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Abstract
We discover a continued fraction whose successive approximants generate the Stern–
Brocot sequence and levels of the Stern–Brocot tree. We also discover continued
fractions whose approximants generate every term in diagonals and branches of the
Stern–Brocot tree.

1. Introduction and Preliminaries

The Stern–Brocot tree has received much attention recently due to its deep con-
nections with physical chemistry [7]. Also recently, the application of continued
fractions to the Stern–Brocot tree has greatly assisted in the understanding of the
tree and the Stern–Brocot sequence to which it is related. For example, through
the use of continued fractions we can now:

• describe the location of any term in the Stern–Brocot tree or its cousin, the
Calkin–Wilf tree [3] and [2],

• describe the term that is found at any specific location in the Stern–Brocot
tree or the Calkin–Wilf tree [2],

• provide a simple method for evaluating terms in the Hyperbinary sequence
(a sequence related to the Calkin–Wilf tree) thereby answering a challenge
raised in Quantum in September 1997 [2],

• translate terms from the Stern–Brocot tree to vertices in the Calkin–Wilf tree,
and vice versa [2],

• show that the iterated Gauss map and the left half of the Stern–Brocot tree
are analogues of each other [1],

• describe diagonals and branches within the Stern–Brocot tree [3] and [2], and

• generate results for the child’s addition of continued fractions [5].
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An excellent overview of current research into the Stern–Brocot tree is available
at [9]. In this paper we go further by showing that there exists:

• a continued fraction (Theorem 12), which we style the Stern–Brocot continued
fraction, whose successive approximants generate the Stern–Brocot sequence
and the Stern–Brocot tree,

• an interleaving representation of the Stern–Brocot continued fraction (Theo-
rem 21),

• a mirroring representation of the Stern–Brocot continued fraction (Theorem
25),

• a set of continued fractions for left and right diagonals in the Stern–Brocot
tree (Theorem 30), and

• a set of continued fractions whose successive approximants generate branches
(Theorem 37) and o↵set branches (Theorem 47) in the Stern–Brocot tree.

We state some important definitions and results. Proofs of results can be found
in the references cited.

Definition 1. (Stern–Brocot Sequence). With s0,1 = 0 and s0,2 = 1, we define
for n � 0,

Sn = hsn,1, sn,2, . . . , sn,2n+1i
as the sequence for which, for k � 1, n > 0,

sn,2k�1 = sn�1,k and
sn,2k = sn�1,k + sn�1,k+1

Similarly, with q0,1 = 1, q0,2 = 0, we define Qn. Then the sequence defined by

Hn = hhn,1, hn,2, . . . , hn,2n+1i where hn,i =
sn,i

qn,i

is called the Stern–Brocot Sequence of order n. It represents the sequence containing
both the first n generations of mediants based on H0, and the terms of H0 itself.

Definition 2. (Parents). We call hn�1,k and hn�1,k+1, the left and right parents,
respectively, of hn,2k.

Definition 3. (Levels of the Stern–Brocot tree). Let H0 be level 0 of the Stern–
Brocot tree. For n > 0, level n of the Stern–Brocot tree is defined as medHn�1

where

medHn�1 =
⌦
(hn�1,1 � hn�1,2) , (hn�1,2 � hn�1,3) , . . . ,

�
hn�1,2n�1 � hn�1,2n�1+1

�↵
,

= hhn,2, hn,4, hn,6, . . . , hn,2ni

and � is the child’s addition operator whereby
r

m
� c

d
=

r + c

m + d
.
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Figure 1: Levels 0 to 5 of the Stern-Brocot tree

Figure 1 shows levels 0 to 5 of the Stern–Brocot tree.

The following theorem is found in [3] and is adapted from [8].

Theorem 4. For 0 < i  2n,

sn,i+1qn,i � sn,iqn,i+1 = 1.

The following theorem is found in [5].

Theorem 5. Terms on the same level of the Stern–Brocot tree that are equidistant
from either end are reciprocals of each other. Such terms are styled symmetric
complements. Algebraically,

sn,k = qn,2n�1�k+1.

Corollary 6. Terms that are equidistant from either end of any Stern–Brocot se-
quence are reciprocals of each other. That is,

Hn =
⌧

sn,1

qn,1
=

0
1
,
sn,2

qn,2
, · · · ,

sn,2n

qn,2n
,
sn,2n+1

qn,2n+1
=

1
0

�

=
⌧

sn,1

qn,1
,
sn,2

qn,2
, · · · ,

sn,2n�1

qn,2n�1
,
sn,2n�1+1

qn,2n�1+1
=

1
1
,
qn,2n�1

sn,2n�1
, · · · ,

qn,2

sn,2
,
qn,1

sn,1

�
. (1)

Proof. The proof proceeds by induction on n. Our result is true for n = 1. Suppose
it is true for some Hk.
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By Definition 1 consecutive odd-subscripted terms in Hk+1 represent consecutive
terms in Hk, and so for these terms our result is true by our inductive hypothesis.

By Definition 3, consecutive even-subscripted terms in Hk+1 represent consecu-
tive terms from level k + 1 of the Stern–Brocot tree. For these terms our result is
true by Theorem 5.

Thus our result is true for Hk+1. The result follows.

Definition 7. (Cross-di↵erences) The cross-di↵erence of r/m and c/d is mc�rd.

Theorem 4 reveals that all cross-di↵erences of consecutive terms in Hn have
cross-di↵erence 1.

Definition 8. (Stern–Brocot Cross-Di↵erences) For i = 1, 2, . . . , 2n�1�1, and
n > 1, Cn,i, the ith Stern–Brocot Cross-Di↵erence in level n of the tree, is given by

Cn,i = sn,2i+2qn,2i � sn,2iqn,2i+2

where sn,2i, sn,2i+2, qn,2i and qn,2i+2 are terms defined in Definition 1.

The following theorem, found in [5], shows that the ith cross-di↵erence in a level
of the tree takes the value 2ji +3, where ji is the number of factors that have value
2 in the prime factorization of i. Note that Cn,i is only dependent on i.

Theorem 9. Let i = 2ji (2mi � 1) . Then

Cn,i = 2ji + 3.

In what follows we adopt the following notation for continued fractions and their
approximants.

b0 + K
✓

an

bn

◆
=

b0+
a1

b1+
a2

b2 +
a3

. . .

= b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

The successive approximants of b0 + K
⇣

an
bn

⌘
are

A0

B0
= b0,

A1

B1
= b0 +

a1

b1
,

A2

B2
= b0 +

a1

b1 + a2
b2

and so on.
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If b0 = 0, we often denote b0 + K
⇣

an
bn

⌘
as simply K

⇣
an
bn

⌘
. We also designate

�n := An�1Bn �AnBn�1. (2)

Daniel Bernoulli discovered the following theorem on continued fractions in 1775
[6]. We state the version found in Lorentzen and Waadeland [10] with slight modi-
fications.

Theorem 10. For N > 1, the sequences

hAniNn=0 and hBniNn=0

of complex numbers are the canonical numerators and denominators respectively of
some continued fraction

b0 + K
✓

an

bn

◆

if and only if

1. �n 6= 0 for n � 1 and

2. B0 = 1.

Then
b0 + K

✓
an

bn

◆

is uniquely determined by

b0 := A0

b1 := B1 a1 := A1 �A0B1

bn := An�2Bn�Bn�2An

�n�1
for n � 2 an := � �n

�n�1
for n � 2

where �n =
nY

k=1

(�ak) .

Remark 11. Theorem 10 tells us that a pair of sequences

U = hu0, u1, u2, . . . , uN i and V = hv0, v1, v2, . . . , vN i

forms approximants, un/vn, of some continued fraction provided that U and V
abide by the following necessary and su�cient conditions for the existence of this
continued fraction:

1. un�1vn � unvn�1 6= 0, for n � 1,
2. v0 = 1.
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If these conditions are satisfied, then a continued fraction can be formed from U
and V possessing the following properties:

b0 = u0

b1 = v1 a1 = u1 � u0v1

bn = un�2vn�vn�2un

un�1vn�unvn�1
for n � 2 an = � un�1vn�unvn�1

un�2vn�1�un�1vn�2
for n � 2.

2. The Stern–Brocot Continued Fraction

We are now able to prove our main result which allows us to represent the Stern–
Brocot sequence as successive approximants of a continued fraction.

Theorem 12 (Stern–Brocot continued fraction). For n > 0, let

Hn =
⌧

sn,1

qn,1
,
sn,2

qn,2
, · · · ,

sn,2n+1

qn,2n+1

�

be the Stern–Brocot sequence of order n, where
sn,1

qn,1
=

0
1
,
sn,2

qn,2
=

1
n

and
sn,2n+1

qn,2n+1
=

1
0
.

Let also jk represent the number of factors having value 2 in the prime factorization
of k. Then

a) for i = 1, 2, · · · , 2n�1 + 1, the term sn,i/qn,i is the (i� 1)th approximant of
the continued fraction,

Hn =
1
n �

1
2j1 + 1 �

1
2j2 + 1 �

1
2j3 + 1 � · · · �

1
2j2n�1�1 + 1

, (3)

b) for i = 2n�1+2, · · · , 2n+1, the term sn,i/qn,i is the reciprocal of the (2n � i + 1)th
approximant of the continued fraction at (3).

Proof. We prove each part separately.
a) Our first objective is to show that

hsn,1, sn,2, · · · , sn,2n+1i and hqn,1, qn,2, · · · , qn,2n+1i
are two sequences for which sn,i/qn,i, where i = 1, 2, · · · , 2n�1 + 1, represents the
(i� 1)th approximant of some continued fraction. Our second objective is to show
that this continued fraction must be (3).

The two necessary and su�cient conditions in Theorem 10 (and Remark 11) for
establishing the existence of our continued fraction are satisfied in

hsn,1, sn,2, · · · , sn,2n+1i and hqn,1, qn,2, · · · , qn,2n+1i ,
since by
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i) Theorem 4,
sn,i�1qn,i � sn,iqn,i�1 = �1 6= 0, and by

ii) Definition 1,
sn,1

qn,1
=

0
1
,

that is, qn,1 = 1.

Thus our first objective has been achieved. Accordingly, by Theorems 4 and 10,
and using our continued fraction notation, the continued fraction that we seek has
the following properties:

b0 = sn,1 = 0

b1 = qn,2 = n a1 = sn,2 � sn,1qn,2 = 1

bi = sn,i�2qn,i�qn,i�2sn,i

�1 for i � 2 ai = � sn,i�1qn,i�sn,iqn,i�1
sn,i�2qn,i�1�sn,i�1qn,i�2

= �1, for i � 2.

Consider bi, where i � 2. Let m 2 N. There are two cases.

i) i odd (= 2m + 1): Then bi represents the mth cross-di↵erence in any level of
the tree. By Theorem 9, we have

bi = 2jm + 3

and since
2jm + 3 = 2j2m + 1,

it follows that
bi = b2m+1 = 2j2m + 1.

ii) i even (= 2m): By Definition 3, odd-subscripted terms in the Stern–Brocot
sequence of order n are consecutive terms in the Stern–Brocot sequence of
order n� 1. Accordingly, by Theorem 4,

bi = b2m = 1.

Since
2j2m�1 + 1 = 1,

it follows that
bi = b2m = 2j2m�1 + 1.

Combining both cases, for i > 1 the ith term in Hn is

ai

bi
=

�1
2ji�1 + 1

.

The result follows and our second objective has been achieved.
b) The result follows from a) and Corollary 6.
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Note that in Theorem 12,

H1 =
1
n

since the term
1

2j2n�1�1 + 1

does not exist for n = 1.

Corollary 13. We have

Hn =
1
n �

1
1 �

1
2j1 + 3 �

1
1 �

1
2j2 + 3 � · · · �

1
2j2n�2�1 + 3 �

1
1
.

Proof. Since for m 2 N,

1
2j2m + 1

=
1

2jm + 3
and

1
2j2m�1 + 1

= 1,

the result follows by Theorem 12.

Corollary 14. The subsequence of terms in (1) with even subscripts, that is, the
subsequence ⌧

sn,2

qn,2
,
sn,4

qn,4
,
sn,6

qn,6
, · · · ,

qn,6

sn,6
,
qn,4

sn,4
,
qn,2

sn,2

�
,

represents level n of the Stern–Brocot tree and is represented by consecutive odd-
subscripted approximants of (3)

Proof. By Definitions 1 and 3, and Theorem 12.

The following corollary shows us an interesting continued fraction expression for
unity.

Corollary 15. For n > 0,

1 =
1
n �

1
2j1 + 1 �

1
2j2 + 1 �

1
2j3 + 1 � · · · �

1
2j2n�1�1 + 1

.

Proof. This is the middle term in (1) which corresponds to the last approximant of
(3) . Note that for n = 1, the term

1
2j2n�1�1 + 1

does not exist.
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Example 16. By Theorem 12, for n = 4,

H4 =
1
4 �

1
1 �

1
3 �

1
1 �

1
5 �

1
1 �

1
3 �

1
1

from which we obtain the Stern–Brocot sequence

H4 =
⌧

sn,1

qn,1
,
sn,2

qn,2
, · · · ,

sn,8

qn,8
,
sn,9

qn,9
=

1
1
,
qn,8

sn,8
, · · · ,

qn,2

sn,2
,
qn,1

sn,1

�

=
⌧

0
1
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
1
1
,
4
3
,
3
2
,
5
3
,
2
1
,
5
2
,
3
1
,
4
1
,
1
0

�
.

By Corollary 14, level 4 of the Stern–Brocot tree is⌧
1
4
,
2
5
,
3
5
,
3
4
,
4
3
,
5
3
,
5
2
,
4
1

�
.

3. Interleaving

The Paperfolding sequence has a dual representation – one based on interleaving
and the other based on mirroring [4]. So too with the sequence of terms in the
Stern–Brocot continued fraction. We now explore this interleaving representation.

Definition 17. (Interleave Operator). The interleave operator # acting on the
two sequences

U = hu1, u2, . . . , uki and V = hv1, v2, . . . , vni
where k > n, generates the following interleaved sequence:

U#V = hu1, . . . , up, v1, up+1, . . . , u2p, v2, u2p+1, . . . , unp, vn, unp+1, . . . , uki ,

where p =
�

k

n + 1

⌫
. Also U#V when de-leaved of U becomes V.

Example 18. Let

U = hu1, u2, . . . , un+1i and V = hv1, v2, . . . , vni .

Then
U#V = hu1, v1, u2, v2, . . . , un, vn, un+1i .

Definition 19. (Pervasive Odd-Valued Sequence). The Pervasive Odd-Valued
Sequence, Pm,k, is defined as

Pm,k =

⌧
2k � 3, 2k � 3, . . . , 2k � 3| {z }

�

2m�1 terms

where m,k 2 N.
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Definition 20. (Tn sequence). Let Tn be the sequence of partial denominators
hbii in Hn for i = 2, 3, . . . , 2n�1 and n > 1.

Theorem 21 (Interleaving representation of the Stern–Brocot continued
fraction). For i > 0, n > 1, the sequence of partial denominators hbii in Hn is

hn, Pn�1,2# . . .#P2,n�1#P1,ni .

Proof. From Theorem 12, b1 = n. From (3) , every odd-placed term in Tn is of the
form 2jodd + 1. Since jodd = 0, we have

2jodd + 1 = 1.

There are 2n�2 odd-placed terms in Tn, beginning with the first term and ending
with the last term in Tn. Hence Tn has been formed through an interleave Pn�1,2

applied to every other term in Tn.
Let T(1)

n be the residue of Tn once it has been de-leaved of Pn�1,2. Every odd-
placed term in T(1)

n is of the form

2j2(2m�1) + 1.

Since for every m,
2j2(2m�1) + 1 = 3

and there are 2n�3 of these terms in T(1)
n we can de-leave T(1)

n by Pn�2,3 to form its
residue T(2)

n .
But every odd-placed term in T(2)

n is

2j
22(2m�1)

+ 1 = 5

and there are 2n�4 of these terms in T(2)
n . Hence, we can de-leave T(2)

n by Pn�3,4 to
form its residue T(3)

n .
Proceeding in this way we are eventually left with one term P1,n. The result

follows.

Example 22. Find H4 by interleaving Answer: For n = 4,

P1,4 = 5
P2,3#P1,4 = 3, 5, 3

P3,2#P2,3#P1,4 = 1, 3, 1, 5, 1, 3, 1

and so the sequence of partial denominators hbii in H4 is

h4, 1, 3, 1, 5, 1, 3, 1i .

Therefore

H4 =
1
4 �

1
1 �

1
3 �

1
1 �

1
5 �

1
1 �

1
3 �

1
1
.
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Corollary 23. Tn is palindromic.

Proof. From Theorem 21,

Tn = hPn�1,2# . . .#P2,n�1#P1,ni .

The result follows from Definitions 17 and 19.

4. Mirroring

We now o↵er a method for determining Hn+1 from Hn. It is called mirroring because
we mirror part of the continued fraction around a central term.

Theorem 24 (Mirroring of Tn). We have

Tn = hTn�1, 2n� 3, Tn�1i .

Proof. For n > 2,

Tn = hPn�1,2# . . .#P2,n�1#P1,ni
= hPn�2,2# . . .#P1,n�1, P1,n, Pn�2,2# . . .#P1,n�1i
= hTn�1, 2n� 3, Tn�1i .

For n = 2, we have T2 = h1i which we designate as hT1, 1, T1i.

Theorem 25 (Mirroring of the Stern–Brocot continued fraction). For n >
1, let

Hn =
1

n� !n
, where

!n =
1

2j1 + 1 �
1

2j2 + 1 �
1

2j3 + 1 � · · · �
1

2j2n�1�1 + 1
.

Then

Hn+1 =
1

(n + 1)� !n+1
, where

!n+1 = !n �
1

2n� 1 � !n.

Proof. For i > 0, n > 1, the sequence of partial denominators hbii in Hn is hn, Tni .
From Theorems 21 and 24, for i > 0, n > 1, the sequence of partial denominators
hbii in Hn+1 is

hn + 1, Tn+1i = hn + 1, Tn, 2 (n + 1)� 3, Tni = hn + 1, Tn, 2n� 1, Tni .

The result follows.
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Remark 26. Theorem 25 tells us that if we know Hn then all we need to do to
discover Hn+1 is follow three simple steps:

• first add 1 to the denominator of the first term in Hn,

• then su�x a new term
�1

2n� 1
,

• then su�x the terms represented by �!n.

Example 27. Find H4 by mirroring of H3. Answer: From Theorem 25,

H3 =
1

3� !3
=

1
3 �

1
1 �

1
3 �

1
1
.

That is,

!3 =
1
1 �

1
3 �

1
1
.

Hence,

!4 = !3 �
1
3 � !3.

And so,

H4 =
1

4� !4

=
1
4 � !3 �

1
5 � !3

=
1
4 �

1
1 �

1
3 �

1
1 �

1
5 �

1
1 �

1
3 �

1
1
.

Equivalently, repeatedly using Theorem 24,

T4 = hT3, 5, T3i = hT2, 3, T2, 5, T2, 3, T2i = h1, 3, 1, 5, 1, 3, 1i

Accordingly the sequence of partial denominators hbii in H4 is

h4, 1, 3, 1, 5, 1, 3, 1i

and so
H4 =

1
4 �

1
1 �

1
3 �

1
1 �

1
5 �

1
1 �

1
3 �

1
1
.

Example 28. What is the 3rd entry in the 5th level of the Stern–Brocot tree?
Answer: The 3rd entry in the 5th level of the tree is the (2 · 3� 1)th, that is, the
5th approximant of H5. By Theorem 24, using mirroring,

T2 = h1i
T3 = h1, 3, 1i
T4 = h1, 3, 1, 5, 1, 3, 1i .
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From Theorem 21, the 5th approximant of H5 is

1
5 �

1
1 �

1
3 �

1
1 �

1
5

=
3
8
.

Notice that we did not have to produce T5 in this example. We only needed to find
the first n for which Tn has cardinality at least 4. This we obtained with T4.

5. Diagonals

Continued fraction expansions exist to represent branches and diagonals [3], but
these expansions are not based on the Stern–Brocot continued fraction. We now
apply the Stern–Brocot continued fraction to determine continued fraction expres-
sions for diagonals in the tree.

Definition 29. (Left and Right Diagonals). We make the following definitions:
Left diagonals: The sequence of kth terms from the left, of successive levels of the
Stern–Brocot tree is called the kth left diagonal and is represented as Lk.

Right diagonals: The sequence of kth terms from the right, of successive levels of
the Stern–Brocot tree is called the kth right diagonal and is represented as Rk.

Theorem 30 (Diagonal sequences). For t = 1, 2, 3, . . .

Lk =
⌧

1
dlog2 ke+ t� !k

�1
t=1

Rk = hdlog2 ke+ t� !ki1t=1

where
!k =

1
2j1 + 1 �

1
2j2 + 1 �

1
2j3 + 1 � · · · �

1
2j2(k�1) + 1

.

Proof. We have
i) Lk : By Definition 1, the first appearance of a kth term, from the left in a level

of the tree, appears in level
dlog2 ke+ 1.

Let p/q be the second term in Lk. Then by Definition 1, p/q is the first appearance
of a kth term, from the left of a level, in the left half of the tree. It therefore appears
in level

dlog2 ke+ 2.

By Definition 3, the kth term in this level must therefore be the (2k � 2)th approx-
imant of

Hdlog2 ke+2.
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Then by Theorem 12,

p

q
=

1
dlog2 ke+ 2 �

1
2j1 + 1 �

1
2j2 + 1 �

1
2j3 + 1 � · · · �

1
2j2(k�1) + 1

,

and subsequent terms in Lk must be, for t = 1, 2, 3, · · ·
1

dlog2 ke+ 2 + t �
1

2j1 + 1 �
1

2j2 + 1 �
1

2j3 + 1 � · · · �
1

2j2(k�1) + 1
.

But Remark 26 tells us that the first term in Lk must then be

1
dlog2 ke+ 1 �

1
2j1 + 1 �

1
2j2 + 1 �

1
2j3 + 1 � · · · �

1
2j2(k�1) + 1

.

The result follows.
ii) Rk : By Theorem 5, the element of Rk in level m is the reciprocal of the

element of Lk in level m. The result follows.

Example 31. For t = 1, 2, 3, · · · and k = 3, we have

!3 =
1
1 �

1
3 �

1
1 �

1
5

=
7
3
.

Thus

L3 =
⌧

1
dlog2 3e+ t� 7

3

�1
t=1

=
⌧

3
3t� 1

�1
t=1

=
⌧

3
2
,
3
5
,
3
8
,

3
11

, · · ·
�

and

R3 =
⌧

3t� 1
3

�1
t=1

=
⌧

2
3
,
5
3
,
8
3
,
11
3

, · · ·
�

.

Corollary 32. For t 2 N, n > 1, the first 2n� 1 terms in⌦
dlog2 ne+ t, Tdlog2 ne+2

↵
represents the sequence of partial denominators hbii in the continued fraction of the
tth entry of Ln.

Proof. The result follows from Theorem 30 and Definition 20 where we note that
Tk has cardinality 2k�1 � 1 and dlog2 ne + 2 is the smallest value of k for which
2k�1 � 1 � 2n� 1.
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6. Branches

The Stern–Brocot tree possesses branches. In fact, the entire tree could be depicted
as a series of branches whereby each term, except 0/1 and 1/0, appears on both a
left and a right branch. Branches in the left half of the tree are analogous to clusters
in the iterated Gauss map [1]. This suggests that features of the Gauss map can
be derived through an understanding of Stern–Brocot branches. Our goal is to
determine a continued fraction whose successive approximants represent successive
terms in branches of the Stern–Brocot tree. First we require some definitions and
results. Proofs for results can be found at [5].

Definition 33. (Left and Right Branches). In the Stern–Brocot tree, the set
of all terms possessing a common parent µ in which all terms are

1. smaller than µ, is called the left branch of µ, and is represented as BL(µ);

2. greater than µ, is called the right branch of µ, and is represented as BR(µ)

We also define the augmented left and right branches respectively, as

B0L(µ) =
⌧

0
1
,BL(µ)

�
and B0R(µ) =

⌧
0
1
,BR(µ)

�
.

It follows that each term in the tree, except for those found in level 0, belongs
to two branches - the left branch of one parent and the right branch of the other
parent. The following theorem is found in [5].

Theorem 34 (Branch sequences). Let r/m and c/d, where r/m < c/d, be the
parents of µ. Then for i = 1, 2, 3, . . . ,

i) the left branch of µ is

BL(µ) =
⌧

(i + 1) r + ic

(i + 1)m + id

�1
i=1

,

ii) the right branch of µ is

BR(µ) =
⌧

ir + (i + 1) c

im + (i + 1) d

�1
i=1

.

Example 35. The parents of 5/8 are 3/5 and 2/3. Accordingly,

BL( 5
8 ) =

⌧
(i + 1) 3 + i2
(i + 1) 5 + i3

�1
i=1

=
⌧

8
13

,
13
21

,
18
29

,
23
37

, · · ·
�

and

BR( 5
8 ) =

⌧
i3 + (i + 1) 2
i5 + (i + 1) 3

�1
i=1

=
⌧

7
11

,
12
19

,
17
27

,
22
35

, · · ·
�

.
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Corollary 36. Terms in BL(µ) and BR(µ) have limit µ.

Proof. By Theorem 34,

lim
i!1

(i + 1) r + ic

(i + 1)m + id
= lim

i!1

ir + (i + 1) c

im + (i + 1) d
=

r + c

m + d
= µ.

We now discover a continued fraction whose approximants represent successive
terms in left branches and another similar continued fraction whose approximants
represent successive terms in right branches.

Theorem 37 (Branch continued fraction). Let r/m and c/d, where r/m < c/d,
be the parents of µ. Then for i > 0, we have the following:

i) The ith term in the left branch of µ represents the ith approximant of the
continued fraction

2r + c

2m + d �
1

2r+c
3r+2c
2r+c

�
1
2 �

1
2 �

1
2 � · · · (4)

ii) The ith term in the right branch of µ represents the ith approximant of the
continued fraction

r + 2c
m + 2d +

1
r+2c
2r+3c
r+2c

�
1
2 �

1
2 �

1
2 � · · · (5)

Proof. We prove the result for left branches. The proof for right branches proceeds
identically. Let

B0L(µ) =
⌧

Ai

Bi

�1
i=0

where, from Definition 2 and Theorem 34,

hAii1i=0 = h0, 2r + c, 3r + 2c, 4r + 3c, . . .i and
hBii1i=0 = h1, 2m + d, 3m + 2d, 4m + 3d, . . .i .

We now show that
hAii1i=0 and hBii1i=0

satisfy the two necessary and su�cient conditions of Theorem 10 that allow us to
formulate a continued fraction whose approximants represent B0L(µ). If µ is on level
n, say, of the tree, then by Definition 2, r/m and c/d must be consecutive terms in
Hn�1. Thus by Theorem 4, rd�mc = �1, and by (2),

i) �i =
⇢

� (2r + c) , for i = 1
�1, for i > 1 , and

ii) B0 = 1.
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Accordingly, using our continued fraction notation, we have by Theorem 10,

b0 = A0 = 0,

b1 = B1 = 2m + d, a1 = A1 �A0B1 = 2r + c,

bi = Ai�2Bi�Bi�2Ai

�i�1
for i � 2, ai = � �i

�i�1
for i � 2

That is, That is,

bi =
⇢

3r+2c
2r+c , for i = 2
2, for i > 2 ai =

⇢ �1
2r+c , for i = 2
�1, for i > 2 .

Thus successive approximants of the continued fraction

2r + c

2m + d �
1

2r+c
3r+2c
2r+c

�
1
2 �

1
2 �

1
2 � · · ·

represent successive terms in B0L(µ). The result follows.

Example 38. The terms 3/5 and 2/3 are the parents of 5/8. By Theorem 37, for
i > 0, the ith term in the left branch of 5/8 is the ith approximant of the continued
fraction

8
13 �

1
8
13
8

�
1
2 �

1
2 �

1
2 � · · ·

That is,
A1
B1

= 8
13

A2
B2

= 8
13� 1

13
= 13

21

A3
B3

= 8

13�
1
8

13
8 �

1
2

= 18
29

A4
B4

= 8

13�
1
8

13
8 �

1
2� 1

2

= 23
37

and so on. These correspond to terms in BL( 5
8 ) (see Example 35).

Similarly, for i > 0, the ith term in the right branch of 5/8 is the ith approximant
of the continued fraction

7
11 +

1
7
12
7

�
1
2 �

1
2 �

1
2 � · · ·
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That is,
A1
B1

= 7
11

A2
B2

= 7
11+ 1

12
= 12

19

A3
B3

= 7

11+
1
7

12
7 �

1
2

= 17
27

A4
B4

= 7

11+
1
7

12
7 �

1
2� 1

2

= 22
35

and so on. These correspond to terms in BR( 5
8 ) (see Example 35).

Corollary 39. Let r/m and c/d be consecutive terms in a Stern–Brocot sequence.
Then

r + c

m + d

can be represented through two similar continued fractions:

i)
r + c

m + d
=

2r + c

2m + d �
1

2r+c
3r+2c
2r+c

�
1
2 �

1
2 �

1
2 � · · · ,

ii)
r + c

m + d
=

r + 2c
m + 2d +

1
r+2c
2r+3c
r+2c

�
1
2 �

1
2 �

1
2 � · · ·

Proof. Let µ have parents r/m and c/d, such that µ = r+c
m+d . The result follows by

Theorem 37 and Corollary 36.

Corollary 40. Let r/m and c/d, where r/m < c/d, be the parents of µ. Then we
have the following:

i) Successive approximants of the following continued fraction expansions are
identical

a)
1

2r + c

 
2m + d�

1
2r+c
3r+2c
2r+c

�
1
2 �

1
2 �

1
2 � · · ·

!

b)
2m + d

2r + c +

1
2m+d
3m+2d
2m+d

�
1
2 �

1
2 �

1
2 � · · ·

ii) Successive approximants of the following continued fraction expansions are
identical
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a)
1

r + 2c

 
m + 2d +

1
r+2c
2r+3c
r+2c

�
1
2 �

1
2 �

1
2 � · · ·

!

b)
m + 2d
r + 2c �

1
m+2d
2m+3d
m+2d

�
1
2 �

1
2 �

1
2 � · · ·

iii) All continued fraction expansions in i) and ii) are equivalent to 1/µ.

Proof. We have
i) a): By Theorem 5 the right branch of 1/µ is formed from reciprocals of

successive terms in the left branch of µ. Thus the reciprocal of (4) is the continued
fraction whose successive approximants represent the right branch of 1/µ.

i) b) is the right branch of 1/µ by (5) where we have substituted d/c and m/r
as consecutive terms in a Stern–Brocot sequence such that

1
µ

=
d + m

c + r
.

ii) a): By Theorem 5 the left branch of 1/µ is formed from reciprocals of suc-
cessive terms in the right branch of µ. Thus the reciprocal of (5) is the continued
fraction whose successive approximants represent the left branch of 1/µ.

ii) b) is the left branch of 1/µ by (4) where we have substituted d/c and m/r as
consecutive terms in a Stern–Brocot sequence such that

1
µ

=
d + m

c + r
.

iii) All the expressions in i) and ii) refer to either right or left branches of 1/µ.
Each of their limits is 1/µ by Corollary 36.

7. O↵set Branches

We now explore generalized branches of the Stern–Brocot tree - one for which left
and right branches are particular cases. These are called o↵set branches and our
branches developed in the previous section are found to be o↵set branches possessing
zero o↵set. Where proofs of results are not shown, these are given at [5].

Definition 41. (O↵set Branches). Let BL(µ) and BR(µ) denote left and right
branches respectively of some term µ in the Stern–Brocot tree.

1. For each term in BL(µ), locate a term found t left movements away. The set
of all these new terms is designated BL(µ),t. We call BL(µ),t the left branch
with o↵set t of µ.
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2. For each term in BR(µ), locate a term found t right movements away. The set
of all these new terms is designated BR(µ),t. We call BR(µ),t the right branch
with o↵set t of µ.

We also define the augmented left and right branches with o↵set t of µ, respec-
tively, as

B0L(µ),t =
⌧

0
1
,BL(µ),t

�
and B0R(µ),t =

⌧
0
1
,BR(µ),t

�
.

It follows from Definition 41 that

BL(µ) = BL(µ),0, and BR(µ) = BR(µ),0.

Example 42.

BL( 1
2 ),2 =

1
5
,

4
11

,
7
17

, . . . and BR( 1
2 ),2 =

4
5
,

7
11

,
10
17

, . . .

The following theorem is found in [5].

Theorem 43. Let r/m and c/d be the parents of µ, with r/m < c/d. Then

BL(µ),t =
⌧

(ti + i + 1) r + (ti + i� t) c

(ti + i + 1)m + (ti + i� t) d

�1
i=1

and

BR(µ),t =
⌧

(ti + i� t) r + (ti + i + 1) c

(ti + i� t)m + (ti + i + 1) d

�1
i=1

.

Corollary 44. The terms in BL(µ),t and BR(µ),t have limit µ.

Proof. By Theorem 43,

lim
i!1

(ti + i + 1) r + (ti + i� t) c

(ti + i + 1)m + (ti + i� t) d
= lim

i!1

(ti + i� t) r + (ti + i + 1) c

(ti + i� t)m + (ti + i + 1) d

=
r + c

m + d
= µ.

Definition 45. (Intra-Branch Cross-Di↵erences) Let r/m and c/d be the ith
and (i + 1)th elements, respectively, in BL(µ),t

�
BR(µ),t

�
. The ith Intra-Branch

Cross-Di↵erence of BL(µ),t

�
BR(µ),t

�
, denoted by DL(µ),t,i

�
DR(µ),t,i

�
, is given by

mc� rd.

The following theorem is found in [5].
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Theorem 46. For all i and µ,

DL(µ),t,i = DR(µ),t,i = (t + 1)2 .

We are now able to state the main result for o↵set branches.

Theorem 47 (O↵set Branch continued fraction). Let r/m and c/d be the
parents of µ, with r/m < c/d. Then for i > 0,

1. The ith term in BL(µ),t is the ith approximant of the continued fraction

(t + 2) r + c

(t + 2)m + d �

(t+1)2

(t+2)r+c

(2t+3)r+(t+2)c
(t+2)r+c

�
1
2 �

1
2 �

1
2 � · · · ,

2. The ith term in BR(µ),t is the ith approximant of the continued fraction

r + (t + 2) c

m + (t + 2) d +

(t+1)2

r+(t+2)c

(t+2)r+(2t+3)c
r+(t+2)c

�
1
2 �

1
2 �

1
2 � · · ·

Proof. The proof is similar to that given for Theorem 37. We prove the result
for left branches with o↵set t. The proof for right branches with o↵set t proceeds
identically.

Let
B0L(µ),t =

⌧
Ai

Bi

�1
i=0

where, from Definition 41 and Theorem 43,

hAii1i=0 = h0, (t + 2) r + c, (2t + 3) r + (t + 2) c, . . .i and
hBii1i=0 = h1, (t + 2)m + d, (2t + 3)m + (t + 2) d, . . .i .

We now show that hAii1i=0 and hBii1i=0 satisfy the two necessary and su�cient
conditions of Theorem 10 that allow us to formulate a continued fraction whose
approximants represent B0L(µ),t. If µ is on level n, say, of the tree, then by Definition
2, r/m and c/d must be consecutive terms in Hn�1. Thus by Theorem 4,

rd�mc = �1.

By (2) and Theorem 46,

i) �i =
⇢

� ((2 + t) r + c) , for i = 1
� (t + 1)2 , for i > 1

, and

ii) B0 = 1.



INTEGERS: 14 (2014) 22

Accordingly, by Theorem 10,

b0 := A0 = 0,

b1 := B1 = (2 + t)m + d, a1 := A1 �A0B1 = (2 + t) r + c,

bi := Ai�2Bi�Bi�2Ai

�i�1
for i � 2. ai := � �i

�i�1
for i � 2.

That is, That is,

bi =

(
(2t+3)r+(t+2)c

(t+2)r+c , for i = 2
2, for i > 2

. ai =

(
�(t+1)2

(t+2)r+c , for i = 2
�1, for i > 2

.

Thus successive approximants of the continued fraction

(t + 2) r + c

(t + 2)m + d �

(t+1)2

(t+2)r+c

(2t+3)r+(t+2)c
(t+2)r+c

�
1
2 �

1
2 �

1
2 � · · ·

represent successive terms in B0L(µ),t. The result follows.

It is a simple exercise to extend Corollaries 39 and 40 to obtain results for o↵set
branches.

8. Further Developments

We have shown how the Stern–Brocot tree and sequence can be expressed in terms
of a simple continued fraction. We have also extended this idea to include continued
fraction expansions for Stern–Brocot branches and diagonals. There are two areas
that the interested reader may choose to explore:

• Can these ideas be extended to other binary trees, particularly the Calkin–
Wilf tree, or even to n�ary trees?

• Since branches in the left half of the Stern–Brocot tree are analogous to clus-
ters in the iterated Gauss map, what parts of the iterated or generalized Gauss
map, if any, are analogous to o↵set branches in the Stern–Brocot tree?
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INTEGERS: 14 (2014) 23

References

[1] B.P. Bates, M.W. Bunder, K.P. Tognetti, Linkages between the Gauss map and the Stern-
Brocot tree, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 22 (2006), 217–235.
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