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Abstract
We show that the set of elliptic curves with trace of Frobenius at p a minimum has
density one.

1. Introduction

Let Ea,b be the elliptic curve y2 = x3 + ax + b over Fp. Suppose Ea,b has good
reduction at p. A famous result of Hasse (see [3, Theorem 7.3.1]) states that

|#Ea,b(Fp)� (p + 1)|  2
p

p

or equivalently that (p + 1) � 2pp  #Ea,b(Fp)  (p + 1) + 2pp. Thus, a natural
question to ask is how often the number of points on an elliptic curve hits its upper
bound.

Definition 1. If p is such that Ea,b is nonsingular over Fp and #Ea,b(Fp) = (p +
1) + b2ppc, then we call p a champion prime for Ea,b.

By defining ap := p+1�#Ea,b(Fp), as a direct corollary to Hasse’s Theorem we have
that |ap| < 2pp. Thus, we can equivalently say that p is a champion prime for Ea,b

if and only if ap = �b2ppc. We note that when ap = 0, Ea,b has a supersingular
reduction at p. For more on supersingular primes see [4].
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2. Champion Primes

We first show that champion primes do occur. This fact is a direct corollary of
Deuring’s Theorem.

Theorem 2 (Deuring). ([2, Theorem 14.18]) Let p > 3 be prime, and let N =
p+1�a be an integer, where �2pp  a  2pp. Then the number of non-isomorphic
elliptic curves E over Fp which have #E(Fp) = p + 1� a is

(p� 1)
2

H(4p� a2)

where H is the Hurwitz class number as defined in [1, Definition 5.3.6, p.234].
Please note the Hurwitz class number di↵ers from the Kronecker class number,
which has the same notation, and is sometimes used to state Deuring’s Theorem as
in [5].

Thus, if we are given a prime p, we can find an elliptic curve for which p is a
champion. However, the alternative question is more di�cult to answer. That is,
does a given elliptic curve have a champion prime? To provide a partial answer to
this question, we will consider a density argument. Namely, if we consider a box
⌦AB = [�A,A]⇥ [�B,B] in the plane for some A,B > 0 2 R and fix some bound
X, we can calculate the density of curves in this box which have a champion prime
less than X. Letting our box grow will then provide a density of all curves which
have a champion prime less than X. If we then let X grow, we obtain the density
of curves which have a champion prime. We will show this density is 1.

Throughout, we will assume X < A,B. We let

N(A,B,X) = #{(a, b) 2 ⌦AB : 9 prime p, (4 < p < X)
s.t. p is a champion prime for Ea,b.}

Similarly, for fixed primes 4 < p1 < p2 < · · · < pk < X we let

Np1p2···pk(A,B,X) = #{(a, b) 2 ⌦AB : Ea,b has champion prime pi, i = 1, 2, . . . , k}.

We define the density of curves in ⌦AB with a champion prime p, 4 < p < Xto be

�(A,B,X) :=
N(A,B,X)

4AB
,

and if the limit exists, we define

�(X) := lim
A!1

�(A,A,X)
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to be the density of curves which have a champion prime p, 4 < p < X. Finally,
if A(X), B(X) are functions of X satisfying A(X), B(X) � exp((5

8 + ✏)X) (see
Theorem 3) we define

� := lim
X!1

�(A(X), B(X),X)

to be the density of elliptic curves which have a champion prime. Using this nota-
tion, our first result is as follows.

Theorem 3. Suppose A,B and X < A,B are real numbers. We have the following
formula for N(A,B,X), the number of curves Ea,b with (a, b) 2 ⌦AB for which
there exists a prime p, 4 < p < X so that p is a champion prime for Ea,b:

N(A,B,X) = 4AB


1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��

+O

✓
A

✓
exp

✓
1
4
X + o(X)

◆
� 1
◆

+B

✓
exp

✓
1
4
X + o(X)

◆
� 1
◆

+ exp
✓

5
4
X + o(X)

◆
� 1
◆

.

Proof. Fix a prime 4 < p < X where A,B > X. We first compute the number of
integer pairs in ⌦AB for which the curve Ea,b has good reduction at p and has p as
a champion. Consider the region [1, p]⇥ [1, p]. Deuring’s Theorem implies that the
number of curves in this box which have good reduction at champion p is

p� 1
2

H(4p� b2ppc2).

Thus, by translating this p⇥ p box within ⌦AB, we see that

Np(A,B,X) =
✓

2A
p

+ O(1)
◆✓

2B
p

+ O(1)
◆

p� 1
2

H(4p� b2ppc2). (1)

Let � = 4p� b2ppc2, and note that � = O(pp). Recall [2, p.319] that

H(�) = 2
X
f2|�

��
f2 ⌘0,1(mod 4)

h(��/f2)
w(��/f2)

Also recall Dirichlet’s class number formula [3, p.247]

h(��) =
w(��)|��|1/2

2⇡
L(1,���).

Combining these two results with a result from [5, p.656], we get that

H(�)⌧ p1/4(log p)2.
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Thus, H(4p � b2ppc2) = O(p1/4(log p)2). If we apply this to equation (1) above,
we find through expansion that

Np(A,B,X) =
4AB(p� 1)

2p2
H(4p� b2ppc2) + O

⇣
(A + B + p)p1/4(log p)2

⌘
.

By inclusion/exclusion

N(A,B,X) =
⇡(X)�2X

k=1

(�1)k+1
X

n=p1···pk
4<pi<X

Nn(A,B,X). (2)

By the Chinese Remainder Theorem, if n = p1p2 · · · pk, then

Nn(A,B,X) =
Y

p|n

p� 1
2

H(4p� b2ppc2)
�✓

2A
n

+ O(1)
◆✓

2B
n

+ O(1)
◆

=
4AB

n2

Y
p|n

p� 1
2

H(4p� b2ppc2)
�

+O

0
@ 1

2k
(A + B + n)n1/4

Y
p|n

(log p)2
1
A ,

where we have once again used the fact that H(4p � b2ppc2) = O(p1/4(log p)2).
Thus, if we substitute this into (2) above, we find that

N(A,B,X) =
⇡(X)�2X

k=1

(�1)k+1
X

n=p1···pk
4<pi<X

"
4AB

n2

Y
p|n

p� 1
2

H(4p� b2ppc2)
�

+O

0
@ 1

2k
(A + B + n)n1/4

Y
p|n

(log p)2
1
A
#

= 4AB


1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��

+O

✓
A

 Y
4<p<X


1 +

1
2
p1/4(log p)2

�
� 1
�

+B

 Y
4<p<X


1 +

1
2
p1/4(log p)2

�
� 1
�

+
 Y

4<p<X


1 +

1
2
p5/4(log p)2

�
� 1
�◆

.
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Note that
Y

4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

�
= exp

✓
�

X
4<p<X

p� 1
2p2

H(4p� b2ppc2)

�
X

4<p<X

1X
k=2

(p�1
2p2 H(4p� b2ppc2))k

k

◆
.

We next note that
X

4<p<X

p� 1
2p2

H(4p� b2ppc2)�
X

4<p<X

1
p

= log(log(X)) + O

✓
1

(log X)2

◆

and by partial summation,

X
4<p<X

p� 1
2p2

H(4p� b2ppc2)⌧ 4X1/4

log X
+ O

✓
X1/4

(log X)2

◆
.

Since

X
4<p<X

1X
k=2

(p�1
2p2 H(4p� b2ppc2))k

k
=

X
4<p<X

1X
k=2

(p� 1)k

2kkp2k
H(4p� b2ppc2)k

⌧
X

4<p<X

1X
k=2

(p� 1)k

2kkp2k
(p5k/16)


X

4<p<X

1X
k=2

1
(2p11/16)k

=
X

4<p<X

1
(2p11/16)2

· 1

1�
⇣

1
2p11/16

⌘

=
X

4<p<X

1
4p22/16 � 2p11/16

⌧
X

4<p<X

1
p22/16

converges as X !1, we see that

exp
✓
�X1/4

log X
+ O

✓
X1/4

(log X)2

◆
+ O(1)

◆


Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

�

 exp
✓
� log(log(X)) + O

✓
1

(log X)2

◆
+ O(1)

◆
.
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Now, since log(1 + x) = log(x) + O( 1
x ), we see that

Y
4<p<X


1 +

1
2
p1/4 log(p)2

�
= exp

 
1
4

X
4<p<X

log(p) + 2
X

4<p<X

log(log(p))

�
X

4<p<X

log(2) +
X

4<p<X

O

✓
2

p1/4 log(p)2

◆!
.

The Prime Number Theorem then implies that

Y
4<p<X


1 +

1
2
p1/4(log p)2

�
= exp

✓
1
4
X + o(X)

◆

and Y
4<p<X


1 +

1
2
p5/4(log p)2

�
= exp

✓
5
4
X + o(X)

◆
.

Putting all of our results together, we find that

N(A,B,X) = 4AB


1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��

+O

✓
A

✓
exp

✓
1
4
X + o(X)

◆
� 1
◆

+B

✓
exp

✓
1
4
X + o(X)

◆
� 1
◆

+ exp
✓

5
4
X + o(X)

◆
� 1
◆

.

This result gives us the following corollary, whose proof is immediate from The-
orem 2.

Corollary 4. If A(X) and B(X) are chosen so that they satisfy

• A(X)� exp
��

1
4 + ✏1

�
X
�

• B(X)� exp
��

1
4 + ✏2

�
X
�

• A(X)B(X)� exp
��

5
4 + ✏3

�
X
�

then

N(A(X), B(X),X) = 4A(X)B(X)

1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��

+o(A(X)B(X))
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and

�(A(X), B(X),X) =

1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��
+ o(1).

Furthermore, �(A(X), B(X),X) equals the density of curves Ea,b for which there
exists a prime 4 < p < X such that Ea,b has p as a champion prime.

Suppose we fix a box, centered at the origin, in the plane. Using our work
above, we can now obtain the density of curves in this specific box which will have
a champion prime less than a determined bound.

Corollary 5. Suppose A and B are fixed positive real numbers with 0 < ✏ < 8
5 , and

let
s =

✓
8
5
� ✏

◆
log(min{A,B}).

Then the density of curves Ea,b with |a|  A, |b|  B for which there exists a prime
4 < p < s such that Ea,b has good reduction at p and p is a champion prime is given
by 

1�
Y

4<p<s


1� p� 1

2p2
H(4p� b2ppc2)

��
+ o(1).

Our main density result, however, is as follows.

Theorem 6. Suppose A(X) and B(X) are chosen so that they satisfy the conditions
of Corollary 4. Then the density of curves which have good reduction for some prime
p and have p as a champion prime satisfies

� = lim
X!1

�(A(X), B(X),X) = 1.

Proof. In the proof of Theorem 2 we showed that
1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��
� 1� exp

✓
� log log(X)

+O

✓
1

(log X)2

◆
+ O(1)

◆

and that
1�

Y
4<p<X


1� p� 1

2p2
H(4p� b2ppc2)

��
 1� exp

✓
� X1/4

log X

+O

✓
X1/4

(log X)2

◆
+ O(1)

◆
.

Given this, and Corollary 4, we now see that

� = lim
X!1

�(A(X), B(X),X) = 1

which concludes the proof of Theorem 6.
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We conclude with the following remarks.

Remark 7. 1. If we wished to consider elliptic curves with trace of Frobenius
at p a maximum, the results and proofs given above would still hold by the
symmetry of 4p � a2 in a. Such primes could be called “minimal primes,”
since the curve E would have the minimum possible number of points modulo
p.

2. In our proof, we chose ⌦AB to be centered at the origin. We could, in fact,
center ⌦AB anywhere without altering our results.
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