MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

Kohtaro Imatomi
Graduate School of Mathematics, Kyushu University, Nishi-ku, Fukuoka, Japan
k-imatomi@math.kyushu-u.ac.jp

Received: 11/27/13, Revised: 5/3/14, Accepted: 7/22/14, Published: 10/8/14

Abstract

We define the multi-poly-Bernoulli-star numbers which generalize classical Bernoulli numbers. We study the basic properties for these numbers and establish sum formulas and a duality theorem, and discuss a connection to the finite multiple zeta-star values. As an application, we present alternative proofs of some relations on the finite multiple zeta-star values.

1. Introduction

For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \in \mathbb{Z}$, we define two kinds of multi-poly-Bernoulli-star numbers $B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}, C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$ by the following generating series:

$$
\begin{aligned}
& \frac{L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)}{1-e^{-t}}=\sum_{n=0}^{\infty} B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!} \\
& \frac{L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)}{e^{t}-1}=\sum_{n=0}^{\infty} C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!}
\end{aligned}
$$

where $L i_{k_{1}, \ldots, k_{r}}^{\star}(z)$ is the non-strict multiple polylogarithm given by

$$
L i_{k_{1}, \ldots, k_{r}}^{\star}(z)=\sum_{m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{z^{m_{1}}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}
$$

When $r=1$, these numbers are poly-Bernoulli numbers studied in [1], [9]. Further, when $r=1$ and $k_{1}=1$, both numbers are classical Bernoulli numbers since $L i_{1}^{\star}(1-$ $\left.e^{-t}\right)=t$. We note that $B_{n, \star}^{(1)}=C_{n, \star}^{(1)} \quad(n \neq 1)$ with $B_{1, \star}^{(1)}=1 / 2$ and $C_{1, \star}^{(1)}=-1 / 2$. We call $k=k_{1}+\cdots+k_{r}$ the weight of multi-index $\left(k_{1}, \ldots, k_{r}\right)$.

We set

$$
\mathcal{A}:=\frac{\prod_{p} \mathbb{Z} / p \mathbb{Z}}{\bigoplus_{p} \mathbb{Z} / p \mathbb{Z}}=\left\{\left(a_{p}\right)_{p} ; a_{p} \in \mathbb{Z} / p \mathbb{Z}\right\} / \sim
$$

where $\left(a_{p}\right)_{p} \sim\left(b_{p}\right)_{p}$ is equivalent to the equalities $a_{p}=b_{p}$ for all but finitely many primes p. The finite multiple zeta-star values are defined by

$$
\zeta_{\mathcal{A}}^{\star}\left(k_{1}, \ldots, k_{r}\right):=\left(H_{p}^{\star}\left(k_{1}, \ldots, k_{r}\right) \bmod p\right)_{p} \in \mathcal{A},
$$

where $H_{n}^{\star}\left(k_{1}, \ldots, k_{r}\right)$ is the non-strict multiple harmonic sum defined by

$$
H_{n}^{\star}\left(k_{1}, \ldots, k_{r}\right)=\sum_{n-1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} .
$$

For more details on the finite multiple zeta(-star) values, we refer the reader to [7], [10] and [12]. We use "star" to indicate that the inequalities in the sum are nonstrict in contrast to the strict ones usually adopted in the references above. Each of these is expressed as a linear combination of the other.

This article is organized as follows. In $\S 2$, we give fundamental properties for the multi-poly-Bernoulli-star numbers. In $\S 3$, we describe the sum formula and the duality relation for the multi-poly-Bernoulli-star numbers. In $\S 4$, we study connections between the finite multiple zeta-star values and the multi-poly-Bernoulli-star numbers. As a result, we obtain alternative proofs of some relations for the finite multiple zeta-star values.

2. Basic Properties for the Multi-Poly-Bernoulli-Star Numbers

In this section, we introduce basic results for the multi-poly-Bernoulli-star numbers. We first give the recurrence relations for the multi-poly-Bernoulli-star numbers $B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}, C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$. Before stating them, we provide the following identity for the non-strict multiple polylogarithm, whose proof is straightforward and is omitted.

Lemma 2.1. For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \in \mathbb{Z}$, we have

$$
\frac{d}{d t} L i_{k_{1}, \ldots, k_{r}}^{\star}(t)= \begin{cases}\frac{1}{t} L i_{k_{1}-1, k_{2}, \ldots, k_{r}}^{\star}(t) & \left(k_{1} \neq 1\right) \\ \frac{1}{t(1-t)} L i_{k_{2}, \ldots, k_{r}}^{\star}(t) & \left(k_{1}=1, r \neq 1\right) \\ \frac{1}{1-t} & \left(k_{1}=r=1\right)\end{cases}
$$

Proposition 2.1. For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$, we have the following recursions:
(i) When $k_{1} \neq 1$,

$$
\begin{aligned}
B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} & =\frac{1}{n+1}\left(B_{n, \star}^{\left(k_{1}-1, k_{2}, \ldots, k_{r}\right)}-\sum_{j=1}^{n-1}\binom{n}{j-1} B_{j, \star}^{\left(k_{1}, \ldots, k_{r}\right)}\right) \\
C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} & =\frac{1}{n+1}\left(C_{n, \star}^{\left(k_{1}-1, k_{2}, \ldots, k_{r}\right)}-\sum_{j=0}^{n-1}\binom{n+1}{j} C_{j, \star}^{\left(k_{1}, \ldots, k_{r}\right)}\right)
\end{aligned}
$$

(ii) When $k_{1}=1$,

$$
\begin{aligned}
B_{n, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)} & =\frac{1}{n+1}\left(\sum_{j=0}^{n}\binom{n}{j} B_{j, \star}^{\left(k_{2}, \ldots, k_{r}\right)}-\sum_{j=1}^{n-1}\binom{n}{j-1} B_{j, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}\right) \\
C_{n, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)} & =\frac{1}{n+1}\left(C_{n, \star}^{\left(k_{2}, \ldots, k_{r}\right)}-\sum_{j=1}^{n-1}(-1)^{n-j}\binom{n}{j-1} C_{j, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}\right)
\end{aligned}
$$

where an empty sum is understood to be 0 .
Proof. We prove the relations for $B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$: those for $C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$ are similar.

$$
\begin{equation*}
L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)=\left(1-e^{-t}\right) \sum_{n=0}^{\infty} B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

We differentiate both sides of (1): When $k_{1} \neq 1$, we obtain

$$
\begin{aligned}
(\mathrm{LHS}) & =\frac{e^{-t}}{1-e^{-t}} L i_{k_{1}-1, k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right) \\
(\mathrm{RHS}) & =e^{-t} \sum_{n=0}^{\infty} B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!}+\left(1-e^{-t}\right) \sum_{n=0}^{\infty} B_{n+1, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!}
\end{aligned}
$$

So we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(B_{n, \star}^{\left(k_{1}-1, k_{2}, \ldots, k_{r}\right)}-B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}\right) \frac{t^{n}}{n!} & =\left(e^{t}-1\right) \sum_{n=0}^{\infty} B_{n+1, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \sum_{j=0}^{n-1}\binom{n}{j} B_{j+1, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!}
\end{aligned}
$$

Comparing the coefficients of $t^{n} / n!$ on both sides, we obtain (i). When $k_{1}=1$,

$$
\begin{aligned}
(\mathrm{LHS}) & =\frac{1}{1-e^{-t}} L i_{k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right) \\
(\mathrm{RHS}) & =\sum_{n=0}^{\infty} B_{n+1, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)} \frac{t^{n}}{n!}+e^{-t} \sum_{n=0}^{\infty}\left(B_{n, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}-B_{n+1, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

So we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(B_{n, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}-B_{n+1, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}\right) \frac{t^{n}}{n!} & =e^{t} \sum_{n=0}^{\infty}\left(B_{n, \star}^{\left(k_{2}, \ldots, k_{r}\right)}-B_{n+1, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{n}\binom{n}{j}\left(B_{j, \star}^{\left(k_{2}, \ldots, k_{r}\right)}-B_{j+1, \star}^{\left(1, k_{2}, \ldots, k_{r}\right)}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

and by this we obtain (ii).

We proceed to describe explicit formulas for the multi-poly-Bernoulli-star numbers in terms of the Stirling numbers of the second kind. We recall that the Stirling numbers of the second kind are the integers $\left\{\begin{array}{c}n \\ m\end{array}\right\}$ for all integers m, n satisfying the following recursions and the initial values:

$$
\begin{gathered}
\left\{\begin{array}{c}
n+1 \\
m
\end{array}\right\}=\left\{\begin{array}{c}
n \\
m-1
\end{array}\right\}+m\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \quad(\forall n, m \in \mathbb{Z}) \\
\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=1,\left\{\begin{array}{c}
n \\
0
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
m
\end{array}\right\}=0 \quad(n, m \neq 0)
\end{gathered}
$$

Proposition 2.2. For any multi-index $\left(k_{1}, \ldots, k_{r}\right), k_{i} \in \mathbb{Z}$, we have

$$
B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=\sum_{n+1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{(-1)^{m_{1}+n-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
n \\
m_{1}-1
\end{array}\right\}
$$

and

$$
C_{n, \pi}^{\left(k_{1}, \ldots, k_{r}\right)}=\sum_{n+1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{(-1)^{m_{1}+n-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
n+1 \\
m_{1}
\end{array}\right\}
$$

Proof. Using the following identity (cf. [3, eqn. 7.49])

$$
\left(e^{t}-1\right)^{m}=m!\sum_{j=m}^{\infty}\left\{\begin{array}{c}
j \tag{2}\\
m
\end{array}\right\} \frac{t^{j}}{j!} \quad(m \geq 0)
$$

we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!} \\
= & \frac{L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)}{1-e^{-t}} \\
= & \sum_{m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{\left(1-e^{-t}\right)^{m_{1}-1}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \\
= & \sum_{m_{1} \geq \cdots \geq m_{r} \geq 1} \sum_{j=m_{1}-1}^{\infty} \frac{(-1)^{m_{1}+j-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
j \\
m_{1}-1
\end{array}\right\} \frac{t^{j}}{j!}
\end{aligned}
$$

$$
=\sum_{j=0}^{\infty} \sum_{j+1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{(-1)^{m_{1}+j-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
j \\
m_{1}-1
\end{array}\right\} \frac{t^{j}}{j!} .
$$

Thus comparing the coefficients of t^{n} / n ! on both sides, we obtain the explicit formula for $B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$.

The explicit formula for $C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$ is obtained similarly by using the identity

$$
\frac{e^{-t}\left(1-e^{-t}\right)^{m-1}}{(m-1)!}=\sum_{j=m-1}^{\infty}(-1)^{j+m+1}\left\{\begin{array}{c}
j+1 \\
m
\end{array}\right\} \frac{t^{j}}{j!}
$$

which follows from (2) by differentiation.
We finish this section by giving some simple relations among the multi-poly-Bernoulli-star numbers.

Proposition 2.3. For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \in \mathbb{Z}$, we have

$$
B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=\sum_{j=0}^{n}\binom{n}{j} C_{j, \star}^{\left(k_{1}, \ldots, k_{r}\right)}
$$

and

$$
C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} B_{j, \star}^{\left(k_{1}, \ldots, k_{r}\right)}
$$

Proof. The generating functions of $B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}, C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$ differ by the factor e^{t}, and the above identities follow immediately.

Proposition 2.4. For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$, we have

$$
C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}-C_{n-1, \star}^{\left(k_{1}-1, k_{2}, \ldots, k_{r}\right)}
$$

Proof. By the explicit formula for $C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}$, we obtain

$$
\begin{aligned}
C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} & =\sum_{n+1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{(-1)^{m_{1}+n-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
n+1 \\
m_{1}
\end{array}\right\} \\
& =\sum_{n+1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{(-1)^{m_{1}+n-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
n \\
m_{1}-1
\end{array}\right\} \\
& +\sum_{n+1 \geq m_{1} \geq \cdots \geq m_{r} \geq 1} \frac{(-1)^{m_{1}+n-1}\left(m_{1}-1\right)!}{m_{1}^{k_{1}-1} m_{2}^{k_{2}} \cdots m_{r}^{k_{r}}}\left\{\begin{array}{c}
n \\
m_{1}
\end{array}\right\} \\
& =B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}-C_{n-1, \star}^{\left(k_{1}-1, k_{2}, \ldots, k_{r}\right)} .
\end{aligned}
$$

The second equality above is by the recursion for the Stirling numbers of the second kind.

3. Main Results

We give the following sum formulas for multi-poly-Bernoulli-star numbers.
Theorem 3.1. We have

$$
\begin{equation*}
\sum_{\substack{k_{1}+\cdots+k_{r}=k \\ 1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r} B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=\frac{(-1)^{k}}{k}\binom{n}{k-1} B_{n-k+1, \star}^{(1)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{k_{1}+\cdots+k_{r}=k \\ 1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r} C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=\frac{(-1)^{k}}{k}\binom{n}{k-1} C_{n-k+1, \star}^{(1)} . \tag{4}
\end{equation*}
$$

Proof. We multiply both sides of (3) by t^{n} / n ! and sums on n. Hence we have

$$
\begin{aligned}
(\mathrm{LHS}) & =\sum_{\substack{n=0}}^{\infty} \sum_{\substack{k_{1}+\ldots+k_{r}=k \\
1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r} B_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!} \\
& =\sum_{\substack{k_{1}+\cdots+k_{r}=k \\
1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r} \frac{L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)}{1-e^{-t}}, \\
(\mathrm{RHS}) & =\frac{(-1)^{k}}{k} \sum_{n=0}^{\infty}\binom{n}{k-1} B_{n-k+1, \star}^{(1)} \frac{t^{n}}{n!} \\
& =\frac{(-1)^{k}}{k!} \sum_{n=0}^{\infty} B_{n-k+1, \star}^{(1)} \frac{t^{n}}{(n-k+1)!} \\
& =\frac{(-1)^{k}}{k!} \sum_{n=0}^{\infty} B_{n, \star}^{(1)} \frac{t^{n+k-1}}{n!} \\
& =\frac{(-1)^{k}}{k!} \frac{t^{k}}{1-e^{-t}} .
\end{aligned}
$$

Since both sides have the same denominator, it suffices to prove the following identity:

$$
\begin{equation*}
\sum_{\substack{k_{1}+\cdots+k_{r}=k \\ 1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r} L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)=\frac{(-1)^{k}}{k!} t^{k} \tag{5}
\end{equation*}
$$

This equality is proved by induction on the weight. When $k=1$, the left-hand side is $-L i_{1}^{\star}\left(1-e^{-t}\right)=-t$ and is equal to the right-hand side. Next we assume the
identity holds when the weight is k. Then by differentiating the left-hand side of the identity of weight $k+1$, we obtain

$$
\begin{aligned}
& \frac{d}{d t}\left(\sum_{\substack{k_{1}+\cdots+k_{r}=k+1 \\
1 \leq r \leq k+1, k_{i} \geq 1}}(-1)^{r} L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)\right) \\
= & \sum_{\substack{k_{1}+\cdots+k_{r}=k \\
1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r}\left(\frac{e^{-t}}{1-e^{-t}}-\frac{1}{1-e^{-t}}\right) L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right) \\
= & \sum_{\substack{k_{1}+\cdots+k_{r}=k \\
1 \leq r \leq k, k_{i} \geq 1}}(-1)^{r+1} L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right) \\
= & \frac{(-1)^{k+1}}{k!} t^{k} .
\end{aligned}
$$

We used the induction hypothesis in the last equality. Therefore we have

$$
\sum_{\substack{k_{1}+\cdots+k_{r}=k+1 \\ 1 \leq r \leq k+1, k_{i} \geq 1}}(-1)^{r} L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)=\frac{(-1)^{k+1}}{(k+1)!} t^{k+1}+C
$$

with some constant C, which we find is 0 by putting $t=0$. The equation (4) follows from (5) since the generating function of $C_{n, \star}$ differs from that of $B_{n, \star}$ only by a factor e^{-t}.

Next we describe the duality relation for the multi-poly-Bernoulli-star numbers. We recall the duality operation of Hoffman [6, p. 65]. We define a function S from the set of multi-indices $\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \geq 1$ and weight k to the power set of $\{1,2, \ldots, k-1\}$ by

$$
S\left(\left(k_{1}, \ldots, k_{r}\right)\right)=\left\{k_{1}, k_{1}+k_{2}, \ldots, k_{1}+\cdots+k_{r-1}\right\} .
$$

Obviously, the map S is a one-to-one correspondence. Then $\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)$ is said to be the dual index for $\left(k_{1}, \ldots, k_{r}\right)$ in Hoffman's sense when

$$
\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)=S^{-1}\left(\{1,2, \ldots, k-1\}-S\left(\left(k_{1}, \ldots, k_{r}\right)\right)\right) .
$$

It is easy to see that Hoffman's duality operation is an involution. Note that $k_{1}>1$ if and only if $k_{1}^{\prime}=1$.

Theorem 3.2. For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \geq 1(1 \leq i \leq r)$, we have

$$
C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)}=(-1)^{n} B_{n, \star}^{\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)}
$$

where $\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)$ is the dual index of $\left(k_{1}, \ldots, k_{r}\right)$ in Hoffman's sense.

Proof. As in the previous proof, consider the generating functions of both sides:

$$
\begin{aligned}
& (\mathrm{LHS})=\sum_{n=0}^{\infty} C_{n, \star}^{\left(k_{1}, \ldots, k_{r}\right)} \frac{t^{n}}{n!}=\frac{L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)}{e^{t}-1}, \\
& (\mathrm{RHS})=\sum_{n=0}^{\infty}(-1)^{n} B_{n, \star}^{\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)} \frac{t^{n}}{n!}=\frac{L i_{k_{1}^{\prime}, \ldots, k_{l}^{\prime}}^{\star}\left(1-e^{t}\right)}{1-e^{t}} .
\end{aligned}
$$

Hence we have to show the following identity:

$$
L i_{k_{1}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)+L i_{k_{1}^{\prime}, \ldots, k_{l}^{\prime}}^{\star}\left(1-e^{t}\right)=0
$$

This identity also follows from induction on the weight. First, it is trivial in the case $k=1$. Thus, we assume the above identity holds when the weight is k. Since $k_{1}=1$ is equivalent to $k_{1}^{\prime} \neq 1$, we may assume $k_{1}=1$ by the symmetry of the identity. Then when the weight is $k+1$, the derivative of the left-hand side yields

$$
\begin{aligned}
& \frac{d}{d t}\left(L i_{1, k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)+L i_{k_{1}^{\prime}, \ldots, k_{l}^{\prime}}^{\star}\left(1-e^{t}\right)\right) \\
= & \frac{1}{1-e^{-t}} L i_{k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)+\frac{-e^{t}}{1-e^{t}} L i_{k_{1}^{\prime}-1, k_{2}^{\prime}, \ldots, k_{l}^{\prime}}^{\prime}\left(1-e^{t}\right) \\
= & \frac{1}{1-e^{-t}}\left(L i_{k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)+L i_{k_{1}^{\prime}-1, k_{2}^{\prime}, \ldots,,_{l}^{\prime}}^{\prime}\left(1-e^{t}\right)\right) \\
= & 0 .
\end{aligned}
$$

Therefore we obtain

$$
L i_{1, k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)+L i_{k_{1}^{\prime}, \ldots, k_{l}^{\prime}}^{\star}\left(1-e^{t}\right)=C
$$

with some constant C, and by putting $t=0$, we conclude $C=0$.

4. Connection to the Finite Multiple Zeta-Star Values

In this section, we give alternative proofs for some relations of the finite multiple zeta-star values using the multi-poly-Bernoulli-star numbers. The following congruence is the "star-version" of the congruence given in [8, Theorem.8], and is proved in exactly the same manner:

$$
H_{p}^{\star}\left(k_{1}, \ldots, k_{r}\right) \equiv-C_{p-2, \star}^{\left(k_{1}-1, k_{2}, \ldots, k_{r}\right)} \bmod p
$$

Thus we find

$$
\begin{equation*}
\zeta_{\mathcal{A}}^{\star}\left(k_{1}, \ldots, k_{r}\right)=\left(-C_{p-2, \star}^{\left(k_{1}-1, k_{2}, \cdots, k_{r}\right)} \bmod p\right)_{p} \tag{6}
\end{equation*}
$$

Corollary 4.1 (M. Hoffman [7]). For any multi-index $\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \geq$ $1(1 \leq i \leq r)$, let $\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)$ be the dual index for $\left(k_{1}, \ldots, k_{r}\right)$ in Hoffman's sense. Then we have

$$
\zeta_{\mathcal{A}}^{\star}\left(k_{1}, \ldots, k_{r}\right)=-\zeta_{\mathcal{A}}^{\star}\left(k_{1}^{\prime}, \ldots, k_{l}^{\prime}\right)
$$

Proof. It is sufficient to prove the case $k_{1}=1$. By (6) and the duality relation for the multi-poly-Bernoulli-star numbers, we obtain

$$
\begin{aligned}
(\mathrm{LHS}) & =\left(-C_{p-2, \star}^{\left(0, k_{2}, \cdots, k_{r}\right)} \bmod p\right)_{p} \\
(\mathrm{RHS}) & =\left(C_{p-2, \star}^{\left(k_{1}^{\prime}-1, k_{2}^{\prime}, \cdots, k_{l}^{\prime}\right)} \bmod p\right)_{p} \\
& =\left((-1)^{p} B_{p-2, \star}^{\left(k_{2}, \cdots, k_{r}\right)} \bmod p\right)_{p}
\end{aligned}
$$

Hence we complete the proof if we prove $C_{n, \star}^{\left(0, k_{2}, \cdots, k_{r}\right)}=B_{n, \star}^{\left(k_{2}, \cdots, k_{r}\right)}$ for all n. We consider the generating functions of these numbers:

$$
\begin{aligned}
\sum_{n=0}^{\infty} C_{n, \star}^{\left(0, k_{2}, \cdots, k_{r}\right)} \frac{t^{n}}{n!} & =\frac{L i_{0, k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right)}{e^{t}-1} \\
& =\frac{1}{e^{t}-1} \sum_{m_{2} \geq \cdots \geq m_{r} \geq 1} \frac{1}{m_{2}^{k_{2}} \cdots m_{r}^{k_{r}}} \sum_{m_{1}=m_{2}}^{\infty}\left(1-e^{-t}\right)^{m_{1}} \\
& =\frac{1}{e^{-t}\left(e^{t}-1\right)} L i_{k_{2}, \ldots, k_{r}}^{\star}\left(1-e^{-t}\right) \\
& =\sum_{n=0}^{\infty} B_{n, \star}^{\left(k_{2}, \cdots, k_{r}\right)} \frac{t^{n}}{n!}
\end{aligned}
$$

From this we have

$$
-C_{p-2, \star}^{\left(0, k_{2}, \cdots, k_{r}\right)}=(-1)^{p} B_{p-2, \star}^{\left(k_{2}, \cdots, k_{r}\right)}
$$

for any odd prime p.
The following corollary is a weaker version of the sum formula for the finite multiple zeta-star values proved in [11].

Corollary 4.2. We have

$$
\sum_{\substack{k_{1}+\cdots+k_{r}=k \\ r \geq 1, k_{1} \geq 2, k_{i} \geq 1}}(-1)^{r} \zeta_{\mathcal{A}}^{\star}\left(k_{1}, \ldots, k_{r}\right)=\left(B_{p-k} \bmod p\right)_{p}
$$

where B_{n} is the classical Bernoulli numbers.

Proof. Equations (4) and (6) yield

$$
\begin{aligned}
\sum_{\substack{k_{1}+\cdots+k_{r}=k+1 \\
r \geq 1, k_{1} \geq 2, k_{i} \geq 1}}(-1)^{r+1} \zeta_{\mathcal{A}}^{\star}\left(k_{1}, \ldots, k_{r}\right) & =\left(\frac{(-1)^{k}}{k}\binom{p-2}{k-1} C_{p-k-1, \star}^{(1)} \bmod p\right)_{p} \\
& =\left(-C_{p-k-1, \star}^{(1)} \bmod p\right)_{p}
\end{aligned}
$$

So replacing k by $k-1$, we obtain the desired identity.

Acknowledgments. The author expresses his sincere gratitude to Professor M. Kaneko for useful discussions and invaluable advice.

References

[1] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189-209.
[2] A. Bayad and Y. Hamahata, Multiple Polylogarithms and Multi-Poly-Bernoulli Polynomials, Funct. Approx. Comment. Math. 46 (2012), 45-61.
[3] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.
[4] Y. Hamahata and H. Masubuchi, Special Multi-Poly-Bernoulli Numbers, J. Integer Seq. 10, (2007).
[5] Y. Hamahata and H. Masubuchi, Recurrence Formulae for Multi-Poly-Bernoulli Numbers, Integers 7 (2007), \#A46, 15pp.
[6] M. Hoffman, Algebraic aspects of multiple zeta values, Zeta functions, Topology and Quantum Physics, Developments in Math. 14, Springer, New York, 2005, pp. 51-73.
[7] M. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, preprint, arXiv:math/0401319v2 [math.NT] 17 Aug. 2007.
[8] K. Imatomi, M. Kaneko and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Integer Seq. 17 (2014).
[9] M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 199-206.
[10] M. Kaneko and D. Zagier, Finite Multiple Zeta Values, preprint.
[11] S. Saito and N. Wakabayashi, Sum formula for finite multiple zeta values, J. Math. Soc. Japan, to appear.
[12] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory 4 (2008), 73-106.

