following:

$$
\sum_{n \geq 0} B_{n}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!}=B_{0}\left(z \exp (t) ; \mathbf{r}_{p}\right) \exp \left(z(\exp (t)-1)+r_{p} t\right)
$$

The following theorem gives more details on the exponential generating function of the \mathbf{r}_{p}-Bell polynomials and will be used later.

Theorem 9. We have

$$
\begin{aligned}
\sum_{n \geq 0} B_{n+m}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!} & =B_{m}\left(z \exp (t) ; \mathbf{r}_{p}\right) \exp \left(z(\exp (t)-1)+r_{p} t\right) \\
& =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) \frac{d^{m+k}}{d t^{m+k}}\left(\exp \left(z(\exp (t)-1)+r_{p} t\right)\right)
\end{aligned}
$$

Proof. Use (1) to get

$$
\begin{aligned}
\sum_{n \geq 0} B_{n+m}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!} & =\sum_{n \geq 0}\left(\exp (-z) \sum_{k \geq 0} P_{0}\left(k ; \mathbf{r}_{p}\right)\left(k+r_{p}\right)^{n+m} \frac{z^{k}}{k!}\right) \frac{t^{n}}{n!} \\
& =\exp (-z) \sum_{k \geq 0} P_{0}\left(k ; \mathbf{r}_{p}\right)\left(k+r_{p}\right)^{m} \frac{z^{k} \exp \left(\left(k+r_{p}\right) t\right)}{k!} \\
& =B_{m}\left(z \exp (t) ; \mathbf{r}_{p}\right) \exp \left(z(\exp (t)-1)+r_{p} t\right)
\end{aligned}
$$

For the second part of the theorem, use Theorem 7 to obtain

$$
\begin{aligned}
\sum_{n \geq 0} B_{n+m}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!} & =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) \sum_{n \geq 0} B_{n+m+k}\left(z ; r_{p}\right) \frac{t^{n}}{n!} \\
& =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) \frac{d^{m+k}}{d t^{m+k}}\left(\sum_{n \geq 0} B_{n}\left(z ; r_{p}\right) \frac{t^{n}}{n!}\right) \\
& =\sum_{k=0}^{\left|\mathbf{r}_{p-1}\right|} a_{k}\left(\mathbf{r}_{p-1}\right) \frac{d^{m+k}}{d t^{m+k}}\left(\exp \left(z(\exp (t)-1)+r_{p} t\right)\right)
\end{aligned}
$$

Using combinatorial arguments, Spivey [13] established the following identity:

$$
B_{n+m}=\sum_{k=0}^{n} \sum_{j=0}^{m}\left\{\begin{array}{c}
m \\
j
\end{array}\right\}\binom{n}{k} j^{n-k} B_{k}
$$

where B_{n} is the n-th Bell number, i.e., the number of ways to partition a set of n elements into non-empty subsets. After that, Belbachir et al. [1] and Gould et al. [7] showed, using different methods, that the polynomial $B_{n+m}(z)=B_{n+m}(z ; \mathbf{0})$ admits a recurrence relation related to the family $\left\{z^{i} B_{j}(z)\right\}$ as follows:

$$
B_{n+m}(z)=\sum_{k=0}^{n} \sum_{j=0}^{m}\left\{\begin{array}{c}
m \tag{4}\\
j
\end{array}\right\}\binom{n}{k} j^{n-k} z^{j} B_{k}(z)
$$

Recently, Xu [14] gave a recurrence relation on a large family of Stirling numbers and Mihoubi et al. [11] extended the relation (4) to r-Bell polynomials as follows:

$$
B_{n+m, r}(x)=\sum_{k=0}^{n} \sum_{j=0}^{m}\left\{\begin{array}{c}
m+r \tag{5}\\
j+r
\end{array}\right\}_{r}\binom{n}{k} j^{n-k} x^{j} B_{k, r}(x)
$$

Other recurrence relations are given by Mező [10]. The following theorem generalizes the Identities (4) and (5), and the Carlitz's identities [4,5] given by

$$
\begin{aligned}
& B_{n+m}(1 ; r)=\sum_{k=0}^{m}\left\{\begin{array}{l}
m+r \\
k+r
\end{array}\right\}_{r} B_{n}(1 ; k+r) \\
& B_{n}(1 ; r+s)=\sum_{k=0}^{s}\left[\begin{array}{l}
s+r \\
k+r
\end{array}\right]_{r}(-1)^{s-k} B_{n+k}(1 ; r),
\end{aligned}
$$

and shows that $B_{n+m}\left(z ; \mathbf{r}_{p}\right)$ admits r-Stirling recurrence coefficients in the families of basis

$$
\begin{aligned}
& \left\{z^{j} B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right): 0 \leq j \leq n\right\} \\
& \left\{z^{j} B_{m+i}(z ; r+j): 0 \leq i \leq\left|\mathbf{r}_{p-1}\right|, 0 \leq j \leq n\right\}
\end{aligned}
$$

where $B_{n}(1 ; r)$ is the number of ways to partition a set of n elements into non-empty subsets such that the r first elements are in different subsets.

Theorem 10. We have

$$
\begin{aligned}
B_{n+m}\left(z ; \mathbf{r}_{p}\right) & =\sum_{j=0}^{n}\left\{\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right\}_{r_{p}} z^{j} B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right), \\
B_{n+m}\left(z ; \mathbf{r}_{p}\right) & =\sum_{i=0}^{\left|\mathbf{r}_{p-1}\right|} \sum_{j=0}^{n}\left\{\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right\}_{r_{p}} a_{i}\left(\mathbf{r}_{p-1}\right) z^{j} B_{m+i}\left(z ; r_{p}+j\right), \\
z^{n} B_{m}\left(z ; \mathbf{r}_{p}+n \mathbf{e}_{p}\right) & =\sum_{j=0}^{n}\left[\begin{array}{l}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j} B_{m+j}\left(z ; \mathbf{r}_{p}\right) .
\end{aligned}
$$

Proof. Let $T_{m}\left(z ; \mathbf{r}_{p}\right):=\sum_{n \geq 0}\left(\sum_{j=0}^{n}\left\{\begin{array}{c}n+r_{p} \\ j+r_{p}\end{array}\right\}_{r_{p}} z^{j} B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right)\right) \frac{t^{n}}{n!}$. The second identity given in [12, Corollary 12] by

$$
\exp (z) B_{m}\left(z ; \mathbf{r}_{p}+\mathbf{e}_{p}\right)=\frac{d}{d z}\left(\exp (z) B_{m}\left(z ; \mathbf{r}_{p}\right)\right)
$$

can be used to get

$$
\begin{equation*}
\exp (z) B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right)=\frac{d^{j}}{d z^{j}}\left(\exp (z) B_{m}\left(z ; \mathbf{r}_{p}\right)\right) \tag{6}
\end{equation*}
$$

Identity (6) and the exponential generating function of the r-Stirling numbers (see [2])

$$
\sum_{n \geq j}\left\{\begin{array}{l}
n+r_{p} \\
j+r_{p}
\end{array}\right\}_{r_{p}} \frac{t^{n}}{n!}=\frac{1}{j!}(\exp (t)-1)^{j} \exp \left(r_{p} t\right)
$$

prove that

$$
\begin{aligned}
T_{m}\left(z ; \mathbf{r}_{p}\right) & =\sum_{j \geq 0} B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right) z^{j} \frac{1}{j!}(\exp (t)-1)^{j} \exp \left(r_{p} t\right) \\
& =\exp \left(r_{p} t-z\right) \sum_{j \geq 0} \frac{d^{j}}{d z^{j}}\left(\exp (z) B_{m}\left(z ; \mathbf{r}_{p}\right)\right) \frac{(z(\exp (t)-1))^{j}}{j!}
\end{aligned}
$$

Now, by the Taylor-Maclaurin expansion we have

$$
\sum_{j \geq 0} \frac{d^{j}}{d z^{j}}\left(\exp (z) B_{m}\left(z ; \mathbf{r}_{p}\right)\right) \frac{(u-z)^{j}}{j!}=\exp (u) B_{m}\left(u ; \mathbf{r}_{p}\right)
$$

So, this identity and Theorem 9 show that we have

$$
T_{m}\left(z ; \mathbf{r}_{p}\right)=\exp \left(r_{p} t-z\right) \exp (z \exp (t)) B_{m}\left(z \exp (t) ; \mathbf{r}_{p}\right)=\sum_{n \geq 0} B_{n+m}\left(z ; \mathbf{r}_{p}\right) \frac{t^{n}}{n!}
$$

By comparing the coefficients of t^{n} in the two expressions of $T_{m}\left(z ; \mathbf{r}_{p}\right)$, the first identity of this theorem follows. The second identity follows by replacing $B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right)$, as given by its expression in Theorem 7 by

$$
\sum_{i=0}^{\left|\mathbf{r}_{p-1}\right|} a_{i}\left(\mathbf{r}_{p-1}\right) B_{m+i}\left(z ; j+r_{p}\right)
$$

For the third identity, let $A:=\sum_{j=0}^{n}\left[\begin{array}{c}n+r_{p} \\ j+r_{p}\end{array}\right]_{r_{p}}(-1)^{n-j} B_{m+j}\left(z ; \mathbf{r}_{p}\right)$. We use Identity (1) and the known identity $\left(k+r_{p}\right)^{\underline{n}}=\sum_{j=0}^{n}\left[\begin{array}{c}n+r_{p} \\ j+r_{p}\end{array}\right\}_{r_{p}} k^{j}$ (see [2]) to obtain

$$
\begin{aligned}
A & =\exp (-z) \sum_{k \geq 0} P_{m}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!} \sum_{j=0}^{n}\left[\begin{array}{l}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j}\left(k+r_{p}\right)^{j} \\
& =(-1)^{n} \exp (-z) \sum_{k \geq 0} P_{m}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!} \sum_{j=0}^{n}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}\left(-k-r_{p}\right)^{j} \\
& =(-1)^{n} \exp (-z) \sum_{k \geq 0} P_{m}\left(k ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!}\left(-k-r_{p}+r_{p}\right)^{\bar{n}} \\
& =\exp (-z) \sum_{k \geq n} P_{m}\left(k ; \mathbf{r}_{p}\right) k^{\underline{n}} \frac{z^{k}}{k!} \\
& =z^{n} \exp (-z) \sum_{k \geq 0} P_{m}\left(k+n ; \mathbf{r}_{p}\right) \frac{z^{k}}{k!} \\
& =z^{n} B_{m}\left(z ; \mathbf{r}_{p}+n \mathbf{e}_{p}\right) .
\end{aligned}
$$

As consequences of Theorem 10, some identities for the \mathbf{r}_{p}-Stirling numbers of the second kind can be deduced as is shown by the following corollary.

Corollary 11. We have

$$
\begin{gathered}
\sum_{i=0}^{k}\left\{\begin{array}{c}
m+\left|\mathbf{r}_{p}\right| \\
i+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left\{\begin{array}{c}
n+r_{p} \\
k-i+r_{p}
\end{array}\right\}_{r_{p}}=\left\{\begin{array}{c}
n+m+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} \\
\sum_{j=0}^{n}\left\{\begin{array}{c}
m+j+\left|\mathbf{r}_{p}\right| \\
k+n+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j}=\left\{\begin{array}{c}
m+\left|\mathbf{r}_{p}\right|+n \\
k+r_{p}+n
\end{array}\right\}_{\mathbf{r}_{p}+n \mathbf{e}_{p}}, \\
\sum_{j=0}^{n}\left\{\begin{array}{c}
m+j+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j}=0, \quad k<n .
\end{gathered}
$$

Proof. From the first identity of Theorem 10 we have

$$
B_{n+m}\left(z ; \mathbf{r}_{p}\right)=\sum_{j=0}^{n}\left\{\begin{array}{l}
n+r_{p} \\
j+r_{p}
\end{array}\right\}_{r_{p}} z^{j} B_{m}\left(z ; \mathbf{r}_{p}+j \mathbf{e}_{p}\right)
$$

which can be written as

$$
\begin{aligned}
\sum_{k=0}^{n+m+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+m+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{k} & =\sum_{j=0}^{n}\left\{\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right\}_{r_{p}} z^{j} \sum_{i=0}^{m+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
m+\left|\mathbf{r}_{p}\right| \\
i+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{i} \\
& =\sum_{k=0}^{n+m+\left|\mathbf{r}_{p-1}\right|} z^{k} \sum_{i=0}^{k}\left\{\begin{array}{c}
m+\left|\mathbf{r}_{p}\right| \\
i+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left\{\begin{array}{c}
n+r_{p} \\
k-i+r_{p}
\end{array}\right\}_{r_{p}} .
\end{aligned}
$$

Then, the desired identity follows by comparing the coefficients of z^{k} in the last expansion. Using the definition of $B_{n}\left(z ; \mathbf{r}_{p}\right)$ and the third identity of Theorem 10, the second and the third identities of the corollary follow from the definition

$$
B_{m}\left(z ; \mathbf{r}_{p}+n \mathbf{e}_{p}\right)=\sum_{k=0}^{m+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
m+\left|\mathbf{r}_{p}\right|+n \\
k+r_{p}+n
\end{array}\right\}_{\mathbf{r}_{p}+n \mathbf{e}_{p}} z^{k}
$$

and the expansion

$$
\begin{aligned}
B_{m}\left(z ; \mathbf{r}_{p}+n \mathbf{e}_{p}\right) & =z^{-n} \sum_{j=0}^{n}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j} B_{m+j}\left(z ; \mathbf{r}_{p}\right) \\
& =z^{-n} \sum_{j=0}^{n}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j} \sum_{k=0}^{m+j+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
m+j+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}} z^{k} \\
& =\sum_{k=0}^{m+n+\left|\mathbf{r}_{p-1}\right|} z^{k-n} \sum_{j=0}^{n}\left\{\begin{array}{c}
m+j+\left|\mathbf{r}_{p}\right| \\
k+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j} \\
& =\sum_{k=-n}^{m+\left|\mathbf{r}_{p-1}\right|} z^{k} \sum_{j=0}^{n}\left\{\begin{array}{c}
m+j+\left|\mathbf{r}_{p}\right| \\
k+n+r_{p}
\end{array}\right\}_{\mathbf{r}_{p}}\left[\begin{array}{c}
n+r_{p} \\
j+r_{p}
\end{array}\right]_{r_{p}}(-1)^{n-j}
\end{aligned}
$$

4. Ordinary Generating Functions

The ordinary generating function of the r-Stirling numbers of the second kind [2] is given by

$$
\sum_{n \geq k}\left\{\begin{array}{l}
n+r \tag{7}\\
k+r
\end{array}\right\}_{r} t^{n}=t^{k} \prod_{j=0}^{k}(1-(r+j) t)^{-1}
$$

An analogous result for the \mathbf{r}_{p}-Stirling numbers is given by the following theorem.
Theorem 12. Let

$$
\widetilde{B}_{n}\left(z ; \mathbf{r}_{p}\right):=\sum_{k=0}^{n}\left\{\begin{array}{l}
n+\left|\mathbf{r}_{p}\right| \\
k+\left|\mathbf{r}_{p}\right|
\end{array}\right\}_{\mathbf{r}_{p}} z^{k}
$$

Then, we have

$$
\begin{aligned}
& \sum_{n \geq k}\left\{\begin{array}{l}
n+\left|\mathbf{r}_{p}\right| \\
k+\left|\mathbf{r}_{p}\right|
\end{array}\right\}_{\mathbf{r}_{p}} t^{n}=t^{k+\left|\mathbf{r}_{p-1}\right|}\left(\frac{1}{t}\right)^{\frac{r_{1}}{-}} \cdots\left(\frac{1}{t}\right)^{\frac{r_{p-1}}{k+\left|\mathbf{r}_{p-1}\right|}} \prod_{j=0}^{k \geq)^{2}}\left(1-\left(r_{p}+j\right) t\right)^{-1} \\
& \sum_{n \geq 0} \widetilde{B}_{n}\left(z ; \mathbf{r}_{p}\right) t^{n}=\left(\frac{1}{t}\right)^{\underline{r_{1}}} \cdots\left(\frac{1}{t}\right)^{\frac{r_{p-1}}{}} \sum_{k \geq\left|\mathbf{r}_{p-1}\right|} \frac{z^{k-\left|\mathbf{r}_{p-1}\right|} t^{k}}{\prod_{j=0}^{k}\left(1-\left(r_{p}+j\right) t\right)}
\end{aligned}
$$

Proof. Use Corollary 8 to obtain

$$
\begin{aligned}
\sum_{n \geq k}\left\{\begin{array}{l}
n+\left|\mathbf{r}_{p}\right| \\
k+\left|\mathbf{r}_{p}\right|
\end{array}\right\}_{\mathbf{r}_{p}} t^{n} & =\sum_{n \geq k}\left\{\begin{array}{c}
n+\left|\mathbf{r}_{p}\right| \\
k+\left|\mathbf{r}_{p-1}\right|+r_{p}
\end{array}\right\} t_{\mathbf{r}_{p}} \\
& =\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|} a_{j}\left(\mathbf{r}_{p-1}\right) t^{-j} \sum_{n \geq k}\left\{\begin{array}{c}
n+j+r_{p} \\
k+\left|\mathbf{r}_{p-1}\right|+r_{p}
\end{array}\right\}_{r_{p}} t^{n+j} \\
& =\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|} a_{j}\left(\mathbf{r}_{p-1}\right) t^{-j} \sum_{n \geq k+j}\left\{\begin{array}{c}
n+r_{p} \\
k+\left|\mathbf{r}_{p-1}\right|+r_{p}
\end{array}\right\}_{r_{p}} t^{n}
\end{aligned}
$$

and because $\left\{\begin{array}{c}n+r_{p} \\ k+\left|\mathbf{r}_{p-1}\right|+r_{p}\end{array}\right\}_{r_{p}}=0$ for $n=k, \ldots, k+\left|\mathbf{r}_{p-1}\right|-1$, we get

$$
\sum_{n \geq k}\left\{\begin{array}{l}
n+\left|\mathbf{r}_{p}\right| \\
k+\left|\mathbf{r}_{p}\right|
\end{array}\right\}_{\mathbf{r}_{p}} t^{n}=\left(\sum_{n \geq k+\left|\mathbf{r}_{p-1}\right|}\left\{\begin{array}{c}
n+r_{p} \\
k+\left|\mathbf{r}_{p-1}\right|+r_{p}
\end{array}\right\}_{r_{p}} t^{n}\right)\left(\sum_{j=0}^{\left|\mathbf{r}_{p-1}\right|} a_{j}\left(\mathbf{r}_{p-1}\right) t^{-j}\right)
$$

The first generating function of the theorem follows by using (3) and (7). For the second one, use the definition of $\widetilde{B}_{n}\left(z ; \mathbf{r}_{p}\right)$ and the last expansion.

Acknowledgments The authors would like to acknowledge the support from the RECITS's laboratory and the PNR project $8 / \mathrm{U} 160 / 3172$. The authors also wish to thank the referee for reading and evaluating the paper thoroughly.

References

[1] H. Belbachir, M. Mihoubi, A generalized recurrence for Bell polynomials: An alternate approach to Spivey and Gould Quaintance formulas. European J. Combin. 30 (2009), 12541256.
[2] A. Z. Broder, The r-Stirling numbers. Discrete Math. 49 (1984), 241-259.
[3] J. N. Darroch, On the distribution of the number of successes in independent trials, Ann. Math. Stat. (1964), 1317-1321.
[4] L. Carlitz, Weighted Stirling numbers of the first and second kind - I. Fibonacci Quart. 18 (1980), 147-162.
[5] L. Carlitz, Weighted Stirling numbers of the first and second kind - II. Fibonacci Quart. 18 (1980), 242-257.
[6] G. H. Hardy, J. E. Littlewood, G. Ploya, Inequalities (Cambridge: The University Press, 1952).
[7] H. W. Gould, J. Quaintance, Implications of Spivey's Bell number formula, J. Integer Seq. 11 (2008), Article 08.3.7.
[8] I. Mező, The r-Bell numbers. J. Integer Seq. 14 (2011), Article 11.1.1.
[9] I. Mező, On the maximum of r-Stirling numbers. Adv. Applied Math. 41 (2008), 293-306.
[10] I. Mező, The Dual of Spivey's Bell Number Formula, J. Integer Seq. 15(2) (2012), Article 12.2.4.
[11] M. Mihoubi, H. Belbachir, Linear recurrences for r-Bell polynomials. Preprint.
[12] M. Mihoubi, M. S. Maamra, The $\left(r_{1}, \ldots, r_{p}\right)$-Stirling numbers of the second kind. Integers 12 (2012), Article A35.
[13] M. Z. Spivey, A generalized recurrence for Bell numbers. J. Integer Seq. 11 (2008), Article 08.2.5.
[14] A. Xu, Extensions of Spivey's Bell number formula. Electron. J. Comb. 19 (2) (2012), Article P6.
[15] F. Z. Zhao, On log-concavity of a class of generalized Stirling numbers. Electron. J. Comb. 19 (2) (2012), Article P11.

