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Abstract
In this note we are interested in the problem of whether or not every increasing
sequence of positive integers x1x2x3 · · · with bounded gaps must contain a double
3-term arithmetic progression, i.e., three terms xi, xj , and xk such that i+ k = 2j
and xi+xk = 2xj . We consider a few variations of the problem, discuss some related
properties of double arithmetic progressions, and present several results obtained
by using RamseyScript, a high-level scripting language.

1. Introduction

In 1987, Tom Brown and Allen Freedman ended their paper titled Arithmetic pro-
gressions in lacunary sets [3] with the following conjecture.

Conjecture 1. Let (xi)i≥1 be a sequence of positive integers with 1 ≤ xi ≤ K.
Then there are two consecutive intervals of positive integers I, J of the same length,
with

∑
i∈I xi =

∑
j∈J xj . Equivalently, if a1 < a2 < · · · satisfy an+1 − an ≤ K, for

all n, then there exist i < j < k such that i+ k = 2j and ai + ak = 2aj.

If true, Conjecture 1 would imply that if the sum of the reciprocals of a set
A = {a1 < a2 < a3 < · · · } of positive integers diverges, and an+1 − an → ∞ as
n → ∞, and there exists K such that ai+1 − ai ≤ aj+1 − aj +K for all 1 ≤ i ≤ j,
then A contains a 3-term arithmetic progression. This is a special case of the famous
Erdős conjecture that if the sum of the reciprocals of a set A of positive integers
diverges, then A contains arbitrarily long arithmetic progressions.

Conjecture 1 is a well-known open question in combinatorics of words and it is
usually stated in the following form:
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Must every infinite word over a finite alphabet consisting of positive
integers contain an additive square, i.e., two adjacent blocks of the same
length and the same sum?

The answer is trivially yes in case the alphabet has size at most 3. For more on this
question see, for example, [2, 5, 7]. Also see [8, 10, 11].

We mention two relatively recent positive results. Freedman [5] has shown that
if a < b < c < d satisfy the Sidon equation a + d = b + c, then every word on
{a, b, c, d} of length 61 contains an additive square. His proof is a clever reduction
of the general problem to several cases that are then checked by computer.

Ardal, Brown, Jungić, and Sahasrabudhe [1] proved that if an infinite word
ω = a1a2a3 · · · has the property that there is a constant M , such that for any
positive integer n the number of possible sums of n consecutive terms in ω does not
exceed M , then for any positive integer k there is a k-term arithmetic progression
{m+ id : i = 0, . . . , k − 1} such that

m+d∑

i=m+1

ai =
m+2d∑

i=m+d+1

ai = · · · =
m+(k−1)d∑

i=m+(k−2)d+1

ai.

The proof of this fact is based on van der Waerden’s theorem [12].

This note is inspired by the second statement in Conjecture 1. Before restating
this part of the conjecture we introduce the following terms.

We say that a sequence of positive integers a1a2a3 · · · is with bounded gaps if
there is a constant K such that

an+1 − an ≤ K

for all positive integers n.

We say that a sequence of positive integers a1a2a3 · · · contains a double k-term
arithmetic progression if there are i, d, and δ such that

ai+jd = ai + jδ

for all j ∈ {0, 1, . . . , k − 1}.

Problem 1. Does every increasing sequence of positive integers with bounded gaps
contain a double 3-term arithmetic progression?

It is straightforward to check that Problem 1 is equivalent to the question above
concerning additive squares: Given positive integers K and a1 < a2 < a3 < · · · ,
with ai+1 − ai ≤ K for all i ≥ 1, let xi = ai+1 − ai, i ≥ 1. Then x1x2x3 · · · is
an infinite word over a finite alphabet of positive integers. Given an infinite word
x1x2x3 · · · over a finite alphabet of positive integers, define a1, a2, a3, . . . recursively
by a1 ∈ N, ai+1 = xi + ai, i ≥ 1. Then a1 < a2 < a3 < · · · , and ai+1 − ai ≤ K for
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some K and all i ≥ 1. In both cases, an additive square in x1x2x3 · · · corresponds
exactly to a double 3-term arithmetic progression in a1 < a2 < a3 < · · · .

The existence of an infinite word on four integers with no additive cubes, i.e.,
with no three consecutive blocks of the same length and the same sum, established
by Cassaigne, Currie, Schaeffer, and Shallit [4], translates into the fact that there
is an increasing sequence of positive integers with bounded gaps with no double
4-term arithmetic progression.

But what about a double variation on van der Waerden’s theorem?

Problem 2. If the set of positive integers is finitely coloured, must there exist a
colour class, say A = {a1 < a2 < a3 < · · · } for which there exist i < j < k with
ai + ak = 2aj and i+ k = 2j?

We have just seen that an affirmative answer to Problem 1 gives an affirmative
answer to the question concerning additive squares. It is also true that an affirmative
answer to Problem 1 implies an affirmative answer to Problem 2.

Proposition 1. Assume that every increasing sequence of positive integers
x1x2x3 · · · with bounded gaps contains a double 3-term arithmetic progression. Then
if the set of positive integers is finitely coloured, there must exist a colour class, say
A = {a1 < a2 < a3 < · · · }, which contains a double 3-term arithmetic progression.

Proof. We use induction on the number of colours, denoted by r. For r = 1 the
conclusion trivially follows. Now assume that for every r-coloring of N there exists
a colour class which contains a double 3-term arithmetic progression. By the com-
pactness principle[9, Theorem 2.4] there exists M ∈ N such that every r-coloring of
[1,M ] (or of any translate of [1,M ]) yields a monochromatic double 3-term arith-
metic progression.

Assume now that there is an (r + 1)-coloring of N for which there does not
exist a monochromatic double 3-term arithmetic progression. Let the (r + 1)st
colour class be C(r + 1) = {x1 < x2 < · · · }. By the induction hypothesis on r
colours, C(r + 1) is infinite. By the assumption that every increasing sequence of
positive integers x1x2x3 · · · with bounded gaps contains a double 3-term arithmetic
progression, C(r + 1) does not have bounded gaps. In particular, there is p ≥ 1
such that xp+1 − xp ≥ M + 2. But then the interval [xp + 1, xp+1 − 1] contains a
translate of [1,M ] and is coloured with only r colours, so that [xp+1, xp+1−1] does
contain a monochromatic double 3-term arithmetic progression. This contradiction
completes the proof.

More generally, if the set of positive integers is finitely coloured and if each colour
class is regarded as an increasing sequence, must there be a monochromatic double
k-term arithmetic progression, for a given positive integer k? What if the gaps
between consecutive elements coloured with same colour are pre-prescribed, say at
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most 4 for the first colour, at most 6 for the second colour, and at most 8 for the
third colour, and so on?

In the spirit of van der Waerden’s numbers w(r, k) [6] we define the following.

Definition 1. For given positive integers r and k greater than 1, let w∗(r, k) be
the least integer, if it exists, such that for any r-coloring of the interval [1, w∗(r, k)]
there is a monochromatic double k-term arithmetic progression.

For given positive numbers r, k, a1, a2, . . . , ar let w∗(k; a1, a2, . . . , ar) be the least
integer, if it exists, such that for any r-coloring of the interval [1, w∗(k; a1, a2, . . . , ar)]
= A1 ∪A2 ∪ · · ·∪Ar such that for each i the gap between any two consecutive ele-
ments in Ai is not greater than ai there is a monochromatic double k-term arithmetic
progression.

We will show that w∗(2, 3) is relatively simple to obtain. We will give lower
bounds for w∗(3, 3) and w∗(4, 2) and a table with values of w∗(3; a1, a2, a3) for
various triples (a1, a2, a3) and propose a related conjecture.

We will share with the reader some insights related to the general question about
the existence of double 3-term arithmetic progressions in increasing sequences with
bounded gaps.

Finally, we will describe RamseyScript, a high-level scripting language developed
by the third author that was used to obtain the colorings and bounds that we have
established.

2. w∗(r, 3)

Now we look more closely at w∗(r, 3), the least integer, if it exists, such that for
every r-coloring of the interval [1, w∗(r, 3)] there is a monochromatic double 3-term
arithmetic progression.

Suppose that w∗(r, 3) does not exist for some r, but w∗(r − 1, 3) does exist.
Then, by the Compactness Principle, there is a coloring of the positive integers
with r colours, say with colour classes A1, A2, . . . , Ar, such that no colour class
contains a double 3-term arithmetic progression. Then (a) A1 contains no double
3-term arithmetic progression, (b) A1 has bounded gaps because w∗(r−1, 3) exists,
and (c) A1 is infinite, because w∗(r − 1, 3) exists.

Let d1, d2, . . . be the sequence of consecutive differences of the sequence A1. That
is, if A1 = {a1, a2, a3, . . .} then dn = an−an−1, n ≥ 1. Then the sequence d1, d2, . . .
is a sequence over a finite set of integers which does not contain any additive square.

Thus if there exists r such that w∗(r, 3) does not exist, then there exists a se-
quence over a finite set of integers which does not contain an additive square.

It is conceivable that proving that w∗(r, 3) does not exist for all r (if this is true!)
is easier than directly proving the existence of a sequence over a finite set of integers
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with no additive square.

Theorem 2. w∗(2, 3) = 17.

Proof. Colour [1,m] with two colours, with no monochromatic double 3-term arith-
metic progressions. Then the first colour class must have gaps of either 1, 2, or
3. Thus the sequence of gaps of the first colour class is a sequence of 1s, 2s, and
3s, and this sequence must have length at most 7, otherwise there is an additive
square, which would give a double 3-term arithmetic progression in the first colour
class. Hence, the first colour class can contain at most 8 elements (only 7 con-
secutive differences) and similarly for the second colour class. This shows that
w∗(2, 3) ≤ 8 + 8 + 1 = 17. On the other hand, the following 2-coloring of [1, 16] is
with no monochromatic double 3-term arithmetic progressions:

0010110100101101.

Hence w∗(2, 3) = 17.

Theorem 3. w∗(3, 3) ≥ 414.

The following 3-coloring of [1, 413] avoids monochromatic 3-term double arith-
metic progressions:

0101102210100201200100221221010010220010112011211202210112122112202210
0110010220201122022002202001012212112122001001120121100110020022002110
2001101001121120210020011210201121122112122010110100110102201220201221
1210021122112122112200110011212200202202001212212112212200110010110012
0211212200220100112202200220200122102212211211002101220022001001100221
211010010110020022110010110010221211020220200220221001122011211.

This coloring is the result of about 8 trillion iterations of RamseyScript, using the
Western Canada Research Grid1. We started with a seed 3-coloring of the interval
[1, 61] and searched the entire space of extensions. Figure 1 gives the number of
double 3-AP free extensions of the seed coloring versus their lengths.

To get more information about w∗(3, 3) we define w∗(3, 3; d) to be the smallest
m such that whenever [1,m] is 3-coloured so that each colour class has maximum
gap at most d, then there is a monochromatic double 3-term arithmetic progression.
Our goal was to compute w∗(3; 3; d) for small values of d. (See Table 1.)

We note that w∗(3, 3; d) is already difficult to compute when d is much smaller
than w∗(2, 3) = 17. (In a 3-coloring containing no monochromatic double 3-term
arithmetic progression the maximum gap size of any colour class is 17.)

Freedman [5] showed that there are 16 double 3-AP free 51-term sequences having
the maximum gap of at most 4. The fact that w∗(3, 3; 4) = 39 is an interesting
contrast, and shows that considering a single sequence instead of partitioning an
interval of positive integers into three sequences is somewhat less restrictive.

1http://www.westgrid.ca



INTEGERS: 14 (2014) 6

Figure 1: Number of double 3-AP free extensions versus length

w∗(3, 3; d)

M
ax

ga
p
d

2 11
3 22
4 39
5 100
6 > 152
7 ?

Table 1: Known Values of w∗(3, 3; d)

Theorem 4. w∗(4, 2) ≥ 30830.

Starting with the seed 2-coloring [1, 10] = {1, 4, 6, 7} ∪ {2, 3, 5, 8, 9, 10}, after
2 ·108 iterations RamseyScript produced a double 4-AP free 2-coloring of the inter-
val [1, 30829], available at the web page http://people.math.sfu.ca/∼vjungic/

Double/w-4-2.txt.

3. w∗(3;a, b, c) and w∗(k; a, b)

Recall that w∗(3; a, b, c) is the least number such that every 3-coloring of
[1, w∗(3; a, b, c)], with gap sizes on the three colours restricted to a, b, and c, re-
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spectively, has a monochromatic double 3-term arithmetic progression. Similarly,
w∗(k; a, b) is the least number such that every 2-coloring of [1, w∗(k; a, b)], with gap
sizes on the two colours restricted to a and b, respectively, has a monochromatic
double k-term arithmetic progression.

Table 2 shows values of w∗(3; a, b, c) for some small values of a, b, and c. Table
3 shows values of w∗(k; a, b) for some small values of a, b, and k.

Max Green Gaps
3 4 5 6 7+

M
ax

B
lu
e
G
ap

s 3 22
4 31 31
5 33 38 43
6 33 41 44 45
7 33 41 46 46 46
8+ 33 41 46 46 47

Max Red Gap 3

Max Green
5 6 7 8+

M
ax

B
lu
e 5 100

6 > 113 > 133
7 ? ? ?
8+ ? ? ? ?

Max Red Gap 5

Max Green Gaps
4 5 6 7 8 9+

M
ax

B
lu
e
G
ap

s

4 39
5 49 63
6 56 79 91
7 76 96 >105 >121
8 81 96 >114 >131 >131
9 81 96 >114 >133 >133 >133
10 81 96 >114 >133 >135 >135
11+ 81 97 >114 >133 >135 >135

Max Red Gap 4

Table 2: Known Values and Bounds for w∗(3; a, b, c)

Based on this evidence, we propose the following conjecture.

Conjecture 2. The number w∗(3, 3) exists. The numbers w∗(4, 3) and w∗(2, 4) do
not exist.

Our guess would be that w∗(3, 3) < 500. Also we recall that w∗(2, 3) = 17 and
w∗(4, 2) ≥ 30830.
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Red
2 3

B
lu
e 2 7

3 11 17
Double 3-AP’s

Red
2 3 4+

B
lu
e 2 11

3 22 > 176
4+ 22 > 2690 > 3573

Double 4-AP’s

Red
2 3 4 5+

B
lu
e 2 15

3 37 > 131000
4 > 25503 ? ?
5+ > 33366 ? ? ?

Double 5-AP’s

Table 3: Known Values and Bounds for w∗(k; a, b)

4. Double 3-term Arithmetic Progressions in Increasing Sequences of
Positive Integers

In this section, we return to Problem 1: the existence of double 3-term arithmetic
progressions in infinite sequences of positive integers with bounded gaps.

We remind the reader of the meaning of the following terms from combinatorics
of words.

An infinite word over a finite subset S of Z, called the alphabet, is defined as
a map ω : N → S and is usually written as ω = x1x2 · · · , with xi ∈ S, i ∈ N.
For n ∈ N, a factor B of the infinite word ω of length n = |B| is the image of
a set of n consecutive positive integers by ω, B = ω({i, i + 1, . . . , i + n − 1}) =
xixi+1 · · ·xi+n−1. The sum of the factor B is

∑
B = xi + xi+1 + · · · + xi+n−1. A

factor B = ω({1, 2, . . . , n}) = x1x2 · · ·xn is called a prefix of ω.

Theorem 5. The following statements are equivalent:

(1) For all k > 1, every infinite word on {1, 2, . . . , k} has two adjacent factors
with equal length and equal sum.

(1a) For all k > 1, there exists R = R(k) such that every word on {1, 2, . . . , k} of
length R has two adjacent factors with equal length and equal sum.

(2) For all n > 1, if x1 < x2 < x3 < · · · is an infinite sequence of positive integers
such that xi+1 − xi ≤ n for all i > 1, then there exist 1 ≤ i < j < k such that
xi + xk = 2xj and i+ k = 2j.
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(2a) For all n > 1, there exists S = S(n) such that if x1 < x2 < x3 < · · · < xS are
positive integers with xi+1 − xi ≤ n whenever 1 ≤ i ≤ S − 1, then there exist
1 ≤ i < j < k ≤ S such that xi + xk = 2xj and i+ k = 2j.

(3) For all t > 1, if N = A1∪A2∪· · ·∪At, then there exists q, 1 ≤ q ≤ t, such that
if Aq = {x1 < x2 < · · · }, then there are 1 ≤ i < j < k such that xi+xk = 2xj

and i+ k = 2j.

(3a) For all t > 1, there exists T = T (t) such that for all a > 1, if {a, a+1, . . . , a+
T − 1} = A1 ∪ A2 ∪ · · · ∪ At, then there exists q, 1 ≤ q ≤ t, such that
if Aq = {x1 < x2 < · · · < xp}, then there are 1 ≤ i < j < k such that
x1 + xk = 2xj and i+ k = 2j.

Remark 1. Note that in (3) and (3a) the statements concern coverings and not
partitions (colorings). This turns out to be essential, since if we used colorings in
(3) and (3a) (call these new statements (3’) and (3a’)), then (3’) would not imply
(2), although (2) would still imply (3a’). This can be seen from the proofs below.

Remark 2. In each case i = 1, 2, 3, the statement (ia) is the finite form of the
statement (i).

Proof. We start by proving that (2) implies (2a). (The proof that (1) implies (1a)
follows the same form, and is a little more routine.)

Suppose that (2a) is false. Then there exists n such that for all S > 1 there are
x1 < x2 < x3 < · · · < xS , with xi+1 − xi ≤ n whenever 1 ≤ i ≤ S − 1, such that
there do not exist 1 ≤ i < j < k ≤ S such that xi + xk = 2xj and i + k = 2j.
Replace x1 < x2 < x3 < · · · < xS by its characteristic binary word (of length xS)

BS = b1b2b3 · · · bxS

defined by bi = 1 if i is in {x1, x2, x3, . . . , xS}, and bi = 0 otherwise. Let H be the
(infinite) collection of binary words obtained in this way. Note that if BS is in H ,
then each pair of consecutive 1s in BS is separated by at most n− 1 0s.

Now construct, inductively, an infinite binary word w such that each prefix of
w is a prefix of infinitely many words BS in H in the following way. Let w1 be a
prefix of an infinite set H1 of words in H . Let w1w2 be a prefix of an infinite set
H2 of words in H1. And so on. Set w = w1w2 · · · .

Define x1 < x2 < x3 < · · · so that w is the characteristic word of x1 < x2 <
x3 < · · · and note that xi+1 − xi ≤ n for all i > 1. Now it follows that there
cannot exist 1 ≤ i < j < k with x1 + xk = 2xj and i + k = 2j. (For these i, j, k
would occur inside some prefix of w. But that prefix is itself a prefix of some word
BS = b1b2b3 · · · bS, where there do not exist such i, j, k.) Thus if (2a) is false, (2) is
false.
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Next we prove that (3) implies (3a). Suppose that (3a) is false. Then there exists
t such that for all T there is, without loss of generality, a covering {1, 2, . . . , T } =
A1 ∪ A2 ∪ · · · ∪ At such that there does not exist q with Aq = {x1 < x2 < · · · <
xp} and i < j < k with x1 + xk = 2xj and i + k = 2j. Represent the cover
{1, 2, . . . , T } = A1 ∪ A2 ∪ · · · ∪ At by a word BT = b1b2b3 · · · bT on the alphabet
consisting of the non-empty subsets of {1, 2, . . . , t}. Here for each i, 1 ≤ i ≤ T ,
bi = {the set of p, 1 ≤ p ≤ t, such that i is in Ap}. LetH be the set of all wordsBT

obtained in this way. Construct an infinite word w, on the alphabet consisting of the
non-empty subsets of {1, 2, . . . , t}, such that each prefix of w is a prefix of infinitely
many of the words BT in H . Thus w represents a cover N = A1 ∪ A2 ∪ · · · ∪ At,
where Ai = {j ≥ 1 such that i is in wj}, 1 ≤ i ≤ t, for which there does not exist i,
Ai = {x1 < x2 < · · · }, with 1 ≤ i < j < k such that x1 + xk = 2xj and i+ k = 2j,
contradicting (3).

It is not difficult to show that (1) is equivalent to (2), that (1) is equivalent
to (1a), that (2a) implies (2), and that (3a) implies (3). We have shown that (2)
implies (2a) and that (3) implies (3a).

The final steps are:

Proof that (3) implies (2). If n and A0 = {x1 < x2 < x3 < · · · } are given,
with xi+1 − xi ≤ n for all i > 1, let Ai = A0 + i, 0 ≤ i ≤ n − 1. Then N =
A0 ∪A1 ∪ · · · ∪ An−1, and now (3) implies (2).

Proof that (2) implies (3a). Assume (2), and use induction on t to show that if
N = A0∪A1∪· · ·∪At−1, then there exists q, 0 ≤ q ≤ t−1, with Aq = {x1 < x2 < · · · }
for which there exist i < j < k with xi + xk = 2xj and i+ k = 2j. For t = 1 this is
trivial. Fix t > 1, assume the statement 3a for this t, and let N = A0∪A1∪ · · ·∪At.
If At = {x1 < x2 < · · · } is either finite or there exists n with xi+1 − xi ≤ n for all
i > 1, then we are done by 2.

Otherwise, there are arbitrarily long intervals [a, b] = B which are subsets of
A0 ∪A1 ∪ · · · ∪ At−1, and we are done by the induction hypothesis.

Remark 3. If true, perhaps (3a) can be proved by a method such as van der
Waerden’s proof that any finite coloring of N has a monochromatic 3-AP.

Here is another remark on double 3-term arithmetic progressions.

Theorem 6. The following two statements are equivalent:

(1) For all n ≥ 1, every infinite sequence of positive integers x1 < x2 < · · · such
that xi+1 − xi ≤ n contains a double 3-term arithmetic progression.

(2) For all n ≥ 1, every infinite sequence of positive integers x1 < x2 < · · · such
that xi+1 − xi ≤ n contains a double 3-term arithmetic progression xi, xj , xk

with the property that j − i = k − j ≥ m for any fixed m ∈ N.

Proof. Certainly (2) implies (1). We prove that (1) implies (2).
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Let n and m be given positive integers. Let X = {x1 < x2 < · · · } be an
infinite sequence with gaps from {1, . . . , n}. For j ∈ N we define yj = xjm+1 −
x(j−1)m+1. Note that m ≤ yj ≤ nm. Next we define an increasing sequence
Z = {z1 < z2 < · · · } with gaps from {m,m+ 1, . . . , nm} by

zi =
i∑

j=1

yj =
i∑

j=1

xjm+1 −
i−1∑

j=0

xjm+1.

By (1) the sequence Z contains a double 3-term arithmetic progression zp, zq, zr
with

zr − zq = zq − zp and p+ r = 2q.

It follows that

r∑

j=q+1

xjm+1 −
r−1∑

j=q

xjm+1 =
q∑

j=p+1

xjm+1 −
q−1∑

j=p

xjm+1

and
xrm+1 − xqm+1 = xqm+1 − xpm+1.

From
(pm+ 1) + (rm+ 1) = m(p+ r) + 2 = 2mq + 2 = 2(mq + 1)

we conclude that xpm+1, xqm+1, xrm+1 form a double 3-term arithmetic progression
with gap

rm+ 1− (qm+ 1) = (r − q)m ≥ m.

Since m and X are arbitrary, we conclude that (2) holds.

We wonder if one could get some intuitive “evidence” that it is easier to show
that w∗(3, 3) exists than it is to show that every increasing sequence with gaps
from {1, 2, 3, . . . , 17} has a double 3-term arithmetic progression. The “17” is chosen
because in a 3-coloring of [1,m] which has no monochromatic double 3-AP, the gaps
between elements of this color class are colored with 2 colors, and w∗(2, 3) = 17.

The utility RamseyScript was used for search of an increasing sequence with
gaps from {1, 2, 3, . . . , 17} with no double 3-term arithmetic progressions. The first
search produced a sequence of the length 2207. The histogram with the distribution
of gaps in this sequence is given on Figure 2.

In another attempt we changed the order of gaps in the search, taking

[16, 12, 11, 17, 10, 14, 15, 8, 5, 3, 6, 4, 2, 1, 13, 7, 9]

instead of [1, 2, . . . , 17]. RamseyScript produced a 5234-term double 3-AP free
sequence. The corresponding histogram of gaps is given on Figure 3.

Here are a few conclusion that one can make from this experiment.
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Figure 2: Histogram of Gaps in a 2207-term Double 3-AP Free Sequence

1. Initial choices of the order of gaps matter very much when constructing a dou-
ble 3-AP free sequence, because we cannot backtrack in a reasonable (human)
timespan at these lengths.

2. We do not really know anything about how long a sequence there will be.

3. The search space is very big. Table 4 gives the recursion tree size vs. maximum
sequence length considered.

Max. Sequence Size of Search
0 1
1 18
2 307
3 4931
4 78915
5 1216147
6 18695275
7 278661995
8 ????

Table 4: Recursion Tree Size vs. Maximum Sequence Length
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Figure 3: Histogram of Gaps in a 5234-term Double 3-AP Free Sequence

5. RamseyScript

To handle the volume and variety of computation required by this project and
related ones, we use the utility RamseyScript, developed by the third author, which
provides a high-level scripting language. In creating RamseyScript, we had two
goals:

- To provide a uniform framework for Ramsey-type computational problems
(which despite being minor variations of each other, are traditionally handled
by ad hoc academic code).

- To provide a correct and efficient means to actually carry out these computa-
tions.

To achieve these goals, RamseyScript appears to the user as a declarative script-
ing language which is used to define a backtracking algorithm to be run. It exposes
three main abstractions: search space, filters and targets.

The search space is a set of objects — typically r-colorings of the natural num-
bers or sequences of positive integers — which can be generated recursively and
checked to satisfy certain conditions, such as being squarefree or containing no
monochromatic progressions.

The conditions to be checked are specified as filters. Typically when extending
RamseyScript to handle a new type of problem, only a new filter needs to be written.
This saves development time and effort compared to writing a new program, while
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also making available additional features, e.g., for splitting the problem across a
computing cluster.

Finally, targets describe the information that should be shown to the user. The
default target, max-length, informs the user of the largest object in the search
space which passed the filters.

With these parameters set, RamseyScript then runs a standard backtracking
algorithm, which essentially runs as follows:

1. Start with some element x in the search space. For example, x might be the
trivial coloring of the empty interval.

2. Check that x passes each filter. If not, skip steps 3 and 4.

3. Check each target against x (e.g., is x the longest coloring obtained so far?).

4. For each possible extension x̂ of x, repeat step 2. For example, if x is the
interval [1, n] and the search space is the set of r-colorings, then the possible
extensions of x are the r colorings of [1, n+ 1] which match x on the first n
elements.

5. Output the current state of all targets.

Here is an example script to demonstrate these ideas and syntax:

# Output a brief description

echo Find the longest interval [1, n] that cannot be 4-colored

echo without a monochromatic 3-AP or a rainbow 4-AP.

# Set up environment

set n-colors 4

set ap-length 3

# Choose filters

filter no-n-aps

filter no-rainbow-aps

# Use the default target (max-length)

# Backtrack on the space of 4-colorings

search colorings

Its output is

find the longest interval [1, n] that cannot be 4_colored

without a monochromatic 3_ap or a rainbow 4_ap.
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Added filter ‘‘no-3-aps’’.

Added filter ‘‘no-rainbow-aps’’.

#### Starting coloring search ####

Targets: max-length

Filters: no-rainbow-aps no-3-aps

Dump data:

Seed: [[] [] [] []]

Max. coloring (len 56): [[removed due to length]]

Time taken: 7s. Iterations: 4546107

#### Done. ####

RamseyScript has many options to control the backtracking algorithm and its
output. For full details see the README, available alongside its source code at
https://www.github.com/apoelstra/ RamseyScript. It is licensed under the
Creative Commons 0 public domain dedication license.
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