IRRATIONAL NUMBERS ASSOCIATED TO SEQUENCES WITHOUT GEOMETRIC PROGRESSIONS

Melvyn B. Nathanson
Department of Mathematics, Lehman College (CUNY), Bronx, New York
melvyn.nathanson@lehman.cuny.edu
Kevin O'Bryant
Department of Mathematics, College of Staten Island (CUNY), Staten Island, New York
kevin@member.ams.org

Received: 7/30/13, Revised: 12/11/13, Accepted: 5/17/14, Published: 8/11/14

Abstract

Let s and k be integers with $s \geq 2$ and $k \geq 3$. Let $g_{k}^{(s)}(n)$ denote the cardinality of the largest subset of the set $\{1,2, \ldots, n\}$ that contains no geometric progression of length k whose common ratio is a power of s. Let $r_{k}(\ell)$ denote the cardinality of the largest subset of the set $\{0,1,2, \ldots, \ell-1\}$ that contains no arithmetric progression of length k. It is proved that the limit $$
\lim _{n \rightarrow \infty} \frac{g_{k}^{(s)}(n)}{n}=(s-1) \sum_{m=1}^{\infty}\left(\frac{1}{s}\right)^{\min \left(r_{k}^{-1}(m)\right)}=\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{\infty} \frac{r_{k}(\ell)}{s^{\ell}}
$$

exists and is an irrational number.

1. Maximal Subsets Without Geometric Progressions

Let \mathbf{N} and \mathbf{N}_{0} denote the sets of positive integers and nonnegative integers, respectively. For every real number x, the integer part of x, denoted $[x]$, is the unique integer n such that $n \leq x<n+1$.

Let $s \geq 2$ be an integer. Every positive integer a can be written uniquely in the form

$$
a=b s^{v}
$$

where b is a positive integer not divisible by s and v is a nonnegative integer. If G is a finite geometric progression of length k whose first term is the positive integer a and whose common ratio is a positive integral power of s, say, s^{d} with $d \in \mathbf{N}$,
then

$$
G=\left\{a\left(s^{d}\right)^{j}: j=0,1, \ldots, k-1\right\} .
$$

Writing a in the form $a=b s^{v}$ with b not a multiple of s, we have

$$
\begin{equation*}
G=\left\{b s^{v+d j}: j=0,1, \ldots, k-1\right\} \subseteq\left\{b s^{i}: i \in \mathbf{N}_{0}\right\} \tag{1}
\end{equation*}
$$

and so the set of exponents of s in the finite geometric progression G is the finite arithmetic progression $\{v+d j: j=0,1, \ldots, k-1\}$. Conversely, if $a, d \in \mathbf{N}$ and $\left\{v_{1}+d j: j=0,1, \ldots, k-1\right\}$ is a finite arithmetic progression of k nonnegative integers, then $\left\{a s^{v_{1}+d j}: j=0,1, \ldots, k-1\right\}$ is a geometric progression of length k. Writing $a=b s^{v_{0}}$ with $v_{0} \in \mathbf{N}_{0}$ and b not divisible by s, we obtain $\left\{a s^{v_{1}+d j}: j=\right.$ $0,1, \ldots, k-1\}=\left\{b s^{v+d j}: j=0,1, \ldots, k-1\right\}$, where $v=v_{0}+v_{1}$.

Let ℓ and k be positive integers with $k \geq 3$. Let $r_{k}(\ell)$ denote the cardinality of the largest subset of the set $\{0,1,2, \ldots, \ell-1\}$ that contains no arithmetic progression of length k. Because the geometric progression $\left(2^{i}\right)_{i=0}^{\infty}$ contains no 3-term arithmetic progression, it follows that

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} r_{k}(\ell)=\infty \tag{2}
\end{equation*}
$$

Note that $r_{k}(\ell)=\ell$ for $\ell=1, \ldots, k-1$, that $r_{k}(k)=k-1$, and that, for every $\ell \in \mathbf{N}$, there exists $\varepsilon_{\ell} \in\{0,1\}$ such that

$$
\begin{equation*}
r_{k}(\ell+1)=r_{k}(\ell)+\varepsilon_{\ell} \tag{3}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
0 \leq r_{k}(\ell+1)-r_{k}(\ell) \leq 1 \tag{4}
\end{equation*}
$$

It follows from (2) and (4) that the function $r_{k}: \mathbf{N} \rightarrow \mathbf{N}$ is increasing and surjective. This implies that, for every positive integer m, the set

$$
r_{k}^{-1}(m)=\left\{\ell \in \mathbf{N}: r_{k}(\ell)=m\right\}
$$

is a nonempty set of consecutive integers. We define

$$
u_{m}=\min \left(r_{k}^{-1}(m)\right)
$$

Then $\left(u_{m}\right)_{m=1}^{\infty}$ is a strictly increasing sequence of positive integers.
Lemma 1. Let $k \geq 3$ and let $u_{m}=\min \left(r_{k}^{-1}(m)\right)$ for $m \in \mathbf{N}$. Then

$$
\limsup _{m \rightarrow \infty}\left(u_{m+1}-u_{m}\right)=\infty
$$

Proof. We use Szemerédi's theorem, which states that $r_{k}(\ell)=o(\ell)$, to prove that the increasing sequence $\left(u_{m}\right)_{m=1}^{\infty}$ has unbounded gaps.

Note that $u_{1}=1$. If $\lim \sup _{m \rightarrow \infty}\left(u_{m+1}-u_{m}\right)<\infty$, then there is an integer $c \geq 2$ such that $u_{m+1}-u_{m}<c$ for all $m \in \mathbf{N}$. It follows that

$$
\begin{aligned}
\max \left(r_{k}^{-1}(m)\right)+1 & =\min \left(r_{k}^{-1}(m+1)\right) \\
& =u_{m+1} \\
& =\sum_{i=1}^{m}\left(u_{i+1}-u_{i}\right)+u_{1} \\
& <c m+1
\end{aligned}
$$

Thus, $\max \left(r_{k}^{-1}(m)\right)<c m$ and so $r_{k}(c m)>m$. Equivalently,

$$
\frac{r_{k}(c m)}{c m}>\frac{1}{c}>0
$$

for all $m \in \mathbf{N}$. This contradicts Szemerédi's theorem, and completes the proof.
For $k \geq 3$, let $g_{k}(n)$ denote the cardinality of the largest subset of the set $\{1,2, \ldots, n\}$ that contains no geometric progression of length k. This function, introduced by Rankin [4], has been investigated by M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss [1], by Brown and Gordon [2], and by Riddell [5]. The best upper bound for the function $g_{k}(n)$ is due to Nathanson and O'Bryant [3].

For $s \geq 2$ and $k \geq 3$, let $g_{k}^{(s)}(n)$ denote the cardinality of the largest subset of the set $\{1,2, \ldots, n\}$ that contains no geometric progression of length k whose common ratio is a power of s. The goal of this paper is to prove that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g_{k}^{(s)}(n)}{n}=(s-1) \sum_{m=1}^{\infty}\left(\frac{1}{s}\right)^{\min \left(r_{k}^{-1}(m)\right)}=\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{\infty} \frac{r_{k}(\ell)}{s^{\ell}} \tag{5}
\end{equation*}
$$

exists and converges to an irrational number.

2. Maximal Geometric Progression-Free Sets

Lemma 2. Let k, s, and n be positive integers with $k \geq 3$ and $s \geq 2$, and let

$$
\mathcal{B}_{n}=\{b \in\{1,2, \ldots, n\}: s \text { does not divide } b\}
$$

Then

$$
g_{k}^{(s)}(n)=\sum_{b \in \mathcal{B}_{n}} r_{k}\left(1+\left[\log _{s}\left(\frac{n}{b}\right)\right]\right)
$$

Proof. Let $b \in \mathcal{B}_{n}$. For $i \in \mathbf{N}_{0}$, we have $b s^{i} \leq n$ if and only if $0 \leq i \leq \log _{s}(n / b)$. We define

$$
\begin{aligned}
T(b) & =\left\{t \in\{1,2, \ldots, n\}: t=b s^{i} \text { for some } i \in \mathbf{N}_{0}\right\} \\
& =\left\{b s^{i}: i=0,1, \ldots,\left[\log _{s}\left(\frac{n}{b}\right)\right]\right\}
\end{aligned}
$$

Then $b \in T(b)$ and

$$
\{1,2, \ldots, n\}=\bigcup_{b \in \mathcal{B}_{n}} T(b)
$$

is a partition of $\{1,2, \ldots, n\}$ into pairwise disjoint nonempty subsets.
If the set $\{1,2, \ldots, n\}$ contains a finite geometric progression of length k whose common ratio is a power of s, then, by (1), this geometric progression is a subset of $T(b)$ for some $b \in \mathcal{B}_{n}$, and the set of exponents of s is a finite arithmetic progression of length k contained in the set of consecutive integers $\left\{0,1, \ldots,\left[\log _{s}(n / b)\right]\right\}$. It follows that the largest cardinality of a subset of $T(b)$ that contains no k-term geometric progression whose common ratio is a power of s is equal to the largest cardinality of a subset of $\left\{0,1, \ldots,\left[\log _{s}(n / b)\right]\right\}$ that contains no k-term arithmetic progression. This number is

$$
r_{k}\left(1+\left[\log _{s}\left(\frac{n}{b}\right)\right]\right)
$$

If A_{n} is a subset of $\{1,2, \ldots, n\}$ of maximum cardinality that contains no k-term geometric progression whose common ratio is a power of s, then

$$
\left|A_{n} \cap T(b)\right|=r_{k}\left(1+\left[\log _{s}\left(\frac{n}{b}\right)\right]\right) .
$$

Because $A=\bigcup_{b \in \mathcal{B}_{n}} T(b)$ is a partition of $\{1, \ldots, n\}$, it follows that

$$
\left|A_{n}\right|=\sum_{b \in \mathcal{B}_{n}}\left|A_{n} \cap T(b)\right|=\sum_{b \in \mathcal{B}_{n}} r_{k}\left(1+\left[\log _{s}\left(\frac{n}{b}\right)\right]\right)
$$

This completes the proof.

3. Construction of an Irrational Number

Lemma 3. Let s be an integer with $s \geq 2$. Let x and y be real numbers with $x<y$. The number of integers n such that $x<n \leq y$ and s does not divide n is

$$
\left(\frac{s-1}{s}\right)(y-x)+O(1)
$$

Proof. This is a straightforward calculation.

Theorem 1. Let k and s be integers with $k \geq 3$ and $s \geq 2$. The limit

$$
\lim _{n \rightarrow \infty} \frac{g_{k}^{(s)}(n)}{n}=\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{\infty} \frac{r_{k}(\ell)}{s^{\ell}}=(s-1) \sum_{m=1}^{\infty}\left(\frac{1}{s}\right)^{\min \left(r_{k}^{-1}(m)\right)}
$$

exists and converges to an irrational number.
Proof. For every positive integer b we have

$$
1+\left[\log _{s}(n / b)\right]=\ell
$$

if and only if

$$
\frac{n}{s^{\ell}}<b \leq \frac{s n}{s^{\ell}}
$$

By Lemma 3, the number of integers in this interval that are also in \mathcal{B}_{n}, that is, are not divisible by s, is

$$
\left(\frac{s-1}{s}\right) \frac{(s-1) n}{s^{\ell}}+O(1)=\frac{n(s-1)^{2}}{s^{\ell+1}}+O(1) .
$$

Let $n \geq s$. Because $1 \in \mathcal{B}_{n}$, we have

$$
L(n)=\max \left\{1+\left[\log _{s}(n / b)\right]: b \in \mathcal{B}_{n}\right\}=1+\left[\log _{s} n\right] \leq 2 \log _{s} n
$$

Also, if $\ell \leq L(n)$, then $r_{k}(\ell) \leq \ell \leq L(n)$. By Lemma 2,

$$
\begin{aligned}
g_{k}^{(s)}(n) & =\sum_{b \in \mathcal{B}_{n}} r_{k}\left(1+\left[\log _{s}(n / b)\right]\right) \\
& =\sum_{\ell=1}^{L(n)} r_{k}(\ell) \times\left|\left\{b \in \mathcal{B}_{n}: \ell=1+\left[\log _{s}(n / b)\right]\right\}\right| \\
& =\sum_{\ell=1}^{L(n)} r_{k}(\ell)\left(\frac{n(s-1)^{2}}{s^{\ell+1}}+O(1)\right) \\
& =\frac{n(s-1)^{2}}{s} \sum_{\ell=1}^{L(n)} \frac{r_{k}(\ell)}{s^{\ell}}+O\left(\sum_{\ell=1}^{L(n)} r_{k}(\ell)\right) \\
& =\frac{n(s-1)^{2}}{s} \sum_{\ell=1}^{L(n)} \frac{r_{k}(\ell)}{s^{\ell}}+O\left(L(n)^{2}\right) \\
& =n\left(\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{L(n)} \frac{r_{k}(\ell)}{s^{\ell}}+O\left(\frac{\log _{s}^{2} n}{n}\right)\right) \\
& =n\left(\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{L(n)} \frac{r_{k}(\ell)}{s^{\ell}}+o(1)\right) .
\end{aligned}
$$

Because $(L(n))_{n=1}^{\infty}$ is an increasing sequence and $\lim _{n \rightarrow \infty} L(n)=\infty$, we have

$$
\lim _{n \rightarrow \infty} \frac{g_{k}^{(s)}(n)}{n}=\lim _{n \rightarrow \infty}\left(\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{L(n)} \frac{r_{k}(\ell)}{s^{\ell}}+o(1)\right)=\frac{(s-1)^{2}}{s} \sum_{\ell=1}^{\infty} \frac{r_{k}(\ell)}{s^{\ell}}
$$

Let $M(n)=r_{k}(L(n))$ and let $u_{m}=\min \left(r_{k}^{-1}(m)\right)$ and $U_{m}=\max \left(r_{k}^{-1}(m)\right)$. Then $M(n) \leq L(n)$ and $U_{m}+1=u_{m+1}$ for $m=1, \ldots, M(n)$. We have

$$
\begin{aligned}
\sum_{\ell=1}^{L(n)} \frac{r_{k}(\ell)}{s^{\ell}}= & \sum_{m=1}^{M(n)-1} m \sum_{\ell \in r_{k}^{-1}(m)} \frac{1}{s^{\ell}}+M(n) \sum_{\ell \in r_{k}^{-1}(M(n)) \cap\{1, \ldots, L(n)\}} \frac{1}{s^{\ell}} \\
= & \sum_{m=1}^{M(n)-1} m \sum_{\ell=u_{m}}^{U_{m}} \frac{1}{s^{\ell}}+M(n) \sum_{\ell=u_{M(n)}}^{L(n)} \frac{1}{s^{\ell}} \\
= & \frac{s}{s-1} \sum_{m=1}^{M(n)-1} m\left(\left(\frac{1}{s}\right)^{u_{m}}-\left(\frac{1}{s}\right)^{U_{m}+1}\right) \\
& +\frac{s}{s-1} M(n)\left(\left(\frac{1}{s}\right)^{u_{M(n)}}-\left(\frac{1}{s}\right)^{L(n)+1}\right) \\
= & \quad \sum_{m=1}^{M(n)-1} m\left(\left(\frac{1}{s}\right)^{u_{m}}-\left(\frac{1}{s}\right)^{u_{m+1}}\right) \\
= & \frac{s}{s-1}\left(\sum_{m=1}^{M(n)} m\left(\frac{1}{s}\right)^{u_{m}}-\sum_{m=2}^{M(n)}(m-1)\left(\frac{1}{s}\right)^{u_{m}}-M(n)\left(\frac{1}{s}\right)^{u_{M(n)}}-\left(\frac{1}{s}\right)^{L(n)+1}\right) \\
= & \frac{s}{s-1} \sum_{m=1}^{M(n)} \frac{1}{s^{u_{m}}}-\frac{1}{s-1}\left(\frac{M(n)}{s^{L(n)}}\right) \\
= & \frac{s}{s-1} \sum_{m=1}^{M(n)} \frac{1}{s^{u_{m}}}+o(1) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{g_{k}^{(s)}(n)}{n} & =\frac{(s-1)^{2}}{s}\left(\frac{s}{s-1} \sum_{m=1}^{M(n)}\left(\frac{1}{s}\right)^{u_{m}}+o(1)\right)+o(1) \\
& =(s-1) \sum_{m=1}^{M(n)}\left(\frac{1}{s}\right)^{u_{m}}+o(1)
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty} \frac{g_{k}^{(s)}(n)}{n}=\sum_{m=1}^{\infty} \frac{s-1}{s^{u_{m}}}
$$

Note that $u_{1}=1$. The infinite series converges to a real number $\theta_{s} \in(1-1 / s, 1)$, and the "decimal digits to base s " of θ_{s} are 0 or $s-1$. The number θ_{s} is rational if and only if these digits are eventually periodic, but Lemma 1 implies that there are unbounded gaps between successive digits equal to 1 . Therefore, θ is irrational. This completes the proof.

4. Two Remarks

The irrationality statement in Theorem 1 is a special case of the following observation.

Theorem 2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be an unbounded sequence of positive integers such that $0 \leq a_{n}-a_{n-1} \leq s-1$ for all $n \geq 2$. If $a_{n}=o(n)$, then, for every integer $s \geq 2$, the real number $\sum_{n=1}^{\infty} a_{n} / s^{n}$ is irrational.

Proof. Let $\varepsilon_{1}=a_{1}$ and let $\varepsilon_{n}=a_{n}-a_{n-1}$ for $n \geq 2$. Then $\varepsilon_{n} \geq 0$ and $a_{n}=\sum_{i=1}^{n} \varepsilon_{i}$ for all $n \geq 2$.

Suppose there exist positive integers c and n_{0} such that $a_{n+c}-a_{n} \geq 1$ for all $n \geq n_{0}$. It follows that for every positive integer k we have

$$
a_{n_{0}+k c}=a_{n_{0}}+\sum_{i=1}^{k}\left(a_{n_{0}+i c}-a_{n_{0}+(i-1) c}\right) \geq a_{n_{0}}+k
$$

and so

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\lim _{k \rightarrow \infty} \frac{a_{n_{0}+k c}}{n_{0}+k c} \\
& \geq \liminf _{k \rightarrow \infty} \frac{a_{n_{0}}+k}{n_{0}+k c} \geq \liminf _{k \rightarrow \infty} \frac{k}{n_{0}+k c} \\
& =\frac{1}{c}>0
\end{aligned}
$$

which is absurd. Therefore, for every positive integer c there exist infinitely many positive integers n such that

$$
\sum_{i=n+1}^{n+c} \varepsilon_{i}=a_{n+c}-a_{n}=0
$$

and so $\varepsilon_{i}=0$ for $i=n+1, \ldots, n+c$. Thus, the sequence $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ contains arbitrarily long finite sequences of zeros. Because the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is unbounded, it is not
eventually constant, and so $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is not eventually zero. It follows that $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is not eventually periodic. We have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{a_{n}}{s^{n}} & =\sum_{n=1}^{\infty} \frac{1}{s^{n}} \sum_{i=1}^{n} \varepsilon_{i} \\
& =\sum_{i=1}^{\infty} \varepsilon_{i} \sum_{n=i}^{\infty} \frac{1}{s^{n}} \\
& =\frac{s}{s-1} \sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{s^{i}}
\end{aligned}
$$

Because $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is the sequence of "decimal digits to base s " of $\sum_{i=1}^{\infty} \varepsilon_{i} s^{-i}$ and because $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is not eventually periodic, it follows that $\sum_{n=1}^{\infty} a_{n} s^{-n}$ is irrational.

We define the function $\hat{g}_{k}^{(s)}(n)$ as the cardinality of the largest subset of $\{1,2, \ldots, n\}$ that contains no geometric progression of length k with common ratio s. Recall that $\mathcal{B}_{n}=\{b \in\{1,2, \ldots, n\}: s$ does not divide $b\}$.

Theorem 3. Let $s \geq 2$ and $k \geq 3$ be integers, and let Y^{*} be the set of all integers in $\{1, \ldots, n\}$ of the form $b s^{q k-1}$ with $b \in \mathcal{B}_{n}$ and $q \in \mathbf{N}$. Then $X^{*}=\{1, \ldots, n\} \backslash Y^{*}$ contains no k-term geometric progression with common ratio s, and

$$
\begin{equation*}
\hat{g}_{k}^{(s)}(n)=\left|X^{*}\right| \tag{6}
\end{equation*}
$$

Moreover,

$$
\lim _{n \rightarrow \infty} \frac{\hat{g}_{k}^{(s)}(n)}{n}=\frac{s^{k}-s}{s^{k}-1}
$$

Proof. Every k-term geometric progression of positive integers with common ratio s is of the form $\left\{b s^{v+i}: i=0,1, \ldots, k-1\right\}$ for some $b \in \mathcal{B}_{n}$ and $v \in \mathbf{N}_{0}$, and so the set of exponents of s is a complete system of residues modulo k, hence contains an integer congruent to $k-1$ modulo k. It follows that the set

$$
\begin{equation*}
X^{*}=\left\{b s^{q k-i} \in\{1, \ldots, n\}: b \in \mathcal{B}_{n}, q \in \mathbf{N}, \text { and } i \in\{2,3, \ldots, k\}\right\} \tag{7}
\end{equation*}
$$

contains no k-term geometric progression with common ratio s.
Let X_{0} be any subset of $\{1, \ldots, n\}$ that contains no k-term geometric progression with common ratio s. We shall prove that $\left|X_{0}\right| \leq\left|X^{*}\right|$. For each $b \in \mathcal{B}_{n}$, the set X_{0} does not contain the geometric progression $\left\{b s^{k-i}: i=1,2, \ldots, k\right\}$. It follows that the set

$$
X_{1}=\left(X_{0} \cup\left\{b s^{k-i}: i=2,3, \ldots, k\right\}\right) \backslash\left\{b s^{k-1}: b \in \mathcal{B}_{n}\right\}
$$

also contains no k-term geometric progression with common ratio s. Moreover, $\left|X_{1}\right| \geq\left|X_{0}\right|$.

For $q \in \mathbf{N}$, let X_{q} be a subset of $\{1, \ldots, n\}$ such that
(i) X_{q} contains no k-term geometric progression with common ratio s,
(ii)

$$
\bigcup_{q^{\prime}=1}^{q}\left\{b s^{q^{\prime} k-i}: i=2,3, \ldots, k\right\} \subseteq X_{q}
$$

(iii)

$$
\left\{b s^{q^{\prime} k-1}: q^{\prime}=1, \ldots, q\right\} \cap X_{q}=\emptyset
$$

If $b s^{(q+1) k-1}>n$, let

$$
X_{q+1}=\left(X_{q} \cup\left\{b s^{(q+1) k-i}: i=2,3, \ldots, k\right\}\right) \cap\{1, \ldots, n\}
$$

If $b s^{(q+1) k-1} \leq n$, let

$$
X_{q+1}=\left(X_{q} \cup\left\{b s^{(q+1) k-i}: i=2,3, \ldots, k\right\}\right) \backslash\left\{b s^{(q+1) k-1}\right\}
$$

In both cases, the set X_{q+1} contains no k-term geometric progression with common ratio s, and $\left|X_{q+1}\right| \geq\left|X_{q}\right|$. Continuing inductively, we obtain the set $X^{*}(b) \subseteq$ $\{1,2, \ldots, n\}$ such that
(i) $X^{*}(b)$ contains no k-term geometric progression with common ratio s,
(ii) $n^{\prime} \in X^{*}(b)$ if $n^{\prime} \in\{1,2, \ldots, n\}$ and $n^{\prime}=b s^{q k-i}$ for some $q \in \mathbf{N}$ and $i \in$ $\{2,3, \ldots, k\}$,
(iii) $b s^{q k-1} \notin X^{*}(b)$ for all $q \in \mathbf{N}$,
(iv) $\left|X_{0}\right| \leq\left|X^{*}(b)\right|$.

Iterating this construction with $X_{0}=X^{*}(b)$ and $b^{\prime} \in \mathcal{B}_{n} \backslash\{b\}$, we obtain the set X^{*} defined by (7). The inequality $\left|X_{0}\right| \leq\left|X^{*}\right|$ implies (6).

We shall estimate the cardinality of the set

$$
Y^{*}=\{1,2, \ldots, n\} \backslash X^{*}=\left\{b s^{q k-1} \in\{1, \ldots, n\}: b \in \mathcal{B}_{n} \text { and } q \in \mathbf{N}\right\}
$$

If $b s^{q k-1} \in Y^{*}$ and $n \geq s$, then

$$
q \leq \frac{1}{k}\left(\log _{s} n-\log _{s} b+1\right) \leq \log _{s} n
$$

For $q \leq \log _{s} n$, we have $b s^{q k-1} \in\{1, \ldots, n\}$ if s does not divide b and

$$
0<b \leq \frac{n}{s^{q k-1}}
$$

By Lemma 3, the number of such b is

$$
\left(\frac{s-1}{s}\right) \frac{n}{s^{q k-1}}+O(1)=\frac{(s-1) n}{s^{q k}}+O(1)
$$

and so

$$
\begin{aligned}
\left|Y^{*}\right| & =\sum_{q=1}^{\left[\log _{s} n\right]} \frac{(s-1) n}{s^{q k}}+O\left(\log _{s} n\right) \\
& =n(s-1)\left(\sum_{q=1}^{\infty} \frac{1}{s^{q k}}-\sum_{q=\left[\log _{s} n\right]+1}^{\infty} \frac{1}{s^{q k}}\right)+O\left(\log _{s} n\right) \\
& =\frac{n(s-1)}{s^{k}-1}\left(1-\frac{1}{s^{\left[\log _{s} n\right] k}}\right)+O\left(\log _{s} n\right)
\end{aligned}
$$

Therefore

$$
\frac{\left|Y^{*}\right|}{n}=\frac{s-1}{s^{k}-1}+O\left(\frac{1}{n^{k}}\right)+O\left(\frac{\log _{s} n}{n}\right)
$$

and

$$
\begin{aligned}
\frac{\hat{g}_{k}^{(s)}(n)}{n} & =1-\frac{\left|Y^{*}\right|}{n} \\
& =1-\frac{s-1}{s^{k}-1}+O\left(\frac{1}{n^{k}}\right)+O\left(\frac{\log _{s} n}{n}\right) \\
& =\frac{s^{k}-s}{s^{k}-1}+o(n)
\end{aligned}
$$

This completes the proof.

5. Open Problems

1. Let k and s be integers with $k \geq 3$ and $s \geq 2$. Is the number

$$
\lim _{n \rightarrow \infty} \frac{g_{k}^{(s)}(n)}{n}=(s-1) \sum_{m=1}^{\infty}\left(\frac{1}{s}\right)^{\min \left(r_{k}^{-1}(m)\right)}
$$

transcendental?
2. Let $u_{m}=\min \left(r_{k}^{-1}(m)\right)$ for $m \in \mathbf{N}$. Prove that the sequence $\left(u_{m}\right)_{m=1}^{\infty}$ is not eventually periodic without using Szemerédi's theorem.
3. Let s and s^{\prime} be integers with $2 \leq s<s^{\prime}$. Is it true that $g_{k}^{\left(s^{\prime}\right)}(n) \leq g_{k}^{(s)}(n)$ for all $n \in \mathbf{N}$ and that $g_{k}^{\left(s^{\prime}\right)}(n)<g_{k}^{(s)}(n)$ for all sufficiently large integers n ?
4. Let \mathcal{S} be a finite set of integers such that $s \geq 2$ for all $s \in \mathcal{S}$. For $k \geq 3$, let $g_{k}^{(\mathcal{S})}(n)$ denote the cardinality of the largest subset of the set $\{1,2, \ldots, n\}$ that contains no geometric progression of length k whose common ratio is a power of s for some $s \in \mathcal{S}$. Does

$$
\lim _{n \rightarrow \infty} \frac{g_{k}^{(\mathcal{S})}(n)}{n}
$$

exist? If so, can this limit be expressed by an infinite series analogous to (5)?

Acknowledgement We thank the referee for several useful comments.

References

[1] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss, Multiplicative structures in additively large sets, J. Combin. Theory Ser. A 113 (2006), no. 7, 1219-1242.
[2] B. E. Brown and D. M. Gordon, On sequences without geometric progressions, Math. Comp. 65 (1996), no. 216, 1749-1754.
[3] M. B. Nathanson and K. O'Bryant, On sequences without geometric progressions, Integers 13 (2013), \#A73, 1-5.
[4] R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical progression, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/1961), 332-344.
[5] J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J. 10 (1969), 137-146.

