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Abstract
Given an odd prime p, we provide formulas for the Hensel lifts of polynomial roots
modulo p, and give an explicit factorization over the ring of formal power series
with integer coe�cients for certain reducible polynomials whose constant term is
of the form pw with w > 1. All of our formulas are given in terms of partial Bell
polynomials and rely on the inversion formula of Lagrange.

1. Introduction

The divisibility theory of commutative rings is a fundamental and persisting topic in
mathematics that entails two main aspects: determining irreducibility and finding
a factorization of the reducible elements in the ring. Prominent examples are the
ring of integers Z and the ring of polynomials Z[x]. It is then natural to investigate
the arithmetic properties of Z[[x]], the ring of formal power series with integer
coe�cients. While polynomials in Z[x] can be seen as power series over the integers,
the factorization properties over Z[x] and over Z[[x]] are in general unrelated; cf. [4].
In [5], the authors studied this factorization problem exhaustively. In particular, for
a class of polynomials parametrized by a prime p, a connection between reducibility
in Z[[x]] and the existence of a p-adic root with positive valuation was established.
Whereas this connection can be certainly explained in structural terms, the role of
the root in the factorization process is not obvious.
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Motivated by this factorization problem and the need to find explicit p-adic
roots, the main goal of this paper is to provide formulas for the Hensel lifts of roots
modulo p, and to give a factorization in Z[[x]] of certain reducible polynomials
whose constant term is of the form pw with p prime and w > 1. All of our formulas
are given in terms of partial Bell polynomials and rely on the inversion formula of
Lagrange.

On the one hand, in Section 3, we prove two versions of Hensel’s lemma that give
explicit formulas for the roots of any polynomial in Zp[x], the ring of polynomials
over the p-adic integers Zp. For illustration purposes, we examine the special cases
of quadratic and cubic polynomials in (3.4) and (3.7), and discuss the roots of unity,
providing a formula for the so-called Teichmüller lifts (see Proposition 3.9). On the
other hand, we give a factorization over Z[[x]] for polynomials f (of degree higher
than 1) with f(0) = pw that are reducible in the presence of a p-adic root in pZp.
Although Theorem 4.2 is formulated for polynomials, it actually holds verbatim for
power series. An illustrative example is discussed at the end of Section 4.

As mentioned before, Sections 3 and 4 are related and rely on the material
discussed in Section 2. For the reader’s convenience, a short appendix with some
of the basic properties and identities for the partial Bell polynomials is included.
We finish by observing that most of the results presented here may be applied to
polynomials and power series over other commutative rings.

2. Series Solutions of Algebraic Equations

The main results of this paper rely on the following consequence of the inversion
formula of Lagrange for formal power series. For a detailed proof and other appli-
cations, we refer the reader to [8, Section 3.8] or [7, Section 11.6]. In what follows,
Bn,j(x1, x2, . . . ) denotes the (n, j)-th partial Bell polynomial; see the appendix.

Lemma 2.1 (cf. [7, Corollary 11.3]). If �(t) is a power series of the form

�(t) = t

✓
1 +

1X
r=1

↵r
tr

r!

◆
,

then its formal inverse is given by

��1(u) = u

✓
1 +

1X
n=1

�n
un

n!

◆
,

where

�n =
nX

j=1

(�1)j (n + j)!
(n + 1)!

Bn,j(↵1,↵2, . . . ).
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Inversion formulas of this type have been studied by many authors in the search
for solutions of algebraic equations. For instance, a series solution for the equation
xm + px = q was already given by Lambert in 1758, cf. [12]. The most general
formulas we found in the literature were obtained by Birkeland around 1927. In [3],
the author studied arbitrary polynomial equations and obtained explicit solutions
in terms of hypergeometric functions; see also [13].

It turns out that, if f(x) is a power series over a commutative ring R with an
invertible linear coe�cient, then formal series solutions for the equation f(x) = 0
can be obtained from Lemma 2.1 as follows.

Proposition 2.2. Given a power series f(x) = a0 + a1x + a2x2 + · · · 2 R[[x]] with
a1 invertible in R, the equation f(x) = 0 has the formal root

x =
1X

n=0

 nX
j=0

(�1)n+j+1

aj
1 n!

(n + j)!
(n + 1)!

Bn,j(1!a2, 2!a3, . . . )
�⇣a0

a1

⌘n+1
(2.3)

=
1X

n=0

nX
k=0

(�1)n�k+1

ak
1 (n + 1)!

✓
2n + 1
n� k

◆
Bn+k,k(1!a1, 2!a2, . . . )

⇣a0

a1

⌘n+1
. (2.4)

Proof. Let

�(x) = x

✓
1 +

1X
`=1

↵`
x`

`!

◆
with ↵` = `! a`+1/a1.

Thus f(x) = a1

�
a0/a1 +�(x)

�
and f(x) = 0 if �(x) = �a0/a1. By Lemma 2.1, this

equation has the formal root

x = ��1(�a0/a1) = �a0

a1

✓
1 +

1X
n=1

(�1)n�n

n!

⇣a0

a1

⌘n
◆

= �a0

a1

✓
1 +

1X
n=1

(�1)n

n!

 nX
j=1

(�1)j (n + j)!
(n + 1)!

Bn,j(↵1,↵2, . . . )
�⇣a0

a1

⌘n
◆

=
1X

n=0

 nX
j=0

(�1)n+j+1

aj
1 n!

(n + j)!
(n + 1)!

Bn,j(1!a2, 2!a3, . . . )
�⇣a0

a1

⌘n+1
,

which gives (2.3). Now, if we set xj = j!aj , then

Bn,j(1!a2, 2!a3, . . . ) = Bn,j(x2
2

x3
3 , . . . ) =

n!
(n + j)!

Bn+j,j(0, x2, x3, . . . )

by (A.1). Moreover, by means of (A.2) and (A.3), we have

Bn+j,j(0, x2, x3, . . . ) =
X
kj

⌫n+j

✓
n + j

⌫

◆
B⌫,k(x1, x2, . . . )Bn+j�⌫,j�k(�x1, 0, . . . )

=
X
kj

✓
n + j

n + k

◆
(�x1)j�kBn+k,k(x1, x2, . . . ).
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Therefore,
nX

j=0

(�1)n+j+1

aj
1 n!

(n + j)!
(n + 1)!

Bn,j(1!a2, 2!a3, . . . )

=
nX

j=0

(�1)n+j+1

aj
1 (n + 1)!

Bn+j,j(0, 2!a2, 3!a3, . . . )

=
nX

j=0

X
kj

(�1)n�k+1

ak
1 (n + 1)!

✓
n + j

n + k

◆
Bn+k,k(1!a1, 2!a2, . . . )

=
nX

k=0

(�1)n�k+1

ak
1 (n + 1)!

 nX
j=k

✓
n + j

n + k

◆�
Bn+k,k(1!a1, 2!a2, . . . )

=
nX

k=0

(�1)n�k+1

ak
1 (n + 1)!

✓
2n + 1
n� k

◆
Bn+k,k(1!a1, 2!a2, . . . ).

Inserting this expression into (2.3), we arrive at (2.4).

The simplicity (or complexity) of formulas (2.3) and (2.4) clearly depends on the
structure of the partial Bell polynomials.

For example, for xm + px � q = 0 with p, q 2 R, p 6= 0, m > 1, the root (2.3)
takes the form

x =
1X

n=0

 nX
j=0

(�1)n+j+1

pj n!
(n + j)!
(n + 1)!

Bn,j(0, . . . , (m� 1)!, 0, . . . )
�⇣�q

p

⌘n+1

which by means of (A.3) reduces to

x =
1X

k=0

(�1)k

pk

✓
mk

k

◆
1

(m� 1)k + 1

⇣q

p

⌘(m�1)k+1
. (2.5)

This formula includes Eisenstein’s series solution for x5 + x = q, cf. [15],

x =
1X

k=0

(�1)k

✓
5k
k

◆
1

4k + 1
q4k+1.

Of course, this series does not converge for all values of q, so further analysis
is required to understand and possibly make sense of (2.4). While convergence in
general is not the focus of this paper, we want to briefly discuss f(x) = x3 +x�q in
order to illustrate a possible analytic approach. For this polynomial, the sum (2.5)
becomes

x =
1X

k=0

(�1)k

✓
3k
k

◆
1

2k + 1
q2k+1 = q

1X
k=0

✓
3k
k

◆
1

2k + 1
(�q2)k,
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which converges only when q2  4/27. However,

1X
k=0

✓
3k
k

◆
1

2k + 1
(�q2)k = 2F1

�
1
3 , 2

3 ; 3
2 ;�27

4 q2
�
,

and since the hypergeometric function 2F1

�
1
3 , 2

3 ; 3
2 ; z

�
extends analytically to the

set C \ (1,1), we can actually evaluate the formal root for larger values of q. For
example, if q = 2, then the root of x3 + x � 2 = 0 provided by (2.4) is precisely
x = 2 · 2F1

�
1
3 , 2

3 ; 3
2 ;�27

�
= 1.

In the next section we will fully discuss the use of (2.4) to find roots of polyno-
mials over the p-adic integers.

3. Hensel’s Roots

In this section, we use Proposition 2.2 to give a version of Hensel’s lemma that
provides an explicit formula for the p-adic root of a polynomial in Zp[x]. We start by
recalling some basic facts about the p-adic numbers. For a comprehensive treatment
of this subject, the reader is referred to [10, 11, 14].

Let p be a prime integer. For any nonzero integer a, let vp(a) (the p-adic valuation
of a) be the highest power of p which divides a, i.e., the greatest m such that a ⌘ 0
(mod pm); we agree to write vp(0) =1. Note that vp (a1 a2) = vp(a1) + vp(a2) for
all a1, a2 2 Z. For any rational number x = a/b, define vp(x) = vp(a)� vp(b). Note
that this expression depends only on x and not on its representation as a ratio of
integers.

The p-adic norm in Q is defined as kxkp = p�vp(x) if x 6= 0, and k0kp = 0.
This norm is non-Archimedean; that is, kx + ykp  max(kxkp, kykp). The p-adic
completion of Q with respect to k·kp is denoted by Qp. Every a 2 Qp admits a
unique p-adic expansion,

a =
a0

pm
+

a1

pm�1
+ · · · + am�1

p
+ am + am+1 p + am+2 p2 + · · · ,

with 0  ai < p for all i.
We let Zp = {a 2 Qp | kakp  1}, the set of all numbers in Qp whose p-adic

expansion involves no negative powers of p. An element of Zp is called a p-adic
integer, and the set of p-adic integers is a subring of the field Qp. If x 2 Zp is such
that vp(x) = 0, then x is a unit and its multiplicative inverse 1/x is in Zp.

A fundamental property of the p-adic numbers is that a series in Qp converges if
and only if its terms approach zero. This condition is equivalent to verifying that
the p-adic valuation of the terms tend to infinity.
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Theorem 3.1. Let p > 2 be prime and let f(x) = a0 + a1x + · · · + amxm be a
polynomial of degree m in Zp[x]. If r0 2 Z is such that

f(r0) ⌘ 0 (mod p) and vp(f 0(r0)) = 0,

then r0 lifts to a p-adic root r of f given by

r = r0 +
1X

n=0

 nX
k=0

(�1)n�k+1

ck
1 (n + 1)!

✓
2n + 1
n� k

◆
Bn+k,k(1!c1, 2!c2, . . . )

�⇣c0

c1

⌘n+1
, (3.2)

where cj = f(j)(r0)
j! for j = 0, 1, . . . ,m. Note that vp(c1) = 0 implies 1/c1 2 Zp.

Proof. Given f(x) and r0 2 Z as above, consider the function g(x) = f(r0 + x).
The Taylor expansion of g(x) at x = 0 gives

g(x) = f(r0) + f 0(r0)x + f 00(r0)
2! x2 + · · · + f(m)(r0)

m! xm = c0 + c1x + · · · + cmxm,

with the property that vp(c0) = vp(f(r0)) � 1 and vp(c1) = vp(f 0(r0)) = 0. Thus
c1 6= 0, and by Proposition 2.2, g(x) has a formal root

% =
1X

n=0

�n
cn+1
0

(n + 1)!
,

where

�n =
nX

k=0

(�1)n�k+1

ck+n+1
1

✓
2n + 1
n� k

◆
Bn+k,k(1!c1, 2!c2, . . . ).

Since vp(c1) = 0 and each j!cj is a p-adic integer, we have �n 2 Zp for every n.
Moreover, if n + 1 has the p-adic expansion n + 1 = n0 + n1p + n2p2 + · · · , we have

vp((n + 1)!) =
n + 1� sp(n + 1)

p� 1
<

n + 1
p� 1

,

where sp(n + 1) = n0 + n1 + n2 + · · · . Therefore, since vp(c0) � 1, we get

vp

� cn+1
0

(n+1)!

�
= vp(cn+1

0 )�vp((n+1)!) > n+1� n+1
p�1 =

�p�2
p�1

�
(n+1)!1 as n!1,

which implies that
P

�n
cn+1
0

(n+1)! converges in pZp. In conclusion, the formal root %
is indeed a p-adic root of g(x) and r0 + % 2 Zp is a root of f(x).

More generally, we have:

Theorem 3.3. Let p > 2 be prime and let f(x) = a0 + a1x + · · · + amxm be a
polynomial in Zp[x]. Let ⌫, 2 Z such that 0  2 < ⌫. If r0 2 Z is such that

f(r0) ⌘ 0 (mod p⌫) and vp(f 0(r0)) = ,



INTEGERS: 14 (2014) 7

then r0 lifts to a p-adic root r of f given by

r = r0 + p
1X

n=0

 nX
k=0

(�1)n�k+1

ck
1 (n + 1)!

✓
2n + 1
n� k

◆
Bn+k,k(1!c1, 2!c2, . . . )

�⇣c0

c1

⌘n+1
,

where cj = p(j�2) f(j)(r0)
j! for j = 0, 1, . . . ,m.

Proof. The proof is similar to the one for the previous theorem. Let r0 be a root
of f modulo p⌫ and let  be the p-adic valuation of f 0(r0). Consider the function
g(x) = p�2f(r0 + px). A Taylor expansion of g(x) at 0 gives

g(x) = p�2f(r0) + p�f 0(r0)x + f 00(r0)
2! x2 + · · · + p(m�2) f(m)(r0)

m! xm

= c0 + c1x + c2x
2 + · · · + cmxm.

If 0  2 < ⌫, then vp(c0) � 1 and vp(c1) = 0 since vp(f(r0)) � ⌫ > 2 and
vp(f 0(r0)) = . At this point, we can proceed as in the proof of Theorem 3.1 and
conclude that the formal root of g(x) provided by (2.4) is indeed a p-adic root of
g(x). If we denote that root by %, then r = r0+p% is a p-adic root of the polynomial
f(x).

In the case of quadratic and cubic polynomials, one can use known properties
of Bell polynomials to give a simpler representation of the corresponding Hensel’s
roots.

3.1. Quadratic Polynomials

Let p > 2 and f(x) = a0 + a1x + a2x2 2 Zp[x], a2 6= 0. If there is an r0 2 Z such
that f(r0) ⌘ 0 (mod p) and vp(f 0(r0)) = 0, then by Theorem 3.1 and elementary
Bell polynomial identities, the p-adic lift of r0 may be written as

r = r0 �
c0

c1

1X
n=0

✓
2n
n

◆
1

n + 1

⇣c0c2

c2
1

⌘n
2 Zp, (3.4)

where c0 = f(r0), c1 = f 0(r0), and c2 = a2. Note that
�2n

n

�
1

n+1 2 Z are the
well-known Catalan numbers.

Example 3.5. Let us consider f(x) = 1 + 11x � 5x2 over Z7. This polynomial
has two simple roots mod 7, r0 = 1, 4. Since c0 = f(1) = 7, c1 = f 0(1) = 1, and
c2 = �5, the lift of r0 = 1 in Z7 is given by

r = 1�
1X

n=0

✓
2n
n

◆
(�5)n

n + 1
7n+1.
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On the other hand, since f(4) = �35 and f 0(4) = �29, the lift of r0 = 4 in Z7 is
given by

r = 4�
1X

n=0

✓
2n
n

◆
1

n + 1

⇣ 5
29

⌘2n+1
7n+1.

Note that 1/29 = 1 + 3 · 7 + 72 + 73 + 2 · 74 + 5 · 75 + O(76) is an element of Z7.

Example 3.6. We now consider f(x) = 17 + 6x + 2x2 over Z5. Modulo 5 this
polynomial has a double root, r0 = 1. Since f(1) = 52 and f 0(1) = 2 · 5, we cannot
apply any of the above theorems directly. However, the polynomial

g(x) = 1
25f(1 + 5x) = 1 + 2x + 2x2

has 1 and 3 as simple roots modulo 5, so using (3.4), we get the lifts

1� 5
6

1X
n=0

✓
2n
n

◆
1

n + 1

⇣ 5
18

⌘n
and 3� 25

14

1X
n=0

✓
2n
n

◆
1

n + 1

⇣25
98

⌘n
in Z5.

Therefore, the 5-adic roots of f(x) are given by

1 + 5� 25
6

1X
n=0

✓
2n
n

◆
1

n + 1

⇣ 5
18

⌘n
and 1 + 3 · 5� 125

14

1X
n=0

✓
2n
n

◆
1

n + 1

⇣25
98

⌘n
.

3.2. Cubic Polynomials

Let p > 2 and f(x) = a0 + a1x + a2x2 + a3x3 2 Zp[x], a3 6= 0. Once again, if there
is an r0 2 Z such that f(r0) ⌘ 0 (mod p) and vp(f 0(r0)) = 0, then Theorem 3.1
gives a formula for the p-adic lift of r0. However, for cubic polynomials, it is more
convenient to use the equation (2.3) and write the root as

r = r0 +
1X

n=0

 nX
k=0

(�1)n+k+1

ck
1 n!

(n + k)!
(n + 1)!

Bn,k(c2, 2c3, 0, . . . )
�⇣c0

c1

⌘n+1
,

where cj = f (j)(r0)/j! for j = 0, 1, 2, 3. Note that Bn,k(c2, 2c3, 0, . . . ) = 0 for
k < n/2, and for k � n/2, identities (A.2) and (A.3) give

Bn,k(c2, 2c3, 0, . . . ) =
X
k
⌫n

✓
n

⌫

◆
B⌫,(c2, 0, . . . )Bn�⌫,k�(0, 2c3, 0, . . . )

=
X
k

✓
n



◆
c
2Bn�,k�(0, 2c3, 0, . . . )

=
✓

n

2k � n

◆
c2k�n
2

[2(n� k)]!
(n� k)!

cn�k
3

=
n!

(2k � n)!(n� k)!
c2k�n
2 cn�k

3 .
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Therefore,

r = r0 +
1X

n=0

 nX
k�n/2

(�1)n+k+1

ck
1 n!

(n + k)!
(n + 1)!

n!
(2k � n)!(n� k)!

c2k�n
2 cn�k

3

�⇣c0

c1

⌘n+1
,

and with the change n = 2k � j,

= r0 +
c0

c1

1X
k=0

 kX
j=0

(�1)k�j+1

ck
1(2k � j + 1)

✓
k

j

◆✓
3k � j

k

◆
cj
2c

k�j
3

�⇣c0

c1

⌘2k�j
.

In summary, if r0 is a simple root mod p of f(x) = a0 + a1x + a2x2 + a3x3 2 Zp[x],
then the p-adic lift of r0 is given by

r = r0 �
c0

c1

1X
k=0

 kX
j=0

(�1)k�jcj
2

2k � j + 1

✓
k

j

◆✓
3k � j

k

◆⇣c0c3

c1

⌘k�j
�⇣c0

c2
1

⌘k
, (3.7)

where c0 = f(r0), c1 = f 0(r0), c2 = f 00(r0)/2, and c3 = a3.

Following the same steps as for cubic polynomials, we get the following result.

Proposition 3.8. Let p > 2 and 1 < ` < m. Suppose f(x) = a0 + a1x + a`x` +
amxm 2 Zp[x] is such that p | f(0) but p 6 | f 0(0). Then r0 = 0 lifts to a p-adic root
of f given by

r = �a0

a1

1X
k=0

 kX
j=0

(�1)m(k�j)+`j aj
`

m(k�j)+`j�k+1

✓
k

j

◆✓
m(k � j) + `j

k

◆⇣am�`
0 am

am�`
1

⌘k�j
�⇣a`�1

0

a`
1

⌘k
.

3.3. Roots of Unity

Let p > 2 and f(x) = xm � 1. Assume that r0 is a single root mod p of f . Then
r0 lifts to a p-adic root of the form (3.2) with c0 = rm

0 � 1 and cj =
�m

j

�
rm�j
0 for

j = 1, . . . ,m. Now, since

j!cj = rm�j
0 (m)j with (m)j =

m!
(m� j)!

,

homogeneity properties of the Bell polynomials together with identity (A.4) give

Bn+k,k(1!c1, 2!c2, . . . ) = Bn+k,k(rm�1
0 (m)1, rm�2

0 (m)2, . . . )

= rmk�(n+k)
0 Bn+k,k((m)1, (m)2, . . . )

= rmk�(n+k)
0

1
k!

kX
j=0

(�1)k�j

✓
k

j

◆
(jm)n+k.
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Therefore,

nX
k=0

(�1)n�k+1

ck
1 (n + 1)!

✓
2n + 1
n� k

◆
Bn+k,k(1!c1, 2!c2, . . . )

=
nX

k=0

(�1)n�k+1

(rm�1
0 m)k (n + 1)!

✓
2n + 1
n� k

◆
rmk�(n+k)
0

1
k!

kX
j=0

(�1)k�j

✓
k

j

◆
(jm)n+k

=
nX

k=0

kX
j=0

(�1)n�j+1

rn
0 mk (n + 1)!

✓
2n + 1
n� k

◆
1
k!

✓
k

j

◆
(jm)n+k.

Finally, the p-adic lift of r0 is given by

r = r0 �
c0

c1

1X
n=0

 nX
k=0

kX
j=0

(�1)n�j

mk (n + 1)!

✓
2n + 1
n� k

◆
1
k!

✓
k

j

◆
(jm)n+k

�⇣ c0

r0c1

⌘n
,

where c0 = f(r0) and c1 = f 0(r0).

For m = p�1, the above expression gives an explicit formula for the Teichmüller
lifts.

Proposition 3.9. Let p > 2. Every integer q 2 {1, . . . , p � 1} is a (p � 1)-st root
of unity mod p and lifts to a p-adic root of unity ⇠q given by

⇠q = q � c0

c1

1X
n=0

 nX
k=0

kX
j=0

(�1)n�j

(p� 1)k (n + 1)!

✓
2n + 1
n� k

◆
1
k!

✓
k

j

◆
(j(p� 1))n+k

�⇣ c0

qc1

⌘n
,

where c0 = qp�1 � 1 and c1 = (p� 1)qp�2.

4. Factorization of Polynomials over Z[[x]]

Let f(x) = f0 + f1x + f2x2 + · · · be a formal power series in Z[[x]]. It is easy to
prove that f(x) is invertible in Z[[x]] if and only if |f0| = 1. A natural question,
initially discussed in [4], is whether or not a non-invertible element of Z[[x]] can be
factored over Z[[x]]. In recent years, this question has been investigated by several
authors, leading to su�cient and in some cases necessary reducibility criteria; see
e.g., [2, 5, 9]. In particular, [9] deals with the factorization of formal power series
over principal ideal domains.

For the case at hand, the following elementary results are known. The formal
power series f(x) = f0 + f1x + f2x2 + · · · is irreducible in Z[[x]] if |f0| is prime, or
if |f0| = pw with p prime, w 2 N, and gcd(p, f1) = 1.
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On the other hand, if f0 is neither a unit nor a prime power, then f(x) is reducible.
In this case, the factorization algorithm is simple and relies on a recursion and a
single diophantine equation; see [4, Prop. 3.4].

Finally, in the remaining case when f0 is a prime power and f1 is divisible by p,
the reducibility of f(x) in Z[[x]] is linked to the existence of a p-adic root of positive
valuation. The goal of this section is to give an explicit factorization over Z[[x]] for
reducible polynomials of the form

f(x) = pw + pm�1x + �2x
2 + · · · + �dx

d, m � 1, w � 2, d � 2, (4.1)

where �1, . . . , �d 2 Z and gcd(p, �1) = 1. This is the only type of polynomial for
which the reducibility and factorization over Z[[x]] is not straightforward.

Theorem 4.2. Let p be an odd prime and let f be a polynomial of the form (4.1).
Assume that f has a simple root r 2 pZp with vp(r) = `  m and r = p`(1 +P1

j=1 ejp`j) with ej 2 Z. Then f(x) admits the factorization

f(x) =
✓

p` � x� x
1X

n=1

anxn

◆✓
pw�` + (pw�2` + pm�`�1)x + x

1X
n=1

bnxn

◆
,

where the coe�cients an are given by (4.4), and bn = b̂n/p`n with b̂n as in (4.11).

Remark. (a) As shown in Lemma 4.12, b̂n is divisible by p`n, so bn 2 Z for all n.

(b) If r 2 pZp is a root of f with vp(r) = `  m, then 2`  w.

(c) If w  2m and f has a root r 2 pZp, then vp(r) = `  m holds. If w > 2m,
then 0 lifts to a p-adic root of f , but it is not necessarily true that f has a root
of valuation less than or equal to m. This property depends on the coe�cients
�2, �3, . . . . However, even if that condition fails, f(x) is still reducible and a
factorization can be obtained through the algorithm given in [5, Prop. 2.4].

(d) A p-adic integer r with vp(r) = ` can always be written as r = p`(e0 +P1
j=1 ejp`j) with e0 2 Z⇤p. For factorization purposes, we can assume with-

out loss of generality e0 = 1. Otherwise, consider g(x) = f(x/e⇤0), where e⇤0 is
such that e0e⇤0 = 1 (mod p`).

(e) As discussed in [5], the existence of a root in pZp is in many cases (e.g., when
d  3) a necessary condition for the polynomial (4.1) to factor over Z[[x]].

Remark. If f has a multiple root in pZp, then f(x) admits the simpler factorization

f(x) = G(x)fred(x),

where G(x) = gcd(f(x), f 0(x)) 2 Z[x] and fred(x) = f(x)/G(x).
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Proof of Theorem 4.2

Let r = p`
�
1 +

P1
j=1 ejp`j

�
be the p-adic root of f and define

�(x) = xE(x) with E(x) = 1 +
1X

j=1

ejx
j . (4.3)

Thus r = �(p`) in Zp and therefore p` = ��1(r). Define A(x) = p` � ��1(x). So
A(r) = 0 in Zp, and by Lemma 2.1, we have

A(x) = p` � ��1(x) = p` � x
⇣
1 +

1X
n=1

anxn
⌘
,

where

an =
1
n!

nX
k=1

(�1)k (n + k)!
(n + 1)!

Bn,k(1!e1, 2!e2, . . . ) 2 Z. (4.4)

Our goal is to find B(x) 2 Z[[x]] such that f(x) = A(x)B(x). For convenience,
consider

f̂(x) = p�2`f(p`x) and Â(x) = p�`A(p`x).

Thus

Â(x) = 1� x� x
1X

n=1

p`nanxn.

Proposition 4.5. The reciprocal of Â(x) is a power series in Z[[x]] of the form

Â(x)�1 =
1

Â(x)
= 1 + x + x

1X
n=1

tnxn

with

tn = 1 +
nX

k=1

p`k n + 1� k

k!

kX
j=1

(�1)j (n + j)!
(n + 1)!

Bk,j(1!e1, 2!e2, . . . ) 2 Z. (4.6)

Proof. As an application of Faà di Bruno’s formula (cf. Thm. B in [8, Section 3.5]),
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and using basic properties of partial Bell polynomials, we have

Â(x)�1 = 1 + x +
1X

n=2

nX
k=1

k!
n!

Bn,k(1, 2!a1p
`, 3!a2p

2`, . . . )xn

= 1 + x +
1X

n=2

nX
k=1

k!
 kX

j=0

n!
(n� k)!j!

Bn�k,k�j(1!p`a1, 2!p2`a2, . . . )
�
xn

n!

= 1 + x +
1X

n=1

"
1 +

nX
k=1

n+1�kX
j=1

(n+1�k)!
k!(n+1�k�j)!p

`kBk,j(1!a1, 2!a2, . . . )
�#

xn+1

= 1 + x + x
1X

n=1

"
1 +

nX
k=1

p`k

k!

 kX
j=1

�n+1�k
j

�
j!Bk,j(1!a1, 2!a2, . . . )

�#
xn.

Thus

tn = 1 +
nX

k=1

p`k

k!

kX
j=1

✓
n + 1� k

j

◆
j!Bk,j(1!a1, 2!a2, . . . )

= 1 +
nX

k=1

p`k n + 1� k

k!

kX
j=1

✓
n� k

j � 1

◆
(j � 1)!Bk,j(1!a1, 2!a2, . . . )

Now, if we write k!ak as

k!ak =
kX

j=1

✓
k + j

j � 1

◆
(j � 1)!Bk,j(�1!e1,�2!e2, . . . ),

then by means of Theorem 15 in [6] we get

kX
j=1

✓
n� k

j � 1

◆
(j � 1)!Bk,j(1!a1, 2!a2, . . . )

=
kX

j=1

✓
n + j

j � 1

◆
(j � 1)!Bk,j(�1!e1,�2!e2, . . . )

=
kX

j=1

(�1)j (n + j)!
(n + 1)!

Bk,j(1!e1, 2!e2, . . . ).

In other words, tn has the form claimed in (4.6).

Now, motivated by (4.6), for n � 1 we consider

Tn(x) = 1 +
1X

k=1

n + 1� k

k!

 kX
j=1

(�1)j (n + j)!
(n + 1)!

Bk,j(1!e1, 2!e2, . . . )
�
xk.
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Lemma 4.7. With E(x) as in (4.3), we have

Tn(x) = E(x)�n�2
�
E(x) + xE0(x)

�
.

Proof. Fix n � 1 and denote

⌧k =
1
k!

kX
j=1

(�1)j (n + j)!
n!

Bk,j(1!e1, 2!e2, . . . ).

Then

Tn(x) = 1 +
1X

k=1

⇣
1� k

n + 1

⌘
⌧kxk = 1 +

1X
k=1

⌧kxk � 1
n + 1

1X
k=1

k⌧kxk.

Using again Theorem B in [8, Sec. 3.5], it follows that 1 +
P1

k=1 ⌧kxk = E(x)�n�1.
Therefore,

Tn(x) = E(x)�n�1 � 1
n + 1

x
d

dx

⇣
E(x)�n�1

⌘
= E(x)�n�1 + xE(x)�n�2E0(x) = E(x)�n�2

�
E(x) + xE0(x)

�
.

As a direct consequence of this lemma we get the recurrence relation

Tn�1(x) = E(x)Tn(x),

which can be used to define T0(x) and T�n(x) for n � 1. More precisely, we let

T0(x) = E(x)T1(x) and T�n(x) = E(x)n+1T1(x) for n � 1.

Given that

f̂(x) = p�2`f(p`x) = pw�2` + pm�`�1x +
dX

n=2

p`(n�2)�nxn, (4.8)

the relation Tn�j(x) = E(x)jTn(x) gives

pw�2`Tn(x) + pm�`�1Tn�1(x) +
dX

j=2

p`(j�2)�jTn�j(x) = f̂(E(x))Tn(x). (4.9)

Moreover, since E(x) is a unit in Z[[x]], for every ⌫ 2 Z the function T⌫(x) is in
Z[[x]] and so T⌫(p`) 2 Zp.

Lemma 4.10. For ⌫ � �1, the p-adic numbers T⌫(p`) satisfy

T⌫(p`)� t⌫ ⌘ 0 (mod p`(⌫+2))

with t⌫ as in (4.6) for ⌫ > 0 and t0 = t�1 = 1.
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Proof. For ⌫ = n � 1 the statement is a consequence of the fact that tn is the n-th
partial sum of Tn(p`) and the coe�cient of xn+1 in Tn(x) is zero. Further, given
that

E(p`) = 1 + p`e1 + O(p2`) and T1(p`) = 1� p`e1 + O(p2`),

we have

T0(p`) =
�
1 + p`e1 + O(p2`)

��
1� p`e1 + O(p2`)

�
⌘ 1 (mod p2`).

This implies T0(p`)� t0 ⌘ 0 (mod p2`). Finally, since T�1(p`) = E(p`)2T1(p`), and
because E(p`)2 and T1(p`) are both of the form 1 + O(p`), we get T�1(p`) ⌘ 1
(mod p`). Hence T�1(p`)� t�1 ⌘ 0 (mod p`).

Using f̂(x) as in (4.8), we now define

B̂(x) = f̂(x)Â(x)�1

=
⇣
pw�2` + pm�`�1x +

dX
n=2

p`(n�2)�nxn
⌘⇣

1 + x + x
1X

n=1

tnxn
⌘
,

and write it as

B̂(x) = pw�2` + (pw�2` + pm�`�1)x + x
1X

n=1

b̂nxn

with

b̂n = pw�2`tn + pm�`�1tn�1 +
dX

j=2

p`(j�2)�jtn�j 2 Z, (4.11)

where tn is given by (4.6), t0 = t�1 = 1, and t�n = 0 for n > 1.

Lemma 4.12. The coe�cients b̂n are divisible by p`n.

Proof. First of all, since p�`r = E(p`) is a p-adic root of f̂ , identity (4.9) implies

pw�2`Tn(p`) + pm�`�1Tn�1(p`) +
dX

j=2

p`(j�2)�jTn�j(p`) = 0 in Zp.

Therefore, for n � d� 1,

b̂n = pw�2`tn + pm�`�1tn�1 +
dX

j=2

p`(j�2)�jtn�j

= pw�2`
�
tn � Tn(p`)

�
+ pm�`�1

�
tn�1 � Tn�1(p`)

�

+
dX

j=2

p`(j�2)�j

�
tn�j � Tn�j(p`)

�
,
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which by Lemma 4.10 is congruent to 0 modulo p`n. Similarly, for 1  n < d� 1,

b̂n = pw�2`tn + pm�`�1tn�1 +
n+1X
j=2

p`(j�2)�jtn�j

⌘ �
dX

j=n+2

p`(j�2)�jTn�j(p`) ⌘ 0 (mod p`n).

Finally, defining B(x) = p`B̂(x/p`), we arrive at the factorization f(x) = A(x)B(x).

Remark. It is worth mentioning that our method for factorization in Z[[x]] is
not restricted to polynomials and can be applied to power series. As an example,
consider

f(x) = 9 + 12x + 7x2 + 8x3
1X

k=0

xk = 9 + 12x + 7x2 +
8x3

1� x
,

discussed by Bézivin in [2]. This series is reducible in Z[[x]] and factors as

f(x) =
(3� x)2(1 + x)

1� x
.

The reader is invited to confirm that the power series version of Theorem 4.2 gives
the factorization f(x) = A(x)B(x) with A(x) = 3� x and B(x) = (3�x)(1+x)

1�x .
An interesting feature of this example is that the partial sums fd(x) = 9+12x+

7x2 + · · ·+8xd of f(x) of degree d � 2 are all irreducible in Z[[x]]. This was proved
in [2, Prop. 8.1], but it can also be derived from Proposition 3.4 of [6] together with
the observation that for d � 2, the polynomial fd(x) has no roots in pZp.
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Appendix: Some Properties of Bell Polynomials

Throughout this paper, we make extensive use of the well-known partial Bell poly-
nomials. For any sequence x1, x2, . . . , the (n, k)-th partial Bell polynomial is defined
by

Bn,k(x) =
X

i2⇡(n,k)

n!
i1!i2! · · ·

⇣x1

1!

⌘i1 ⇣x2

2!

⌘i2
· · · ,

where ⇡(n, k) is the set of all sequences i = (i1, i2, . . . ) of nonnegative integers such
that

i1 + i2 + · · · = k and i1 + 2i2 + 3i3 + · · · = n.

Clearly, these polynomials satisfy the homogeneity relation

Bn,k(abx1, ab2x2, ab3x3, . . . ) = akbnBn,k(x1, x2, x3, . . . ).
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Here are other elementary identities (cf. [8, Section 3.3]) needed in this paper:

Bn,k(x2
2 , x3

3 , . . . ) =
n!

(n + k)!
Bn+k,k(0, x2, x3, . . . ), (A.1)

Bn,k(x1 + x01, x2 + x02, . . . ) =
X
k
⌫n

✓
n

⌫

◆
B⌫,(x1, x2, . . . )Bn�⌫,k�(x01, x

0
2, . . . ),

(A.2)

Bn,k(0, . . . , 0, xj , 0, . . . ) = 0, except Bjk,k =
(jk)!

k!(j!)k
xk

j . (A.3)

Also of special interest is the identity

Bn,k((a)1, (a)2, . . . ) =
1
k!

kX
j=0

(�1)k�j

✓
k

j

◆
(ja)n, (A.4)

where (a)n = a(a� 1) · · · (a� n + 1). This is a special case of [16, Example 3.2].
For more on Bell polynomials and their applications, see, e.g., [1, 7, 8, 16].


