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Abstract
We consider N , the number of solutions (x, y, u, v) to the equation (�1)urax +
(�1)vsby = c in nonnegative integers x, y and integers u, v 2 {0, 1}, for given
integers a > 1, b > 1, c > 0, r > 0 and s > 0. Previous work showed that there are
nine essentially distinct (a, b, c, r, s) for which N � 4, except possibly for cases in
which the solutions have r, a, x, s, b, and y each bounded by 8 · 1014 or 2 · 1015. In
this paper we show that there are no further cases with N � 4 within these bounds.
We note that N = 3 for an infinite number of (a, b, c, r, s), even if we eliminate from
consideration cases which are directly derived from other cases in one of several
completely designated ways. Our work di↵ers from previous work in that we allow
x and y to be zero and also allow choices of (u, v) other than (0, 1).

1. Introduction

The problem of finding N , the number of solutions (x, y, u, v) to the equation

(�1)urax + (�1)vsby = c (1)

in nonnegative integers x, y and integers u, v 2 {0, 1}, for given integers a > 1,
b > 1, c > 0, r > 0 and s > 0, has been considered by many authors with various
restrictions on the variables ([1], [5], [6], [12], [14], [16]). See [1], [2], [20], [14], [15]
for histories of the problem.

In [14] we showed that N > 3 implies max(a, b, r, s, x, y) < 8 · 1014 (or, in some
cases, 2 · 1015). The purpose of this paper is to show that there are exactly nine
essentially di↵erent cases with N > 3 within those bounds.

To state our main result we need to summarize some definitions from [14].
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We will refer to a set of solutions to (1) which we write as

(a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN )

and by which we mean the (unordered) set of ordered pairs (x1, y1), (x2, y2),
. . . , (xN , yN ) giving solutions to (1), with N > 2, for given integers a, b, c, r,
and s. We say that two sets of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) and
(A,B,C,R, S;X1, Y1,X2, Y2, . . . ,XN , YN ) belong to the same family if a and A are
both powers of the same integer, b and B are both powers of the same integer, there
exists a positive rational number k such that kc = C, and for every i there exists
a j such that kraxi = RAXj and ksbyi = SBYj , 1  i, j  N . One can show [14]
that each family contains a unique member (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN )
with the following properties: gcd(r, sb) = gcd(s, ra) = 1; min(x1, x2, . . . , xN ) =
min(y1, y2, . . . , yN ) = 0; and neither a nor b is a perfect power. We say that a set
of solutions with these properties is in basic form.

The associate of a set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is the set
of solutions (b, a, c, s, r; y1, x1, y2, x2, . . . , yN , xN ).

A subset of a set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is a set of
solutions with the same (a, b, c, r, s) and all its pairs (x, y) among the pairs (xi, yi),
1  i  N . Note that this subset may be (and, in our usage, usually is) the set of
solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) itself.

We are now ready to state the result of this paper:

Theorem 1. Any set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) to (1) with
N > 3 must be in the same family as a subset (or an associate of a subset) of one
of the following:

(3, 2, 1, 1, 2; 0, 0, 1, 0, 1, 1, 2, 2)
(3, 2, 5, 1, 2; 0, 1, 1, 0, 1, 2, 2, 1, 3, 4)

(3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1, 2, 3)
(5, 2, 3, 1, 2; 0, 0, 0, 1, 1, 0, 1, 2, 3, 6)

(5, 3, 2, 1, 1; 0, 0, 0, 1, 1, 1, 2, 3)
(7, 2, 5, 3, 2; 0, 0, 0, 2, 1, 3, 3, 9)
(6, 2, 8, 1, 7; 0, 0, 1, 1, 2, 2, 3, 5)
(2, 2, 3, 1, 1; 0, 1, 0, 2, 1, 0, 2, 0)
(2, 2, 4, 3, 1; 0, 0, 1, 1, 2, 3, 2, 4).

Note that there are an infinite number of cases with N = 3, even if we consider
only sets of solutions in basic form (see (11) through (18) in Section 2).
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2. Preliminary Results

If, for a given choice of (a, b, c, r, s), (1) has two solutions (xi, yi) and (xj , yj),
1  i, j  N , we have

ramin (xi,xj)
⇣
a|xj�xi| + (�1)�

⌘
= sbmin(yi,yj)

⇣
b|yj�yi| + (�1)�

⌘
(2)

where �, � 2 {0, 1}.
In the following lemma, we summarize some results which follow from Theorem

1.1 of [14] and from the proof of Theorem 1.2 of [14].

Lemma 1. Any set of solutions violating Theorem 1 above must be in the same
family as a basic form (or the associate of a basic form) which satisfies one of the
following:

(ra, sb) = 1,max(a, b, r, s, x, y) < 8 · 1014, 0 = x1 < x2 < x3 < · · · < xN ,

0 = y1 < y2 < y3 < · · · < yN , (3)

(ra, sb) = 1,max(a, b, r, s, x, y) < 8 · 1014, 0 = x1 < x2 < x3 < · · · < xN ,

0 = y2 < y1 < y3 < · · · < yN , (4)

(ra, sb) = 1,max(a, r, s, x, y) < 8 · 1014, 0 = x1 < x2 < x3 < · · · < xN ,

0 = y1 = y2 < y3 < · · · < yN . (5)

Lemma 1 is derived in part from work of Matveev [7] on lower bounds on linear
forms in three logarithms as quoted in [8]. We will also need the following two
lemmas from [14].

Lemma 2. (Lemma 4.1 of [14]) Suppose (ra, sb) = 1 and suppose (1) has four
solutions (x1, y1), (x2, y2), (x3, y3), (x4, y4) with x1 < x2 < x3 < x4. Let Z =
max(x4, y1, y2, y3, y4). Then

ax3�x2  Z, s  Z + 1.

Similarly, if (1) has four solutions (x1, y1), (x2, y2), (x3, y3), (x4, y4) with y1 < y2 <
y3 < y4, max(y4, x1, x2, x3, x4) = Z, and (ra, sb) = 1, then

by3�y2  Z, r  Z + 1.

Lemma 3. (Lemma 4.5 of [14]) Let a > 1 and b > 1 be relatively prime integers.
For 1  i  m, let pi be one of the m distinct prime divisors of a. Let pgi

i ||bni ± 1,
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where ni is the least positive integer for which there exists a positive integer k such
that |bni � kpi| = 1, and ± is read as the sign that maximizes gi. Write

� =
X

i

gi log(pi)/ log(a).

Then, if
ax | by ± 1,

where the ± sign is independent of the above, we must have

ax | a�y.

Define �a(b) to be the � of this lemma, and let �b(a) be the � of this lemma with
the roles of a and b reversed.

In the course of this paper, we will often need to show that a given set of three
solutions does not have a fourth solution. We eliminate the possibility of a fourth
solution by one of three methods: using the method known as ‘bootstrapping’ (see
[4] or [18]), using bounds derived from LLL basis reduction (see [17]), or using x4

to calculate y4 and seeing if y4 is an integer (or using y4 to calculate x4).
The technique known as ‘bootstrapping’ assumes one knows the values of a, b,

r, s, x3, and y3. For simplicity of exposition assume � = � = 1 (the other cases are
only slightly more complicated) and consider (2) with (i, j) = (3, 4) where x3 < x4

and y3 < y4:
rax3(ax4�x3 � 1) = sby3(by4�y3 � 1).

Let ord(n, p) be the least positive integer such that p | nord(n,p)�1. When (ra, sb) =
1, for each prime p | sby3 , we have ord(a, p) | x4 � x3. Let x0 = lcm{ord(a, p) : p |
sby3} so x0 | x4 � x3. Similarly, define y0 = lcm{ord(b, p) : p | rax3} so y0 | y4 � y3.
Now we begin the bootstrapping steps. For each prime p | ax0 � 1 such that p 6 | sb,
ord(b, p) must divide y4�y3; setting Y0 = lcm(y0, {ord(b, p) : p | ax0�1}), we have Y0

in the role of a new y0 with Y0 | y4�y3. Now write y0 for Y0. For each prime p | by0�1
such that p 6 | ra, ord(a, p) | x4 � x3; setting X0 = lcm(x0, {ord(a, p) : p | by0 � 1}),
we have X0 in the role of a new x0 with X0 | x4 � x3. Now write x0 for X0. We
alternately use x0 to find a larger y0 if possible, the new y0 to find a larger x0 if
possible, etc., continuing to bootstrap back and forth until x0 or y0 exceeds 8 ·1014,
in which case x4 � x3 or y4 � y3 must exceed this bound, contradicting Lemma 1,
so no fourth solution exists.

For the LLL basis reduction algorithm, we follow the exposition in [17]. We have
±c = rax4 � sby4 so

rax4

sby4
= 1 ± c

sby4

and thus
log
⇣r

s

⌘
+ x4 log(a)� y4 log(b) = log

⇣
1 ± c

sby4

⌘
. (6)
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Since | log(1 ± x)| < 2x for 0 < x < 0.7968, one derives from (6) that, if c/(sby4) <
0.7968, ���log

⇣r

s

⌘
+ x4 log(a)� y4 log(b)

��� < 2
c

sby4

so ���log
⇣r

s

⌘
+ x4 log(a)� y4 log(b)

��� < 2c
s

e� log(b)y4 .

Choosing C = 1036, we set

A =
✓

1 [C log(a)]
0 [�C log(b)]

◆
, Y =

�
0
⇥
�C log

�
r
s

�⇤ �
,

where we set [X] to be the closest integer to X. Note that rows in the computer
algebra program Maple correspond to columns in [17]. Let B be the LLL basis
reduction of the rows of A, and let b1 and b2 be the rows of B. Set b⇤2 = b2� b2·b1

b1·b1 b1.
Further, define the vector � = Y B�1, define the number �2 = �[2], and let {�2} =
�2 � [�2] be the distance from �2 to the nearest integer. In our context, Lemma
VI.1 in [17] becomes

Lemma 4. Let S =
�
8 · 1014

�2, T = 8 · 1014 + 0.5, c1 = max(1, ||b1||2/||b⇤2||2),
c2 = 2c

s , c3 = log(b), and c4 = c�1
1 {�2}||b1||2. Assume c/(sby4) < 0.7968. If

c2
4 > S + T 2 then

y4 
1
c3

✓
log(Cc2)� log

✓q
c2
4 � S � T

◆◆
. (7)

Given a, b, c, r, s, and verifying that c/(sby4) < 0.7968, we can often use this
lemma to find that max(x4, y4) < min(a, s� 1), contradicting Lemma 2, and so we
can conclude that no fourth solution exists.

Finally, the third useful method to eliminate the possibility of a fourth solution
assumes we are given a, b, r, s, and either a potential x4 or a potential y4. Suppose
we have a bound c < 101000 and suppose y4 � b � 1000 so by4 > 103000. Using
| log(1 ± x)| < 2x for 0 < x < 0.7968, we see that (6) implies���log

⇣r

s

⌘
+ x4 log(a)� y4 log(b)

��� < 2 · 10�2000.

Since log(b) > 2, we have, to at least 2000 places of accuracy,

y4 = x4
log(a)
log(b)

+
log(r/s)
log(b)

(8)

and
x4 = y4

log(b)
log(a)

+
log(s/r)
log(a)

. (9)

If we know a, b, r, s, and x4, we can calculate y4 from (8) and if this y4 is not
an integer to 2000 places of accuracy, then no fourth solution can exist. Similarly,
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given y4 we can calculate x4 from (9) and show that this x4 is not an integer, thus
showing no fourth solution can exist.

We will also need the following.

Lemma 5. Suppose (1) has three solutions (x1, y1, u1, v1), (x2, y2, u2, v2), and
(x3, y3, u3, v3) and further assume that the following four conditions hold:

1.) x1 < x2 < x3 and y1 < y2 < y3,
2.) u1 6= v1,
3.) any solution (x, y) to (1) such that x > x1 and y > y1 must also satisfy

x � x2 and y � y2,
4.) R = rax1

gcd(rax1 ,sby1 ) > 2 and S = sby1

gcd(rax1 ,sby1 ) > 2.
Then x2 � x1 | x3 � x1 and y2 � y1 | y3 � y1.

Proof. Suppose we have three solutions to (1) satisfying all four conditions of the
lemma. Considering (2) with (i, j) = (1, 2) and (1, 3) we have

R(ax2�x1 + (�1)�2) = S(by2�y1 + (�1)�2)

and
R(ax3�x1 + (�1)�3) = S(by3�y1 + (�1)�3).

Since u1 6= v1, we must have �2 = �2 and �3 = �3. Let ↵ = 1 if �2 = �3 = 1,
otherwise let ↵ = 0. Let

t =
ax2�x1 + (�1)�2

S
=

by2�y1 + (�1)�2

R

and
T =

ax3�x1 + (�1)�3

S
=

by3�y1 + (�1)�3

R
.

Note that t and T are both integers.
Let g1 = gcd(x2 � x1, x3 � x1) and g2 = gcd(y2 � y1, y3 � y1). Let k be the least

integer such that bk +(�1)↵ is divisible by R. Then k must divide both y2�y1 and
y3 � y1, so that k divides g2, and

bg2 + (�1)↵ = Rl2

for some integer l2. (Note that, when ↵ = 0, 2n||k implies 2n||y2 � y1 when �2 = 0
and 2n+1 | y2� y1 when �2 = 1, similarly for y3� y1, so that, since min(�2, �3) = 0,
we have 2n||g2.) Similarly,

ag1 + (�1)↵ = Sl1

for some integer l1. Since g1 divides both x2 � x1 and x3 � x1, l1 divides t and T .
There must be an integer j which is the least positive integer such that bj + (�1)↵

is divisible by Rl1, and j must divide both y2� y1 and y3� y1, so that j divides g2.
Therefore l1|l2.



INTEGERS: 14 (2014) 7

A similar argument with the roles of a and b reversed shows that l2|l1, so that
l1 = l2, and we have

rax1(ag1 + (�1)↵) = sby1(bg2 + (�1)↵). (10)

(10) shows that (x1 + g1, y1 + g2) is a solution to (1). If x1 + g1 6= x2, then,
using Condition 3 in the formulation of the lemma, we see that we must have
x1 + g1 > x2, which is impossible by the definition of g1. So x1 + g1 = x2 and,
similarly, y1 + g2 = y2.

When N = 3, we find many sets of solutions. Here we list several types of sets
of solutions, each one of which generates an infinite number of basic forms (and
therefore an infinite number of families) giving three solutions to (1). We list these
sets of solutions in the form (a, b, c, r, s;x1, y1, x2, y2, x3, y3):

(a,
akd + (�1)u+v

ad + (�1)u
,
adb + (�1)u+v+1

h
,
b + (�1)v

h
,
ad + (�1)u

h
; 0, 1, d, 0, kd, 2) (11)

where a and b = akd+(�1)u+v

ad+(�1)u are integers greater than 1, d and k are positive
integers, h = gcd(ad + (�1)u, b + (�1)v), and u and v are in the set {0, 1}. When
u = 0, we take k � v odd; when (u, v) = (1, 1), we take ad  3. When a = d = 2
and (u, v) = (1, 1), we can take k to be a half integer. When k = 2 and u � v is
odd, the same choice of (a, b, r, s) as in (11) gives the additional set of solutions

(a, ad + (�1)v,
2ad + (�1)v

h
,
ad + (�1)v2

h
,
ad + (�1)v+1

h
; 0, 0, d, 1, 3d, 3). (12)

Other sets of solutions can be constructed with specified values of a. When a = 3
we have

(3,
3g + (�1)v

2
,
3g+1 + (�1)v

22+v�↵
,
3(3g�1 + (�1)v)

22+v�↵
, 21�v+↵; 0, 1, 1, 0, 2g, 3) (13)

where v 2 {0, 1}, g is a positive integer, ↵ = 0 when 2 | g � v, ↵ = 1 when g is odd
and v = 0, and ↵ = 2 when g is even and v = 1.

When a = 2 we have

(2, 2g + (�1)v, 2g + (�1)v+1, 2, 1; 0, 1, g � 1, 0, g, 1) (14)

where v 2 {0, 1} and g is a positive integer.
Also, it is easy to construct sets of solutions for which x1 = y1 = y2 = 0. For

example, we have, for a even and x > 0,

(a, 2ax ± 1, ax ± 1, 2, ax ⌥ 1; 0, 0, x, 0, 2x, 1). (15)
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More generally,

(a, b,
ax2 + (�1)t

2m
, 21�m,

ax2 + (�1)t+1

2m
; 0, 0, x2, 0, x3, y3), (16)

with by3 = 2ax3+(�1)t+w+1ax2+(�1)w+1

ax2+(�1)t+1 , where x2 > 0, x3 > 0, x2 | x3, and ax3 ⌘
(�1)w mod ax2+(�1)t+1

2m , for t 2 {0, 1}, w 2 {0, 1}, and m = 1 or 0 according as a is
odd or even.

We also find an infinite family for which gcd(a, b) > 1:

(a, b, c, r, s;x1, y1, x2, y2, x3, y3) =

(a, ta,
a(t + (�1)u+v+1)

h
,
ta + (�1)v

h
,
a + (�1)u

h
; 0, 0, 1, 1,m + 1, 2) (17)

where m � 0 is an integer, t = am+(�1)v

a+(�1)u is an integer, h = gcd(ta+(�1)v, a+(�1)u),
and u and v are in the set {0, 1}. Closely related to (17) is the following:

(2, 4t,
4t + 4

h1
,
4t + 1

h1
,

3
h1

; 0, 0, 2, 1,m1 + 2, 2) (18)

where m1 � �1 is an odd integer, t = 2m1+1
3 , h1 = 3 or 1 according as m1 ⌘ 5 mod 6

or not, and u, v 2 {0, 1}.
The MapleTM worksheets with the calculations for the following sections can be

found at [19].

3. Case (3) 0 = x1 < x2 < x3 < x4, 0 = y1 < y2 < y3 < y4

Lemma 6. Suppose min(a, b)  170000. Then any set of solutions to (1) satisfying
conditions (3) has N < 4.

Proof. Suppose (3) holds with N > 3. By symmetry, we may assume a > b.
Further assume a is not a perfect power. Taking (2) with (i, j) = (2, 3) we have
rax2(ax3�x2 + (�1)�) = sby2(by3�y2 + (�1)�). Lemma 2 shows by3�y2  Z so
Lemma 1 shows y3 � y2 < log(8 · 1014)/ log(b). For each choice of b  170000,
� 2 {0, 1}, and y3� y2 < log(8 · 1014)/ log(b), we see that ax2 is a factor of by3�y2 +
(�1)� < 8 · 1014; this is small enough to factor easily, so we can list all factors
ax2 , hence we know all possible a and x2. Lemma 2 bounds ax3�x2  Z. For
each choice of x3 � x2 < log(8 · 1014)/ log(a) and of � 2 {0, 1}, we calculate the
power of b dividing ax3�x2 + (�1)� which gives us the maximal possible value for
y2, call it y2,max. If y2,max > 0, for each y2 with 1  y2  y2,max and h =
gcd(ax3�x2 + (�1)� , by3�y2 + (�1)�), we can solve for r = (by3�y2 + (�1)�)/(ax2h)
and s = (ax3�x2+(�1)�)/(by2h). We have y3 = (y3�y2)+y2 and x3 = (x3�x2)+x2.
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We see that c = |rax2 � sby2 |. We now check if c = |r ± s|. If so, we have values a,
b, c, r, and s for which (1) has at least three solutions.

For each set of at least three solutions found for b  170000, we use the LLL
method or bootstrapping to show that there is no fourth solution.

Lemma 7. If (a, b, c, r, s) are chosen as in (12) with d = 1 and min(a, b) > 4, then
(1) has only the three solutions given in (12).

Proof. Assume some instance of (12) with d = 1 and min(a, b) > 4 has a fourth
solution. Note that no subset or associate of a subset of any of the sets of solutions
listed in Theorem 1 is in the same family as a set of solutions which is an instance
of (12) having d = 1, min(a, b) > 4, and a fourth solution for the same (a, b, c, r, s).
So by Lemma 1 we must have (3) (note that we cannot have (5) since (12) with
d = 1 and min(a, b) > 4 requires that a fourth solution must have min(x, y) > 0).
By Lemma 6, we need only consider a > 170000.

Now if the fourth solution in question is (x, y) with y = 2, then

hrax = ±hc ± hsb2 = ±(2a + (�1)v) ± (a + (�1)v+1)(a + (�1)v)2 6⌘ 0 mod a2,

contradicting Lemma 1, which (considering (12)) requires x = 2. So if d = 1, any
fourth solution (x4, y4) to (12) must satisfy x4 > 3 and y4 > 3.

Lemma 2 shows that max(x4, y4) � a > 170000 while Lemma 1 shows that
c  r + s < 16 · 1014 so certainly x4 > 100.

When d = 1 and v = 0, we have b = a+1, rh = a+2, sh = a�1, and ch = 2a+1,
where h = gcd(a + 2, a� 1). Considering the solution (x3, y3) = (3, 3), we get

(2a + 1) + (a� 1)b3 = (a + 2)a3. (19)

Considering the solution (x4, y4) we get

(2a + 1) + (a� 1)by4 ⌘ 0 mod (a + 2)a100. (20)

Combining (19) and (20) we find

(a� 1)(by4�3 � 1) ⌘ 0 mod (a + 2)a3, (21)

which requires a2 | y4� 3 except possibly when a ⌘ 2 mod 4 (see Lemma 1 of [12]).
If a ⌘ 2 mod 4, let 2g || a + 2 = b + 1 and let a/2 = a0; then instead of (21) we can
use

(by4�3 � 1) ⌘ 0 mod 2g+3a3
0

which again requires a2 | y4 � 3. So we can write y4 = 3 + ja2 for some integer
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j > 0. For some integers M1 and M2 we have

(2a + 1) + (a� 1)

 
1 + (3 + ja2)a +

(3 + ja2)(3 + ja2 � 1)
2

a2

+
(3 + ja2)(3 + ja2 � 1)(3 + ja2 � 2)

6
a3

+
(3 + ja2)(3 + ja2 � 1)(3 + ja2 � 2)(3 + ja2 � 3)

24
a4 + M1a

5

!
= M2a

100

from which we derive, for some integer M3,

(2� j)a3 +
✓

1� 3
2
j

◆
a4 =

M3

6
a5 (22)

so that j = (wa/6) + 2 for some integer w � 0. If w = 0 then (22) becomes
impossible. If w > 0 then y4 � 3 +

�
a
6 + 2

�
a2 > 8 · 1014 when a > 170000, so we

have a contradiction to Lemma 1, showing the impossibility of a fourth solution.
When d = 1, v = 1, we have b = a� 1, which is equivalent to the previous case

after reversing the roles of a and b. Thus, in each case, no instance of (12) with
d = 1 and min(a, b) > 4 has a fourth solution.

Lemma 8. Any set of solutions to (1) satisfying (3) has N < 4.

Proof. Using Lemma 6, assume a > b > 170000. Suppose (1) satisfying (3) has four
solutions with 0 = x1 < x2 < x3 < x4 and 0 = y1 < y2 < y3 < y4. To fix notation,
let

c = �(�1)↵r + (�1)�s = (�1)�(rax2 � sby2) = (�1)�(rax3 � sby3)
= (�1)✏(rax4 � sby4)

for some ↵,�, �, �, ✏ 2 {0, 1}. Considering (2) with (i, j) = (1, 2) and (i, j) = (2, 3),
we have

r(ax2 + (�1)↵+�) = s(by2 + (�1)�+�) (23)

and
rax2(ax3�x2 � (�1)�+�) = sby2(by3�y2 � (�1)�+�). (24)

Suppose x3 � x2 = y3 � y2 = 1. Since (ra, sb) = 1, from (24) we have ax2 |
b� (�1)�+�; therefore, since a > b, we have x2 = 1, (�1)�+� = �1, and a = b + 1.
Then by2 | a � (�1)�+� = a + 1 = b + 2 which is impossible for b > 2. Thus we
have max(x3 � x2, y3 � y2) � 2. By Lemma 2, max(x3 � x2, y3 � y2)  2 since
a > b > 170000. Thus,

max(x3 � x2, y3 � y2) = 2. (25)
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Taking the ratio of (23) and (24),

ax2(ax3�x2 � (�1)�+�)
ax2 + (�1)↵+�

=
by2(by3�y2 � (�1)�+�)

by2 + (�1)�+�
. (26)

We rewrite this as

(ax3�x2 � (�1)�+�)
✓

1� (�1)↵+�

ax2 + (�1)↵+�

◆
=

(by3�y2 � (�1)�+�)
✓

1� (�1)�+�

by2 + (�1)�+�

◆
.

From this we obtain

ax3�x2 � by3�y2 =

ax3�x2
(�1)↵+�

ax2 + (�1)↵+�
� by3�y2

(�1)�+�

by2 + (�1)�+�
� (�1)↵+�

ax2 + (�1)↵+�
+

(�1)�+�

by2 + (�1)�+�

so

|ax3�x2 � by3�y2 | 

ax3�x2
1

ax2 + (�1)↵+�
+ by3�y2

1
by2 + (�1)�+�

+
1

ax2 + (�1)↵+�
+

1
by2 + (�1)�+�

.

Since ax2 + (�1)↵+� � b and by2 + (�1)�+� � b� 1,

|ax3�x2 � by3�y2 |  ax3�x2

b
+

by3�y2

b� 1
+

1
b

+
1

b� 1

and since (25) gives max(ax3�x2 , by3�y2) � b2,

|ax3�x2 � by3�y2 | < max(ax3�x2 , by3�y2)
✓

1
b

+
1

b� 1
+

1
b3

+
1

(b� 1)b2

◆
.

Therefore,

|ax3�x2 � by3�y2 | <
2

b� 1
max

�
ax3�x2 , by3�y2

�
so that, since b > 3,

✓
1� 2

b� 1

◆
by3�y2 < ax3�x2 <

✓
1� 2

b� 1

◆�1

by3�y2 (27)

and similarly
✓

1� 2
b� 1

◆
ax3�x2 < by3�y2 <

✓
1� 2

b� 1

◆�1

ax3�x2 . (28)
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We now show x2  x3 � x2. From (24) and (28) we have

ax2 | by3�y2 � (�1)�+� <

✓
1� 2

b� 1

◆�1

ax3�x2 + 1 < ax3�x2+1,

so x2  x3 � x2. Similarly, one can show that y2  y3 � y2.
We can further show x2 < x3 � x2. Suppose z = x2 = x3 � x2. Then (24) gives

az | by3�y2 � (�1)�+� so (28) shows

az | by3�y2 � (�1)�+� <

✓
1� 2

b� 1

◆�1

az + 1 < 2az.

Thus, az = by3�y2 � (�1)�+� and (26) becomes

(by3�y2 � (�1)�+�2)(by2 + (�1)�+�) = by2(by3�y2 + (�1)↵+� � (�1)�+�)

which is impossible modulo b. Thus, 1  x2 < x3 � x2; similar arguments show
1  y2 < y3 � y2.

Recalling (25) we find x2 = y2 = 1 and x3 = y3 = 3. If (�1)�+� = 1 then (26)
can be rewritten as a(a� (�1)↵+�) = b(b� (�1)�+�). This implies a = b� (�1)�+�

and so b = a � (�1)↵+� , � 6= � and ↵ = �, so c = �(�1)↵r + (�1)�s > 0 shows
↵ = � = 1 and � = 0. Then r = (a � 2)/h, s = (a + 1)/h, and c = (2a � 1)/h
where h = gcd(a � 2, a + 1)  3. We see that the case under consideration in this
paragraph satisfies (12) with d = v = 1. By Lemma 7, this cannot lead to a fourth
solution.

So (�1)�+� = �1, and (26) becomes

a(a2 + 1)(b + (�1)�+�) = b(b2 + 1)(a + (�1)↵+�).

Since gcd(a2 + 1, a ± 1)  2 and gcd(b2 + 1, b ± 1)  2, we must have

a + (�1)↵+� | 2(b + (�1)�+�), b + (�1)�+� | 2(a + (�1)↵+�). (29)

Note that (27) gives

a <
bq

1� 2
b�1

< b + 2

for b � 6 so a = b + 1. But then (29) is impossible.

4. Case (4) 0 = x1 < x2 < x3 < x4, 0 = y2 < y1 < y3 < y4

We begin with some preliminaries. To fix notation, let

c = (�1)↵r+sby1 = rax2 +(�1)�s = (�1)�(rax3�sby3) = (�1)�(rax4�sby4) (30)
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for some ↵, �, �, and � 2 {0, 1}. Applying (2) with (i, j) = (2, 3), (1, 2), and (1, 3),
we have

r(ax3 � (�1)�ax2) = s(by3 + (�1)�+�), (31)

r(ax2 � (�1)↵) = s(by1 � (�1)�), (32)

and
r(ax3 � (�1)↵+�) = s(by3 + (�1)�by1). (33)

Taking the ratio of (31) and (32), we obtain

ax3 � (�1)�ax2

ax2 � (�1)↵
=

by3 + (�1)�+�

by1 � (�1)�
. (34)

Similarly, the ratio of (33) with (32) gives

ax3 � (�1)↵+�

ax2 � (�1)↵
=

by3 + (�1)�by1

by1 � (�1)�
, (35)

and considering (31) with (33), one gets

ax3 � (�1)�ax2

ax3 � (�1)↵+�
=

by3 + (�1)�+�

by3 + (�1)�by1
. (36)

Lemma 9. For b  103 and a < 8 · 1014 we must have b�b(a) < 1022, where �b(a)
is defined immediately following Lemma 3.

Proof. Let b = p be an odd prime less than 1000. Let k = d22 log(10)/ log(b)e, so
pk � 1022. If p�p(a) � 1022 then �p(a) � k. Choose ↵ 2 {0, 1} to minimize the
positive integer n such that p | an + (�1)↵. Note that n | (p� 1)/2. By definition,
p�p(a) | an+(�1)↵. Let a0 be any solution to xn+(�1)↵ ⌘ 0 mod p. Using Hensel’s
lifting lemma, we find a unique solution a1 to the congruence an

1 +(�1)↵ ⌘ 0 mod pk

with a1 ⌘ a0 mod p. For each prime p < 103, for each n|(p � 1)/2, and for each
solution a0 mod p, calculations show that the associated a1 mod pk exceeds 8 ·1014.
In other words, for every prime p < 103, if p�p(a) � 1022, then a > 8 · 1014.

Now suppose b = p�1
1 p�2

2 . By definition of �, b�b(a) = pg1
1 pg2

2 for some positive
integers g1 and g2. For any given 1  k2  22 log(10)/ log(p2), let

k1 =
⇠

22 log(10)� k2 log(p2)
log(p1)

⇡
.

Note that if b�b(a) = pg1
1 pg2

2 � 1022 for some a, then there exists 1  k2 
22 log(10)/ log(p2) such that k2  g2 and k1  g1.

Suppose b�b(a) = pg1
1 pg2

2 with k1  g1 and k2  g2. By definition of �, there
exists n1 | (p1 � 1)/2, n2 | (p2 � 1)/2, and ↵1,↵2 2 {0, 1} such that

pg1
1 | an1 + (�1)↵1 , pg2

2 | an2 + (�1)↵2 ,
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so
an1 + (�1)↵1 ⌘ 0 mod pk1

1 , an2 + (�1)↵2 ⌘ 0 mod pk2
2 .

For each choice of n1 | (p1 � 1)/2, we can list all values of a mod p1 with an1 +
(�1)↵1 ⌘ 0 mod p1. Using Hensel’s lifting lemma, we can obtain a complete list of
all possible values of a mod pk1

1 satisfying an1 + (�1)↵1 ⌘ 0 mod pk1
1 . Similarly, for

each choice of n2 | (p2� 1)/2, we can obtain a complete list of all possible values of
a mod pk2

2 satisfying an2 + (�1)↵2 ⌘ 0 mod pk2
2 . Thus, for each choice of p1, p2, k2,

n1 | (p1 � 1)/2, n2 | (p2 � 1)/2, and ↵1,↵2 2 {0, 1}, we can obtain every possible
a mod pk1

1 pk2
2 satisfying

pk1
1 | an1 + (�1)↵1 , pk2

2 | an2 + (�1)↵2 .

Calculations show that each potential a exceeds 8 · 1014. In other words, if b�b(a) �
1022 then a > 8 · 1014.

Suppose b = p�1
1 p�2

2 p�3
3 with p1 < p2 < p3. By definition of �, b�b(a) = pg1

1 pg2
2 pg3

3

for some positive integers g1, g2, and g3. For any given k3  22 log(10)/ log(p3),
and any k2  (22 log(10)� k3 log(p3))/ log(p2), let

k1 =
⇠

22 log(10)� k3 log(p3)� k2 log(p2)
log(p1)

⇡
.

If b�b(a) = pg1
1 pg2

2 pg3
3 � 1022 for some a, there exist k3 and k2 such that k3  g3,

k2  g2, and k1  g1. For each choice of p1, p2, p3, k3, k2, n1 | (p1 � 1)/2,
n2 | (p2 � 1)/2, n3 | (p3 � 1)/2, ↵1,↵2,↵3 2 {0, 1}, we proceed as in the previous
paragraph to obtain every possible a mod pk1

1 pk2
2 pk3

3 satisfying

pk1
1 | an1 + (�1)↵1 , pk2

2 | an2 + (�1)↵2 , pk3
3 | an3 + (�1)↵3 .

The calculations verify that each possible a exceeds 8 · 1014.
Finally, suppose b < 103 is the product of four primes. The same procedure

works. Since each b  103 has four or fewer distinct prime factors, we conclude that
if b�b(a) � 1022 then a > 8 · 1014.

The following two lemmas apply to the following set of solutions to (1):

(a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ), N � 3, 0 = x1 < x2 < x3 < · · · < xN ,

0 = y2 < y1 < y3 < · · · < yN . (37)

Lemma 10. If (37) holds, then either x2  x3 � x2 or y1  y3 � y1.

Proof. Assume the set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) satisfies
(37), and further assume x2 > x3 � x2 and y1 > y3 � y1.



INTEGERS: 14 (2014) 15

From (34) we get

ax3�x2�(�1)�+
(�1)↵ax3�x2 � (�1)↵+�

ax2 � (�1)↵
= by3�y1+

(�1)�by3�y1 + (�1)�+�

by1 � (�1)�
. (38)

If min(a, b) > 2, we see that | (�1)↵ax3�x2�(�1)↵+�

ax2�(�1)↵ |  3+1
9�1 = 1

2 . Similarly, we see

that | (�1)�by3�y1+(�1)�+�

by1�(�1)� |  1
2 . In both cases the value 1/2 is possible only when a

(respectively, b), equals 3, x2 (respectively, y1) equals 2, and x3 � x2 (respectively,
y3�y1) equals 1. By Lemma 2.2 of [14], we cannot have (a, b) > 1 when (37) holds,
so we must have

|ax3�x2 � by3�y1 � (�1)� | < 1, (39)

so the left side of (39) must be zero.
But now from (36) we have

(�1)�ax3�x2 � (�1)�by3�y1 � 1 =
(�1)�+�ax3 � (�1)↵+�by3 � (�1)↵+�

ax2by1
. (40)

But, from (39), the left side of (40) must be zero, which is impossible since the
numerator on the right side of (40) cannot be zero by Mihailescu’s theorem [9] since
x3 and y3 both are greater than 2.

So we can assume min(a, b) = 2. We see that
��� (�1)↵ax3�x2�(�1)↵+�

ax2�(�1)↵

���  2+1
4�1 = 1.

Similarly, we have
��� (�1)�by3�y1+(�1)�+�

by1�(�1)�

���  1. In both cases the value 1 is possible
only when a (respectively, b), equals 2, x2 (respectively, y1) equals 2, and x3 � x2

(respectively, y3 � y1) equals 1. (a, b) = 1, so we must have
��ax3�x2 � by3�y1 � (�1)�

�� < 2, (41)

so the left side of (41) must be zero or one. If the left side of (41) is zero, then again
we can use (36) to obtain a contradiction as above. If the left side of (41) equals
one, then recall (a, b) = 1 and note that ax3�x2 � by3�y1 = ±2 is impossible when
min(a, b) = 2.

Lemma 11. If min(a, b) > 6 in (37), then x2 = x3 � x2 implies y1  y3 � y1, and
also y1 = y3 � y1 implies x2  x3 � x2.

Proof. By symmetry, it su�ces to prove that x2 = x3 � x2 implies y1  y3 � y1.
Assume y1 > y3 � y1 and x2 = x3 � x2. Since by3�y1+(�1)�

by1�(�1)� < 1, we cannot have

↵ = � in (38), so that ax3�x2�(�1)�

ax2�(�1)↵ = 1 ± 2
A⌥1 where A = ax2 = ax3�x2 . Since

2
A⌥1 + by3�y1+(�1)�

by1�(�1)� < 1, we must have by3�y1+(�1)�

by1�(�1)� = 2
A⌥1 , so that by3�y1 +(�1)� |

2(by1 � (�1)�). Then, using the elementary divisibility properties of by ± 1 (for
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general integer y), we see that, since b > 3, we must have y3 � y1 | y1. Let
B = by3�y1 . Let j = 2y1�y3

y3�y1
, noting that j is a positive integer. Then

1 + (�1)�

B

Bj
⇣
1� (�1)�

Bj+1

⌘ =
2

A(1⌥ 1
A )

,

so that, letting k = min(a, b) > 6,

B 
A(1 + 1

k )2

2(1� 1
k2 )

=
A(1 + 1

k )
2(1� 1

k )
 2

3
A. (42)

But from (38) we get

B � A� 2 = A(1� 2
A

) � A(1� 2
k

) � 5
7
A,

contradicting (42).

Lemma 12. Suppose min(a, b)  1000. Then any set of solutions to (1) satisfying
conditions (4) has N < 4.

Proof. Assume (4) holds with N > 3. By symmetry, we may assume a > b. Let
b  103 and assume a is not a perfect power. Considering (2) with (i, j) = (3, 4)
and applying Lemma 3 and Lemma 9, we have

by3 |b�b(a)(x4 � x3) < 1022Z < 8 · 1036, (43)

so y3 < log(8 · 1036)/ log(b).
Choose b  1000 and ⌫ 2 {0, 1} where ⌫ = �+� as in (31). Considering (31) and

noting that (ra, sb) = 1, ax2 must be a divisor of by3 + (�1)⌫ . It is easy to factor
by3 + (�1)⌫ < 8 · 1036, so for each b, y3, and ⌫ we obtain every possible ax2 hence a
complete list of possible values for a and its associated x2 exponent. Lemma 2 gives
a bound x3 � x2 < log(8 · 1014)/ log(a). For each x3 � x2 within this bound and
each µ 2 {0, 1}, we can solve r = (by3 + (�1)⌫)/(ax2h) and s = (ax3�x2 + (�1)µ)/h
where h = gcd(ax3�x2 + (�1)µ, by3 + (�1)⌫).

Considering (2) with (i, j) = (1, 3), we should have r(ax3+(�1)⌘) = sby1(by3�y1+
(�1)✓) for some ⌘, ✓ 2 {0, 1}. We now determine if there is a value ⌘ 2 {0, 1} for
which b|ax3 +(�1)⌘, in which case we determine y1 such that by1 ||ax3 +(�1)⌘. Now
we see if there is a value ✓ 2 {0, 1} for which r(ax3 +(�1)⌘) = sby1(by3�y1 +(�1)✓).
If so, we have three solutions to (1) with c = |rax3 � sby3 |.

Now apply bootstrapping as outlined above; our calculations show that in each
case x4 or y4 exceeds 8 · 1014, hence there is no fourth solution.



INTEGERS: 14 (2014) 17

We can reformulate (11) as✓
bkd + (�1)u+v

bd + (�1)u
, b,

abd � (�1)u+v

h
,
bd + (�1)u

h
,
a + (�1)v

h
; 0, d, 1, 0, 2, kd

◆
, (44)

where b > 1, a = bkd+(�1)u+v

bd+(�1)u , d and k are positive integers, h = gcd(a+(�1)v, bd +
(�1)u), u and v are in the set {0, 1}, and if u = 0 then k � v must be odd, or if
u = 1 then v = 0. (Note that this reformulation excludes the case u = v = 1 with
bd  3 and also excludes the case in which k is a half integer.)

Lemma 13. If (a, b, c, r, s) are chosen as in (44), then (1) has only the three solu-
tions given in (44).

Proof. Whenever (44) holds, we cannot have r + sbd = ra + s = c, since then
u = v = 1, contradicting the conditions of (44). So we must have either

sbd � r = c (45)

or
ra� s = c. (46)

Assume there is an instance of (44) having a fourth solution (x4, y4). Note that no
subset or associate of a subset of any of the sets of solutions listed in Theorem 1 is
in the same family as a set of solutions which is an instance of (44) having a fourth
solution. So by Lemma 1, we can assume (4) holds, so that

x4 > 2, y4 > kd, k > 1. (47)

By Lemma 12, we may assume b > 1000. Now a � b(k�1)d� b(k�2)d > 8 · 1014 when
b > 1000 and (k � 1)d � 5, so, by Lemma 1, we must have k < 6. From (44) we
derive sh ⌘ ±(k + 1) mod rh, so that h | k + 1, giving h < 7, so that we certainly
have

min(r, s) > 2. (48)

We will now use Lemma 5 to show that d | y4. When (45) holds, we apply
Lemma 5 to the solutions (0, d), (2, kd), and (x4, y4), noting that (47) gives Con-
ditions (1.) and (3.) of Lemma 5, (45) gives Condition (2.), and (48) gives Con-
dition (4.) (recall (4) requires (ra, sb) = 1). Now we can use Lemma 5 to get
(k � 1)d | y4 � d. Similarly, when (46) holds, we can apply Lemma 5 to the solu-
tions (1, 0), (2, kd), and (x4, y4) to get kd | y4. In either case, we have d | y4. So,
in considering the set of solutions (a, b, c, r, s; 0, d, 1, 0, 2, kd, x4, y4), we can assume
d = 1 without loss of generality, noting that we have reformulated the meanings of
b and y4.

Thus we have d = 1 and 2  k  5. We can apply the LLL basis reduction
method to show that there are no solutions for b  6 · 105. There are a handful of
b values for which the LLL method fails, and we handle these by bootstrapping.
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Using a � b � 1 and max(x4, y4) � a we see that y4 = max(x4, y4) implies
y4 � a � b � 1, while x4 = max(x4, y4) implies aa � (a(a + 1) + 1)  rax4 � c 
sby4  (a + 1)y4+1. In either case, we certainly have y4 > 100.

Suppose d = 1 and k = 4 or 5. Then a � b3 � b2 + b� 1 > 8 · 1014 for b > 6 · 105

so these cases cannot lead to a fourth solution.
Suppose d = 1 and k = 3, so a = b2 ⌥ b + 1, rh = b ± 1, sh = b2 ⌥ b + 2, and

ch = b3 ⌥ b2 + b⌥ 1, where we take the upper sign when u = v = 0 and the lower
sign when u = 1 and v = 0. From (44) we have

rax4 + c ⌘ ra2 + c ⌘ 0 mod sb3. (49)

When b is even, h is odd and s is even, so

rax4 + c ⌘ ra2 + c ⌘ 0 mod 2b3. (50)

When b ⌘ 2 mod 4, then, letting 2g||a + 1 = sh, we have, noting 2 6 |h,

rax4 + c ⌘ ra2 + c ⌘ 0 mod 2g+3(b/2)3. (51)

Let n be the least number such that an ⌘ 1 mod G where G = b3 when b is odd,
G = 2b3 when b ⌘ 0 mod 4, and G = 2g+3(b/2)3 when b ⌘ 2 mod 4. Then, using
the elementary divisibility properties of ax � 1 (for general integer x), we find that
when b is odd, n = b2, and when b is even, n = 2b2. Now from (49), (50), and (51)
we see that we have x4 = 2 + jb2 where j � 0 is an integer. (We note that when b
is even, j is even, although for this case we will not need this.) We have, for some
integer M ,

ax4 = (b2 ⌥ b + 1)x4 = 1 + x4(b2 ⌥ b) +
x4(x4 � 1)

2
(b2 ⌥ b)2+

x4(x4 � 1)(x4 � 2)
6

(b2 ⌥ b)3 + M(b2 ⌥ b)4

and thus

rhax4 + ch = (b ± 1)

 
1 + (2 + jb2)(b2 ⌥ b) +

(2 + jb2)(1 + jb2)
2

(b2 ⌥ b)2+

(2 + jb2)(1 + jb2)jb2

6
(b2 ⌥ b)3 + M(b2 ⌥ b)4

!
+ (b3 ⌥ b2 + b⌥ 1).

Collecting like powers we find (recalling y4 > 100)

rhax4 + ch = (2� j)b3 +
M1

6
b4 = M2b

100

where M1 and M2 are integers. Thus, j = wb/6+2 for some integer w � 0, so that,
when w > 0, x4 � 2+2b2 + b3/6 > 8 ·1014 since b > 6 ·105, contradicting Lemma 1.
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So w = 0 and x4 = 2+2b2 < 8 · 1014, so that b < 2 · 107 and c < 1022. We apply (8)
for each b with 6 · 105 < b  2 · 107. The calculations show that for every b in this
range, (8) never gives an integral value for y4 within 25 places of accuracy, hence
x4 = 2 + 2b2 cannot lead to a fourth solution. Thus, when d = 1 and k = 3, (44)
cannot have a fourth solution.

Suppose d = 1, k = 2, u = 1, and v = 0, so a = b+1, rh = b� 1, sh = b+2, and
ch = b2 +b+1. From (44) we have rax4 +c ⌘ ra2 +c ⌘ 0 mod sb2. Now proceeding
as in the case k = 3, we derive x4 = 2 + jb where j is even when b is even. Write
x4 = 2 + e1b + e2b2 with 0  e1 < b, noting 2|e1 when 2|b. For some integer M we
have

rhax4 + ch = (b� 1)

 
1 + (2 + e1b + e2b

2)b +
(2 + e1b + e2b2)(1 + e1b + e2b2)

2
b2

+ Mb3

!
+ (b2 + b + 1).

Noting
�
x4(x4�1)/2

�
�1 is an integer divisible by b, and noting y4 > 100, we have,

for some integers M1 and M2,

rhax4 + ch = (2� e1)b2 + M1b
3 = M2b

100

so that e1 ⌘ 2 mod b, so e1 = 2.
Write x4 = 2 + 2b + e2b2 with 0  e2. For some integer M we have

rhax4 + ch = (b� 1)

 
1 + (2 + 2b + e2b

2)b +
(2 + 2b + e2b2)(1 + 2b + e2b2)

2
b2

+
(2 + 2b + e2b2)(1 + 2b + e2b2)(2b + e2b2)

6
b3 + Mb4

!
+ (b2 + b + 1).

From this we obtain, for some integers M1 and M2,

rhax4 + ch = �e2b
3 +

M1

6
b4 = M2b

100.

Thus e2 = wb/6 for some integer w � 0. As before, we show w = 0, so it remains
only to deal with x4 = 2 + 2b. We have c  b2 + b + 1 < 6.4 · 1029 + 8 · 1014 + 1, so
that we can use (8), which implies, for some ✏ such that |✏| < 10�2000,

y4 =
1

log(b)
(x4 log(b + 1)� log(b + 2) + log(b� 1)) + ✏

=
1

log(b)

✓
x4 log(b) + x4 log

✓
1 +

1
b

◆
� log

✓
1 +

2
b

◆
+ log

✓
1� 1

b

◆◆
+ ✏. (52)
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From this one gets

y4 � x4 =
1

log(b)

✓
x4 log

✓
1 +

1
b

◆
� log

✓
1 +

2
b

◆
+ log

✓
1� 1

b

◆◆
+ ✏.

Plugging in x4 = 2 + 2b into x4 log
�
1 + 1

b

�
� log

�
1 + 2

b

�
+ log

�
1� 1

b

�
and taking

Taylor series in terms of z = 1/b < 1/1000, one can show that the Taylor series
2 � 2z + 7z2/6 � 17z3/6 + . . . is alternating and has terms decreasing in absolute
value, hence, since by Lemma 1 we have log(b) < 35,

0 <
1

log(b)

✓
2� 2

1
b

◆
+ ✏ < y4 � x4 <

2
log(b)

+ ✏ < 1

which contradicts y4 being an integer. So x4 = 2 + 2b is not possible in this case,
completing the proof that no fourth solution is possible when d = 1, k = 2, u = 1,
v = 0.

Suppose d = 1, k = 2, u = 0, and v = 1. Then a = b � 1 (recall we have
reformulated b to represent bd), and reversing the roles of a and b, this becomes
identical to the case just completed.

Thus (44) does not have a fourth solution.

Lemma 14. Any set of solutions to (1) satisfying conditions (4) has N < 4.

Proof. By Lemma 12 we can assume a > b > 1000. Suppose (1) has four or more
solutions and (4) holds.

From (34) we get

ax3�x2 +
(�1)↵ax3�x2 � (�1)�ax2

ax2 � (�1)↵
= by3�y1 +

(�1)�by3�y1 + (�1)�+�

by1 � (�1)�

and so

|ax3�x2 � by3�y1 |  ax3�x2

ax2 � 1
+ 1 +

1
ax2 � 1

+
by3�y1

by1 � 1
+

1
by1 � 1

. (53)

Then the right side of (53) can be bounded as follows:

|ax3�x2 � by3�y1 |  ax3�x2

b
+ 1 +

1
b

+
by3�y1

b� 1
+

1
b� 1

, (54)

and noting that max(ax3�x2 , by3�y1) � b,

|ax3�x2 � by3�y1 |  max(ax3�x2 , by3�y1)
✓

1
b

+
1
b

+
1
b2

+
1

b� 1
+

1
(b� 1)b

◆

so
|ax3�x2 � by3�y1 | < max(ax3�x2 , by3�y1)

✓
3

b� 1

◆
.
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Since b > 4,

✓✓
1� 3

b� 1

◆
by3�y1

◆ 1
x3�x2

< a <

 ✓
1� 3

b� 1

◆�1

by3�y1

! 1
x3�x2

. (55)

Since a > b, this implies x3 � x2  y3 � y1.
Since 1000 < b and by3�y1 < 8 · 1014 we must have y3 � y1  4. We divide this

proof into a number of cases:

2  x3 � x2 < y3 � y1  4,

3  x3 � x2 = y3 � y1  4

x3 � x2 = y3 � y1 = 2

x3 � x2 = 1, y1 � y3 � y1

x3 � x2 = 1, y1 < y3 � y1 = 3, 4

x3 � x2 = 1, 1 = y1 < y3 � y1 = 2.

In each case, a key idea is to use (53).
If 2  x3 � x2  y3 � y1  4, noting that max(ax3�x2 , by3�y1) � b2, (54) implies

|ax3�x2 � by3�y1 |  max(ax3�x2 , by3�y1)
✓

1
b

+
1
b2

+
1
b3

+
1

b� 1
+

1
(b� 1)b2

◆

so
|ax3�x2 � by3�y1 | < max(ax3�x2 , by3�y1)

✓
2

b� 2

◆
.

Since b > 4,

✓✓
1� 2

b� 2

◆
by3�y1

◆ 1
x3�x2

< a <

 ✓
1� 2

b� 2

◆�1

by3�y1

! 1
x3�x2

. (56)

Suppose 2  x3�x2 < y3�y1  4. Given y3�y1 and x3�x2 with these bounds,
consider each b with 1000 < b < (8 · 1014)

1
y3�y1 . Then for each a satisfying (56)

with gcd(a, b) = 1, we consider (2) with (i, j) = (3, 4) and apply Lemma 3 to get
by3 |b�b(a)(x4 � x3) < b�b(a)8 · 1014. Thus, y3 < �b(a) + log(8 · 1014)/ log(b). From
(31) ax2 | by3 + (�1)�+� . For each y3 < �b(a) + log(8 · 1014)/ log(b) and each �,
� 2 {0, 1}, let x2,max be the largest power of a dividing by3 +(�1)�+� . If x2,max > 0
then for each 1  x2  x2,max and each ↵ 2 {0, 1}, we set y1 = y3 � (y3 � y1), r =
(by1 � (�1)�)/h, and s = (ax2 � (�1)↵)/h where h = gcd(ax2 � (�1)↵, by1 � (�1)�).
Let c = (�1)↵r + sby1 . If c = rax2 + (�1)�s = (�1)�(rax3 � sby3) then we have
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three solutions to (1). Our calculations show that for (x3 � x2, y3 � y1) = (2, 3),
(2, 4), or (3, 4), only two closely related cases of three solutions occur:

(a, b, c, r, s;x1, y1, x2, y2, x3, y3) =(56744, 1477, 83810889, 1478, 56743; 0, 1, 1, 0, 3, 4),
(56745, 1477, 41906182, 739, 28373; 0, 1, 1, 0, 3, 4).

We apply bootstrapping to these; our calculations show that either there is no fourth
solution or else y4 > 8 · 1014, impossible, so these two sets of three solutions do not
extend to a fourth solution.

Suppose x3 � x2 = y3 � y1 = z where z = 3 or 4. From (56) we obtain the
impossibility

b < a <

✓
1� 2

b� 2

◆�1
z

b 
✓

1 +
2

b� 4

◆1/3

b < b + 1. (57)

Suppose x3 � x2 = y3 � y1 = 2. We consider several subcases.
Suppose x2 � x3 � x2 = 2 and y1 � y3 � y1 = 2. Then, since b > 4, (53) implies

the impossibility

a2 � b2 < 1 +
1
b

+ 1 +
1
b

+ 1 +
1

b� 1
+

1
b� 1

< 4.

Suppose x2 � x3 � x2 = 2, 1 = y1 < y3 � y1 = 2. Then, since b > 4, (53) implies
the impossibility

2b + 1  a2 � b2 < 1 +
1
b

+ 1 +
1
b

+
b2

b� 1
+

1
b� 1

< b + 4.

Suppose 1 = x2 < x3 � x2 = 2, y1 � y3 � y1 = 2. Then, since b > 4, (53) implies
the impossibility

2a� 1  a2 � b2 <
a2

a� 1
+ 1 +

1
a� 1

+ 1 +
1

b� 1
+

1
b� 1

< a + 4.

Suppose 1 = x2 < x3 � x2 = 2, 1 = y1 < y3 � y1 = 2. Then (56) shows that

b < a <
bq

1� 2
b�2

< b

✓
1 +

1
b� 4

◆
< b + 2

for b > 8 so a = b + 1. Now (34) implies

(b + 1)((b + 1)2 � (�1)�)(b� (�1)�)� (b + 1� (�1)↵)(b3 + (�1)�+�) = 0. (58)

Expanding in powers of b, one gets a polynomial q3b3 + q2b2 + q1b + q0 where each
coe�cient satisfies |qi|  7 and |q2| > 0. No such polynomial can have a zero for
b > 1000, hence (58) is impossible, so this case cannot lead to a fourth solution.
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So we may now assume x3 � x2 = 1.
Consider first the case x3 � x2 = 1 and y1 � y3 � y1. By Lemmas 10 and 11, we

can assume y1 = y3 � y1 and x2 = x3 � x2 = 1, in which case (38) is possible only
when ↵ = � 6= �, so that we have (44) with k = 2, u = ↵, and v = �, which has no
fourth solution by Lemma 13.

Consider next the case x3 � x2 = 1 and y1 < y3 � y1. Since x2 � x3 � x2 = 1,
(53) can be bounded as

|a� by3�y1 |  1 +
1
b

+ 1 +
1
b

+
by3�y1

b� 1
+

1
b� 1

.

Since y1 < y3 � y1, we have

|a� by3�y1 |  by3�y1

✓
1
b2

+
1
b3

+
1
b2

+
1
b3

+
1

b� 1
+

1
(b� 1)b2

◆
,

and therefore
|a� by3�y1 |  by3�y1

✓
1

b� 3

◆
. (59)

One can now derive✓
1� 1

b� 3

◆
by3�y1 < a <

✓
1 +

1
b� 3

◆
by3�y1 . (60)

If y3 � y1 = 3 or 4, then for each b with 1000 < b < (8 · 1014)
1

y3�y1 , each y1

with y1  y3 � y1, and each �, � 2 {0, 1}, we can calculate y3 = y1 + (y3 � y1)
and then factor by3 + (�1)�+� . Since ax2 | by3 + (�1)�+� , we now consider each
factor a | by3 + (�1)�+� that satisfies (60), and calculate the maximal value of
x2 such that ax2 | by3 + (�1)�+� ; call this x2,max. For each x2 up to x2,max, let
x3 = x2 + 1. For each ↵ 2 {0, 1} and for the chosen �, set r = (by1 � (�1)�)/h,
s = (ax2 � (�1)↵)/h, where h = gcd(ax2 � (�1)↵, by1 � (�1)�). We must have
(�1)↵r + sby1 = rax2 + (�1)�s = (�1)�(rax3 � sby3). Our calculations now show
that the only possible sets of three solutions belong to the infinite class (44); by
Lemma 13, none of these extends to four solutions.

Consider now the case x3 � x2 = 1 and 1 = y1 < y3 � y1 = 2. We still have
(60) so

⇣
1� 1

b�3

⌘
b2 < a <

⇣
1 + 1

b�3

⌘
b2. Now ax2 | b3 + (�1)�+� but a2 >⇣

1� 1
b�3

⌘2
b4 > b3 + 1, so x2 = 1.

If ↵ 6= � then, using (34) and clearing denominators, we get

a(a + (�1)↵)(b� (�1)�) = (b3 + (�1)�+�)(a� (�1)↵).

Since gcd(a � (�1)↵, a + (�1)↵)  2, we must have a � (�1)↵ | 2(b � (�1)�) so
a  2b + 3. This contradicts

⇣
1� 1

b�3

⌘
b2 < a.
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If ↵ = � = 0 then, using (34) and dividing out a� 1,

a(b� (�1)�) = b3 + (�1)� . (61)

Since gcd(b� (�1)� , b3 + (�1)�)  2 and b� (�1)� > 2, this is impossible.
Therefore ↵ = � = 1. In this case, using (34) as before and dividing out a + 1,

we get (61), so
a = b2 + (�1)�b + 1.

So we have a member of the infinite class (44) with d = 1, k = 3, u = � + 1, v = 0;
by Lemma 13 this has no fourth solution.

5. Case (5) 0 = x1 < x2 < x3 < x4, 0 = y1 = y2 < y3 < y4

Suppose (5) holds. To fix notation, let c = s� (�1)↵r = rax2 � s = (�1)�(rax3 �
sby3) = (�1)�(rax4 � sby4) for some ↵, �, � 2 {0, 1}. Considering (2) with (i, j) =
(1, 2), we see that r(ax2+(�1)↵) = 2s, so r = 1 or 2. Applying (2) with (i, j) = (1, 3)
and (2, 3), we find r(ax3 +(�1)↵+�) = s(by3 +(�1)�) and rax2(ax3�x2 +(�1)�+1) =
s(by3 + (�1)�+1). We find that, for any instance of case (5), we have

r 2 {1, 2}, 2 | a� r, s =
r(ax2 + (�1)↵)

2
, c = s + (�1)↵+1r, by3 =

2(ax3 + (�1)↵+�)
ax2 + (�1)↵

� (�1)� . (62)

Since by3 is an integer, we can use the elementary divisibility properties of ax ± 1
to see that x2 | x3 except possibly when x2 = 2 and a  3. And, since (62) holds
when x3 is replaced by xi where 3 < i  N , we have, whenever either x2 > 2 or
a > 3,

x2 | xi, 3  i  N. (63)

Note that (62) corresponds to the infinite family (16).

Lemma 15. Suppose a  134000. Then any set of solutions to (1) satisfy-
ing conditions (5) has N < 4, except for (a, b, c, r, s;x1, y1, x2, y2, x3, y3, x4, y4) =
(2, 7, 5, 2, 3; 0, 0, 2, 0, 3, 1, 9, 3) or (2, 5, 3, 2, 1; 0, 0, 1, 0, 2, 1, 6, 3).

Proof. Suppose (5) holds and a  134000.
We first get bounds on x2 and x3� x2. Lemma 2 gives ax3�x2  Z so x3� x2 <

log(8 · 1014)/ log(a). If x2 > 2, then, by (63), x2 | x3 � x2 < log(8 · 1014)/ log(a).
Given a, x2, x3 � x2, and choosing ↵, � 2 {0, 1}, and r 2 {1, 2} with 2 |

a � r, we have (62). Suppose for some choice of a, ↵, �, x2, and x3 � x2, we
find that 2(ax3+(�1)↵+�)

ax2+(�1)↵ � (�1)� is an integer; it is by3 , so we know b and its
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associated y3 (without loss of generality we may assume b is not a perfect power).
We now have three solutions to (1) with this a, b, c, r, s and choice of signs.
We use LLL (then bootstrapping if LLL fails) to show no fourth solutions exist
except when (a, b, c, r, s;x1, y1, x2, y2, x3, y3, x4, y4) = (2, 7, 5, 2, 3; 0, 0, 2, 0, 3, 1, 9, 3)
or (2, 5, 3, 2, 1; 0, 0, 1, 0, 2, 1, 6, 3). A few cases with a = 2 and b = (2x +1)/3 require
a further elementary argument modulo 8 to eliminate a fourth solution.

Lemma 16. Any set of solutions to (1) satisfying conditions (5) has N < 4,
except for (a, b, c, r, s;x1, y1, x2, y2, x3, y3, x4, y4) = (2, 7, 5, 2, 3; 0, 0, 2, 0, 3, 1, 9, 3) or
(2, 5, 3, 2, 1; 0, 0, 1, 0, 2, 1, 6, 3).

Proof. Suppose (5) holds with N > 3 and further assume we do not have (a, b, c,
r, s;x1, y1, x2, y2, x3, y3, x4, y4) = (2, 7, 5, 2, 3; 0, 0, 2, 0, 3, 1, 9, 3) or (2, 5, 3, 2, 1; 0, 0,
1, 0, 2, 1, 6, 3). By Lemma 15 we may assume a > 134000 so that (63) holds. From
(62) we have r = 1 if a is odd, r = 2 if a is even. If s  2, then, considering
the solution (x2, y2), we must have a  5, contradicting Lemma 15. So we can
assume s > 2. We can also assume rax2 > 2. And we certainly can assume that the
solutions (x1, y1), . . . , (xN , yN ) include all solutions to (1) for (a, b, c, r, s), because
any instance of (5) with N > 3 and a > 134000 must be a subset of an instance of
(5) (perhaps itself) since it cannot be in the same family as a subset (or an associate
of a subset) of one of the sets of solutions listed in Theorem 1. Now we can apply
Lemma 5 to the solutions (x2, y2), (x3, y3), (x4, y4) to get

y3 | y4. (64)

Since we have a > 134000, we see that ax3�x2 > 8 · 1014 when x3 � x2 � 3, hence,
by Lemma 2, we have x3 � x2  2. By (63) we see that, in considering the set of
solutions (a, b, c, r, s; 0, 0, x2, 0, x3, y3, x4, y4), we can assume x2 = 1 without loss of
generality, noting that we are reformulating a, x3 and x4. Now one can see that the
only possibilities satisfying (62) have x2 = 1 with

x3 � x2 ↵ �
2 0 0
2 1 0
1 0 1
1 1 0

Note that c  r + s < 8 ·1014 +2 by Lemma 1, and ±c = rax4 � sby4 . By Lemma 2,
134000 < a < max(x4, y4), so certainly 100 < x4, and we have sby4±c ⌘ 0 mod a100.
We will expand y4 in powers of a; we have y4 < 8 · 1014 < 1340003 < a3, so we do
not need powers of a higher than two. By (64), we can assume y3 = 1 without loss
of generality, noting that in doing so we have reformulated b and y4. Thus we are
considering the following set of solutions: (a, b, c, r, s; 0, 0, 1, 0, x3, 1, x4, y4), noting
the reformulations of variables as indicated above.
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Case 1: Suppose x2 = 1 and x3 � x2 = 2. Then � = 0. Using (62) and taking the
upper sign when ↵ = 0 and the lower sign when ↵ = 1, we have b = 2a2 ⌥ 2a + 1
and, for either choice of the parity of a,

(a⌥ 1) + (a ± 1)by4 ⌘ (a⌥ 1) + (a ± 1)b ⌘ 0 mod 2a3

so that (a ± 1)(by4�1 � 1) ⌘ 0 mod 2a3, so that, for either choice of the parity of
a, by4�1 ⌘ 1 mod 2a3 which requires a2 | y4 � 1, by Lemma 1 of [13]. So, letting
y4 = 1 + ja2 for some positive integer j, and letting Mi be an integer for 1  i  3,

a⌥ 1
2

+
a ± 1

2
(2a2 ⌥ 2a + 1)y4 =

a⌥ 1
2

+

a ± 1
2

 
1 + y4(2a2 ⌥ 2a) +

y4(y4 � 1)
2

(2a2 ⌥ 2a)2 +
y4(y4 � 1)(y4 � 2)

6
(2a2 ⌥ 2a)3

+
y4(y4 � 1)(y4 � 2)(y4 � 3)

24
(2a2 ⌥ 2a)4 + 2M1a

5

!
= M2a

100 (65)

since x4 > 100. This simplifies to

(1� j)a3 ± ja4 +
M3

3
a5 = M2a

100. (66)

From this we see that j = 1 + wa/3 for some integer w � 0. If w = 0 then (66)
becomes impossible. And if w > 0, then y4 > a

3a2 > 8 · 1014 when a > 134000,
giving a contradiction to Lemma 1.
Case 2: Suppose x2 = x3�x2 = 1, so that ↵ 6= � and b = 2a� (�1)↵. Considering
the solution (x3, y3) = (2, 1), we have, for either choice of the parity of a,

(a� (�1)↵)� (�1)↵(a + (�1)↵)b ⌘ 0 mod 2a2. (67)

Let t = 1 if y4 is odd and ↵ = 0, otherwise let t = 0. Then considering the solution
(x4, y4) we have

(a� (�1)↵) + (�1)t(a + (�1)↵)by4 ⌘ 0 mod 2a100 (68)

since x4 > 100. Combining (67) and (68) we have (a + (�1)↵)(by4�1 + (�1)t+↵) ⌘
0 mod 2a2, so that, for either choice of the parity of a, by4�1+(�1)t+↵ ⌘ 0 mod 2a2,
which requires a | y4 � 1 by Lemma 1 of [13]. So we can write y4 = 1 + e1a + e2a2

where 0  e1 < a.
Assume first ↵ = 0. Let M1 and M2 be integers. Then using (68) we have

a� 1
2

+
a + 1

2

 
1� y4(2a) +

y4(y4 � 1)
2

(2a)2�

y4(y4 � 1)(y4 � 2)
6

(2a)3 + 2M1a
4

!
= M2a

100. (69)
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This simplifies to
(�1� e1)a2 = M3a

3

for some integer M3. Thus e1 = a� 1. So y4 = 1 + (a� 1)a + e2a2. Now from (69)
we obtain

(�1� e2)a3 =
M4

3
a4

for some integer M4, so that e2 = (wa/3) � 1 for some integer w � 1. But then
y4 � 1 + (a� 1)a +

�
a
3 � 1

�
a2 > 8 · 1014 when a > 134000, violating Lemma 1.

So we can assume ↵ = 1. We define Mi, 1  i  6 to be integers. From (68) we
derive

a + 1
2

+
a� 1

2

✓
1 + y4(2a) +

y4(y4 � 1)
2

(2a)2 + 2M1a
3

◆
= M2a

100.

This simplifies to
(1� e1)a2 = M3a

3.

Thus, e1 = 1. Write y4 = 1 + a + e2a2. Then

a + 1
2

+
a� 1

2

 
1 + y4(2a) +

y4(y4 � 1)
2

(2a)2 +
y4(y4 � 1)(y4 � 2)

6
(2a)3

+
y4(y4 � 1)(y4 � 2)(y4 � 3)

24
(2a)4 + 2M4a

5

!
= M5a

100.

This simplifies to

�e2a
3 +

2
3
a4 =

M6

3
a5 (70)

so that e2 = wa/3 for some integer w � 0. If w = 0 then (70) becomes impossible.
And if w > 0, y4 � 1 + a + a

3a2 > 8 · 1014 since a > 134000, violating Lemma 1.
This completes the proof of Lemma 16.

Theorem 1 follows immediately from Lemmas 1, 8, 14, and 16.

Comment on a further use of Lemma 10: If (37) holds, then, by Lemma 10,
we can assume without loss of generality that y1  y3 � y1. If N > 3, applying
Lemma 2 we get

c  r + sby1  r + sby3�y1  (Z + 1) + (Z + 1)Z = (Z + 1)2. (71)

It follows from the proof of Theorem 1.2 of [14] (Case 2, equation (4.19), which does
not depend on the assumption a > b used elsewhere in Case 2), that we must have

Z < 0.9 +
log(c)
log(2)

+ 1.6901816335 · 1010 · log(Z + 1) log(Z) log(1.5eZ). (72)

Using (71) in (72) we get Z < 7.07 · 1014, completing a simpler and shorter proof
of Theorem 1.2 of [14].
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