

EXPANSIONS IN NON-INTEGER BASES: LOWER ORDER REVISITED

Simon Baker

School of Mathematics, University of Manchester, Manchester, United Kingdom simonbaker4120gmail.com

Nikita Sidorov

School of Mathematics, University of Manchester, Manchester, United Kingdom sidorov@manchester.ac.uk

Received: 1/2/14, Accepted: 5/21/14, Published: 10/8/14

Abstract

Let $q \in (1,2)$ and $x \in [0,\frac{1}{q-1}]$. We say that a sequence $(\varepsilon_i)_{i=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$ is an expansion of x in base q (or a q-expansion) if

$$x = \sum_{i=1}^{\infty} \varepsilon_i q^{-i}$$

For any $k \in \mathbb{N}$, let \mathcal{B}_k denote the set of q such that there exists x with exactly k expansions in base q. In 2009, the second-named author showed $\min \mathcal{B}_2 = q_2 \approx 1.71064$, the appropriate root of $x^4 = 2x^2 + x + 1$. In this paper we show that for any $k \geq 3$, $\min \mathcal{B}_k = q_f \approx 1.75488$, the appropriate root of $x^3 = 2x^2 - x + 1$.

1. Introduction

Let $q \in (1,2)$ and $I_q = [0, \frac{1}{q-1}]$. Given $x \in \mathbb{R}$, we say that a sequence $(\varepsilon_i)_{i=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$ is a *q*-expansion for x if

$$x = \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i}.$$
 (1)

Expansions in non-integer bases were pioneered in the papers of Rényi [10] and Parry [9].

It is a simple exercise to show that x has a q-expansion if and only if $x \in I_q$. When (1) holds, we will adopt the notation $x = (\varepsilon_1, \varepsilon_2, \ldots)_q$. Given $x \in I_q$, we denote the set of q-expansions for x by $\Sigma_q(x)$, i.e.,

$$\Sigma_q(x) = \Big\{ (\varepsilon_i)_{i=1}^{\infty} \in \{0,1\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i} = x \Big\}.$$

In [5] it is shown that for $q \in (1, \frac{1+\sqrt{5}}{2})$ the set $\Sigma_q(x)$ is uncountable for all $x \in (0, \frac{1}{q-1})$. The endpoints of I_q trivially have a unique q-expansion for all $q \in (1, 2)$. In [14] it is shown that for $q = \frac{1+\sqrt{5}}{2}$ every $x \in (0, \frac{1}{q-1})$ has uncountably many q-expansions unless $x = \frac{(1+\sqrt{5})n}{2}$ mod 1, for some $n \in \mathbb{Z}$, in which case $\Sigma_q(x)$ is infinite countable. Moreover, in [3] it is shown that for all $q \in (\frac{1+\sqrt{5}}{2}, 2)$ there exists $x \in (0, \frac{1}{q-1})$ with a unique q-expansion. In this paper we will be interested in the set of $q \in (1, 2)$ for which there exists $x \in I_q$ with precisely k q-expansions. More specifically, we will be interested in the set

$$\mathcal{B}_k := \left\{ q \in (1,2) | \text{ there exists } x \in \left(0, \frac{1}{q-1}\right) \text{ satisfying } \# \Sigma_q(x) = k \right\}.$$

It was shown in [4] that $\mathcal{B}_k \neq \emptyset$ for any $k \geq 2$. Similarly we can define \mathcal{B}_{\aleph_0} and $\mathcal{B}_{2^{\aleph_0}}$. The reader should bear in mind the possibility that the number of expansions could lie strictly between countable infinite and the continuum. By the above remarks it is clear that $\mathcal{B}_1 = (\frac{1+\sqrt{5}}{2}, 2)$. In [12] the following theorem was shown to hold.

Theorem 1.1. • The smallest element of \mathcal{B}_2 is

 $q_2 \approx 1.71064,$

the appropriate root of $x^4 = 2x^2 + x + 1$.

• The next smallest element of \mathcal{B}_2 is

 $q_f \approx 1.75488,$

the appropriate root of $x^3 = 2x^2 - x + 1$.

• For each $k \in \mathbb{N}$ there exists $\gamma_k > 0$ such that $(2 - \gamma_k, 2) \subset \mathcal{B}_j$ for all $1 \leq j \leq k$.

The following theorem is the central result of the present paper. It answers a question posed by V. Komornik [7] (see also [12, Section 5]).

Theorem 1.2. For $k \geq 3$ the smallest element of \mathcal{B}_k is q_f .

The range of $q > \frac{1+\sqrt{5}}{2}$ which are "sufficiently close" to the golden ratio is referred to in [12] as the *lower order*, which explains the title of the present paper.

In the course of our proof of Theorem 1.2 we will also show that $q_f \in \mathcal{B}_{\aleph_0}$. Combined with our earlier remarks, Theorem 1.1, Theorem 1.2, and a result in [11] which states that for $q \in [\frac{1+\sqrt{5}}{2}, 2)$ almost every $x \in I_q$ has a continuum of q-expansions, we can conclude the following. **Theorem 1.3.** In base q_f all situations occur: there exist $x \in I_q$ having exactly k q-expansions for each $k = 1, 2, ..., k = \aleph_0$ or $k = 2^{\aleph_0}$. Moreover, q_f is the smallest $q \in (1, 2)$ satisfying this property.

Before proving Theorem 1.2 it is necessary to recall some theory. In what follows we fix $T_{q,0}(x) = qx$ and $T_{q,1}(x) = qx - 1$. We will typically denote an element of $\bigcup_{n=0}^{\infty} \{T_{q,0}, T_{q,1}\}^n$ by a; here $\{T_{q,0}, T_{q,1}\}^0$ denotes the set consisting of the identity map. Moreover, if $a = (a_1, \ldots, a_n)$ we shall use a(x) to denote $(a_n \circ \cdots \circ a_1)(x)$ and |a| to denote the length of a.

We let

$$\Omega_q(x) = \left\{ (a_i)_{i=1}^{\infty} \in \{T_{q,0}, T_{q,1}\}^{\mathbb{N}} : (a_n \circ \ldots \circ a_1)(x) \in I_q \text{ for all } n \in \mathbb{N} \right\}.$$

The significance of $\Omega_q(x)$ is made clear by the following lemma.

Lemma 1.4. $\#\Sigma_q(x) = \#\Omega_q(x)$ where our bijection identifies $(\varepsilon_i)_{i=1}^{\infty}$ with $(T_{q,\varepsilon_i})_{i=1}^{\infty}$.

The proof of Lemma 1.4 is contained within [2]. It is an immediate consequence of Lemma 1.4 that we can interpret Theorem 1.2 in terms of $\Omega_q(x)$ rather than $\Sigma_q(x)$.

An element $x \in I_q$ satisfies $T_{q,0}(x) \in I_q$ and $T_{q,1}(x) \in I_q$ if and only if $x \in [\frac{1}{q}, \frac{1}{q(q-1)}]$. Moreover, if $\#\Sigma_q(x) > 1$ or equivalently $\#\Omega_q(x) > 1$, then there exists a unique minimal sequence of transformations a such that $a(x) \in [\frac{1}{q}, \frac{1}{q(q-1)}]$. In what follows we let $S_q := [\frac{1}{q}, \frac{1}{q(q-1)}]$. The set S_q is usually referred to as the *switch region*. We will also make regular use of the fact that if $x \in I_q$ and a is a sequence of transformations such that $a(x) \in I_q$, then

$$\#\Omega_q(x) \ge \#\Omega_q(a(x)) \text{ or equivalently } \#\Sigma_q(x) \ge \#\Sigma_q(a(x)).$$
(2)

This is immediate from the definition of $\Omega_q(x)$ and Lemma 1.4.

In the course of our proof of Theorem 1.2 we will frequently switch between $\Sigma_q(x)$ and the dynamical interpretation of $\Sigma_q(x)$ provided by Lemma 1.4. Often considering $\Omega_q(x)$ will help our exposition.

The following lemma is a consequence of [6, Theorem 2].

Lemma 1.5. Let $q \in (\frac{1+\sqrt{5}}{2}, q_f]$, if $x \in I_q$ has a unique q-expansion $(\varepsilon_i)_{i=1}^{\infty}$, then $(\varepsilon_i)_{i=1}^{\infty} \in \left\{ 0^k (10)^{\infty}, 1^k (10)^{\infty}, 0^{\infty}, 1^{\infty} \right\},$

where $k \geq 0$. Similarly, if $(\varepsilon_i)_{i=1}^{\infty} \in \{0^k(10)^{\infty}, 1^k(10)^{\infty}, 0^{\infty}, 1^{\infty}\}$, then for $q \in (\frac{1+\sqrt{5}}{2}, 2)$ $x = ((\varepsilon_i)_{i=1}^{\infty})_q$ has a unique q-expansion given by $(\varepsilon_i)_{i=1}^{\infty}$.

In Lemma 1.5 we have adopted the notation $(\varepsilon_1 \dots \varepsilon_n)^k$ to denote the concatenation of $(\varepsilon_1 \dots \varepsilon_n) \in \{0, 1\}^n$ by itself k times and $(\varepsilon_1 \dots \varepsilon_n)^\infty$ to denote the infinite sequence obtained by concatenating $\varepsilon_1 \dots \varepsilon_n$ by itself infinitely many times. We will use this notation throughout.

The following lemma follows from the branching argument first introduced in [13].

Lemma 1.6. Let $k \ge 2$, $x \in I_q$, and suppose $\#\Sigma_q(x) = k$ or equivalently $\#\Omega_q(x) = k$. If a is the unique minimal sequence of transformations such that $a(x) \in S_q$, then

$$#\Omega_q(T_{q,1}(a(x))) + #\Omega_q(T_{q,0}(a(x))) = k.$$

Moreover, $1 \le \#\Omega_q(T_{q,1}(a(x))) < k$ and $1 \le \#\Omega_q(T_{q,0}(a(x))) < k$.

The following result is an immediate consequence of Lemma 1.4 and Lemma 1.6.

Corollary 1.7. $\mathcal{B}_k \subset \mathcal{B}_2$ for all $k \geq 3$.

An outline of our proof of Theorem 1.2 is as follows: first of all we will show that $q_f \in \mathcal{B}_k$ for all $k \geq 1$. Then by Theorem 1.1 and Corollary 1.7, to prove Theorem 1.2, it suffices to show that $q_2 \notin \mathcal{B}_k$ for all $k \geq 3$. But by an application of Lemma 1.6, to show that $q_2 \notin \mathcal{B}_k$ for all $k \geq 3$ it suffices to show that $q_2 \notin \mathcal{B}_3$ and $q_2 \notin \mathcal{B}_4$. This will yield the claim of Theorem 1.2.

2. Proof that $q_f \in \mathcal{B}_k$ for all $k \geq 1$

To show that $q_f \in \mathcal{B}_k$ for all $k \ge 1$, we construct an $x \in I_{q_f}$ satisfying $\# \Sigma_{q_f}(x) = k$ explicitly.

Proposition 2.1. For each $k \ge 1$ the number $x_k = (1(0000)^{k-1}0(10)^{\infty})_{q_f}$ satisfies $\#\Sigma_{q_f}(x_k) = k$. Moreover, $x_{\aleph_0} = (10^{\infty})_{q_f}$ satisfies $\operatorname{card} \Sigma_{q_f}(x) = \aleph_0$.

Proof. We proceed by induction. For k = 1 we have $x_1 = ((10)^{\infty})_{q_f}$, and therefore $\#\Sigma_{q_f}(x_1) = 1$ by Lemma 1.5. Let us assume $x_k = (1(0000)^{k-1}0(10)^{\infty})_{q_f}$ satisfies $\#\Sigma_{q_f}(x_k) = k$. To prove our result, it suffices to show that $x_{k+1} = (1(0000)^k 0(10)^{\infty})_{q_f}$ satisfies $\#\Sigma_{q_f}(x_{k+1}) = k + 1$.

We begin by remarking that by Lemma 1.5 $((0000)^k 0(10)^\infty))_{q_f}$ has a unique q_f -expansion. Therefore there is a unique q_f -expansion of x_{k+1} beginning with 1. Furthermore, it is a simple exercise to show that q_f satisfies the equation $x^4 = x^3 + x^2 + 1$, which implies that $(0(1101)(0000)^{k-1}0(10)^\infty)$ is also a q_f -expansion for x_{k+1} .

To prove the claim, we will show that if $(\varepsilon_i)_{i=1}^{\infty}$ is a *q*-expansion for x_{k+1} and $\varepsilon_1 = 0$, then $\varepsilon_2 = 1$, $\varepsilon_3 = 1$ and $\varepsilon_4 = 0$. Which combined with our inductive hypothesis implies that the set of *q*-expansions for x_{k+1} satisfying $\varepsilon_1 = 0$ consists of *k* distinct elements. Combining these *q*-expansions with the unique *q*-expansion of x_{k+1} satisfying $\varepsilon_1 = 1$ we may conclude $\#\Sigma_{q_f}(x_{k+1}) = k+1$.

Let us suppose $\varepsilon_1 = 0$; if $\varepsilon_2 = 0$, then we would require

$$x_{k+1} = (1(0000)^k 0(10)^\infty)_{q_f} \le (00(1)^\infty)_{q_f};$$

however, $x_{k+1} > \frac{1}{q_f}$ and $\sum_{i=3}^{\infty} \frac{1}{q^i} < \frac{1}{q}$ for all $q > \frac{1+\sqrt{5}}{2}$, and therefore $\varepsilon_2 = 1$. If $\varepsilon_3 = 0$, then we would require

$$x_{k+1} = (1(0000)^k 0(10)^\infty)_{q_f} \le (010(1)^\infty)_{q_f},\tag{3}$$

which is equivalent to

$$x_{k+1} = \frac{1}{q_f} + \frac{1}{q_f^{4k+3}} \sum_{i=0}^{\infty} \frac{1}{q_f^{2i}} \le \frac{1}{q_f^2} + \frac{1}{q_f^4} \sum_{i=0}^{\infty} \frac{1}{q_f^i};$$

however,

$$\frac{1}{q_f} = \frac{1}{q_f^2} + \frac{1}{q_f^4} \sum_{i=0}^{\infty} \frac{1}{q_f^i},$$

whence (3) cannot occur and $\varepsilon_3 = 1$. Now let us suppose $\varepsilon_4 = 1$. Then we must have

$$x_{k+1} = (1(0000)^k 0(10)^\infty)_{q_f} \ge (01110^\infty)_{q_f},\tag{4}$$

which is equivalent to

$$x_{k+1} = \frac{1}{q_f} + \frac{1}{q_f^{4k+3}} \sum_{i=0}^{\infty} \frac{1}{q_f^{2i}} \ge \frac{1}{q_f^2} + \frac{1}{q_f^3} + \frac{1}{q_f^4}.$$
 (5)

The left-hand side of (5) is maximized when k = 1, and therefore to show that $\varepsilon_4 = 0$ it suffices to show that

$$\frac{1}{q_f} + \frac{1}{q_f^7} \sum_{i=0}^{\infty} \frac{1}{q_f^{2i}} \ge \frac{1}{q_f^2} + \frac{1}{q_f^3} + \frac{1}{q_f^4}$$
(6)

does not hold. By a simple manipulation (6) is equivalent to

$$q_f^6 - q_f^5 - 2q_f^4 + q_f^2 + q_f + 1 \ge 0, (7)$$

but by an explicit calculation we can show that the left-hand side of (7) is strictly negative; therefore (4) does not hold and $\varepsilon_4 = 0$.

Now we consider x_{\aleph_0} . Replicating our analysis for x_k , we can show that if $(\varepsilon_i)_{i=1}^{\infty}$ is a *q*-expansion for x_{\aleph_0} and $\varepsilon_1 = 0$, then $\varepsilon_2 = 1$. Unlike our previous case it is possible for ε_3 be equal to 0; however, in this case $\varepsilon_i = 1$ for all $i \ge 4$. If $\varepsilon_3 = 1$, then as in our previous case we must have $\varepsilon_4 = 0$. We observe that

$$x_{\aleph_0} = (10^{\infty})_{q_f} = (010(1)^{\infty})_{q_f} = (011010^{\infty})_{q_f}.$$

Clearly, there exists a unique q-expansion for x_{\aleph_0} satisfying $\varepsilon_1 = 1$ and a unique q-expansion for x_{\aleph_0} satisfying $\varepsilon_1 = 0$, $\varepsilon_2 = 1$ and $\varepsilon_3 = 0$. Therefore all other q-expansions of x_{\aleph_0} have (0110) as a prefix. Repeating the above argument arbitrarily many times we can determine that all the q_f -expansions of x_{\aleph_0} are of the form:

$$\begin{aligned} x_{\aleph_0} &= (10^{\infty})_{q_f} \\ &= (010(1)^{\infty})_{q_f} \\ &= (011010^{\infty})_{q_f} \\ &= (0110010(1)^{\infty})_{q_f} \\ &= (0110011001^{\infty})_{q_f} \\ &= (01100110010(1)^{\infty})_{q_f} \\ &= (01100110011010^{\infty})_{q_f} \\ &\vdots \end{aligned}$$

which is clearly infinite countable.

Thus, to prove Theorem 1.2, it suffices to show that $q_2 \notin \mathcal{B}_3 \cup \mathcal{B}_4$. This may look like a fairly innocuous exercise, but in reality it requires a substantial effort.

3. Proof that $q_2 \notin \mathcal{B}_3$

By Lemma 1.6, to show that $q_2 \notin \mathcal{B}_k$ for all $k \geq 3$, it suffices to show $q_2 \notin \mathcal{B}_3$ and $q_2 \notin \mathcal{B}_4$. To prove this, we begin by characterizing those $x \in S_{q_2}$ that satisfy $\#\Sigma_{q_2}(x) = 2$. To simplify our notation, we denote for the rest of the paper $\beta := q_2$ and $T_i := T_{q_2,i}$ for i = 0, 1.

Proposition 3.1. The only $x \in S_{\beta}$ which satisfy $\#\Sigma_{\beta}(x) = 2$ are

$$x = (01(10)^{\infty})_{\beta} = (10000(10)^{\infty})_{\beta} \text{ and } x = (0111(10)^{\infty})_{\beta} = (100(10)^{\infty})_{\beta}.$$

Proof. It was shown in the proof of [12, Proposition 2.4] that if $\frac{1+\sqrt{5}}{2} < q < q_f$ and y, y + 1 have unique q-expansions, then necessarily $q = \beta$ and either $y = (0000(10)^{\infty})_{\beta}$ and $y + 1 = (1(10)^{\infty})_{\beta}$ or $y = (00(10)^{\infty})_{\beta}$ and $y + 1 = (111(10)^{\infty})_{\beta}$ respectively. Since for either case there exists a unique $x \in S_{\beta}$ such that $\beta x - 1 = y$, Lemma 1.6 yields the claim.

In what follows we will let $(\varepsilon_i^1)_{i=1}^{\infty} = 01(10)^{\infty}$, $(\varepsilon_i^2)_{i=1}^{\infty} = 10000(10)^{\infty}$, $(\varepsilon_i^3)_{i=1}^{\infty} = 0111(10)^{\infty}$ and $(\varepsilon_i^4)_{i=1}^{\infty} = 100(10)^{\infty}$.

Remark 3.2. Let $(\bar{\varepsilon}_i)_{i=1}^{\infty} = (1 - \varepsilon_i)_{i=1}^{\infty}$, we refer to $(\bar{\varepsilon}_i)_{i=1}^{\infty}$ as the *reflection* of $(\varepsilon_i)_{i=1}^{\infty}$. Clearly $(\bar{\varepsilon}_i^1)_{i=1}^{\infty} = (\varepsilon_i^4)_{i=1}^{\infty}$ and $(\bar{\varepsilon}_i^2)_{i=1}^{\infty} = (\varepsilon_i^3)_{i=1}^{\infty}$. This is to be expected

as every $x \in I_q$ satisfies $\#\Sigma_q(x) = \#\Sigma_q(\frac{1}{q-1} - x)$ and mapping $(\varepsilon_i)_{i=1}^{\infty}$ to $(\bar{\varepsilon}_i)_{i=1}^{\infty}$ is a bijection between $\Sigma_q(x)$ and $\Sigma_q(\frac{1}{q-1} - x)$. If $(\varepsilon_i^1)_{i=1}^{\infty}$ and $(\varepsilon_i^2)_{i=1}^{\infty}$ were not the reflections of $(\varepsilon_i^4)_{i=1}^{\infty}$ and $(\varepsilon_i^3)_{i=1}^{\infty}$ respectively, then there would exist other $x \in S_\beta$ satisfying $\#\Sigma_\beta(x) = 2$, contradicting Proposition 3.1.

In this section we show that no $x \in I_{\beta}$ can satisfy $\#\Sigma_{\beta}(x) = 3$. To show that $\beta \notin \mathcal{B}_3$ and $\beta \notin \mathcal{B}_4$ we will make use of the following proposition.

Proposition 3.3. Suppose $x \in I_{\beta}$ satisfies $\#\Sigma_{\beta}(x) = 2$ or equivalently $\#\Omega_{\beta}(x) = 2$. 2. Then there exists a unique sequence of transformations a such that $a(x) \in S_{\beta}$. Moreover, $a(x) = ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ or $a(x) = ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$.

Proof. Since $\#\Omega_{\beta}(x) = 2$, there must exist a satisfying $a(x) \in S_{\beta}$; otherwise $\#\Omega_{\beta}(x) = 1$. We begin by showing uniqueness; suppose a' satisfies $a'(x) \in S_{\beta}$ and $a' \neq a$. If |a'| < |a|, then we have two cases. If a' is a prefix of a, then by (2) and Lemma 1.6,

$$\#\Omega_{\beta}(x) \ge \#\Omega_{\beta}(a'(x)) = \#\Omega_{\beta}(T_0(a'(x))) + \#\Omega_{\beta}(T_1(a'(x))) \ge 3,$$

which contradicts $\#\Omega_{\beta}(x) = 2$. If a' is not a prefix of a, then there exists $b \in \bigcup_{n=0}^{\infty} \{T_0, T_1\}^n$ such that $b(x) \in S_{\beta}$ and either b0 is a prefix for a' and b1 is a prefix for a, or b0 is a prefix for a and b1 is a prefix for a'. In either case it follows from (2) and Lemma 1.6 that

$$\#\Omega_{\beta}(x) \ge \#\Omega_{\beta}(b(x)) = \#\Omega_{\beta}(T_0(b(x))) + \#\Omega_{\beta}(T_1(b(x))) \ge 4$$

a contradiction. By analogous arguments we can show that if |a'| = |a| or |a'| > |a|, then this implies $\#\Omega_{\beta}(x) > 2$. Therefore, a must be unique.

Now let a be the unique sequence of transformations such that $a(x) \in S_{\beta}$. By Lemma 1.6,

$$\#\Omega_{\beta}(T_0(a(x))) = \#\Omega_{\beta}(T_1(a(x))) = 1.$$

However, it follows from Proposition 3.1 that this can only happen when $a(x) = ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ or $a(x) = ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$.

Remark 3.4. By Proposition 3.3, to show that $x \in I_{\beta}$ satisfies $\operatorname{card} \Sigma_{\beta}(x) > 2$ (or equivalently, $\operatorname{card} \Omega_{\beta}(x) > 2$), it suffices to construct a sequence of transformations a such that $a(x) \in S_{\beta}$ with $a(x) \neq ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ and $a(x) \neq ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. We will make regular use of this strategy in our later proofs.

Before proving $\beta \notin \mathcal{B}_3$ it is appropriate to state numerical estimates¹ for S_{β} , $((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ and $((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. Our calculations yield

$$S_{\beta} = [0.584575\dots, 0.822599\dots],$$

¹The explicit calculations performed in this paper were done using MATLAB. In our calculations we approximated β by 1.710644095045033, which is correct to the first fifteen decimal places.

$(0^k(01)^\infty)_\beta + 1$	Iterates of $(0^k(01)^\infty)_\beta + 1$ (To 6 decimal places)
$(0(01)^{\infty})_{\beta} + 1$	Unique q -expansion by Proposition 3.1
$(00(01)^{\infty})_{\beta} + 1$	1.177400, 1.014114, 0.734788
$(000(01)^{\infty})_{\beta} + 1$	Unique q -expansion by Proposition 3.1
$(0000(01)^{\infty})_{\beta} + 1$	1.060622, 0.8143482
$(00000(01)^{\infty})_{\beta} + 1$	1.035438, 0.771266
$(000000(01)^{\infty})_{\beta} + 1$	1.020716, 0.746082
1	1,0.710644

Table 1: Successive iterates of $(0^k(01)^{\infty})_{\beta} + 1$ falling into $S_{\beta} \setminus \{(\varepsilon^1)_{\beta}, (\varepsilon^3)_{\beta}\}$

 $((\varepsilon_i^1)_{i=1}^\infty)_\beta = 0.645198\dots$ and $((\varepsilon_i^3)_{i=1}^\infty)_\beta = 0.761976\dots$

These estimates will make clear when $a(x) \in S_{\beta}$ and whether $a(x) = ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ or $a(x) = ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$.

Theorem 3.5. We have $\beta \notin \mathcal{B}_3$.

Proof. Suppose $x' \in I_{\beta}$ satisfies $\#\Sigma_{\beta}(x') = 3$ or equivalently $\#\Omega_{\beta}(x') = 3$. Let a denote the unique minimal sequence of transformations such that $a(x') \in S_{\beta}$. By considering reflections, we may assume without loss of generality that

$$\#\Omega_{\beta}(T_1(a(x'))) = 1 \text{ and } \#\Omega_{\beta}(T_0(a(x'))) = 2.$$

Put $x = T_1(a(x'))$; by a simple argument it can be shown that $x \neq 0$, so we may assume that $x = (0^k(01)^\infty)_\beta$ for some $k \ge 1$. To show that $\beta \notin \mathcal{B}_3$ we consider $T_0(a(x')) = x + 1 = (0^k(01)^\infty)_\beta + 1$. We will show that for each $k \ge 1$ there exists a finite sequence of transformations a such that $a(x+1) \in S_\beta$, $a(x+1) \neq$ $((\varepsilon_i^1)_{i=1}^\infty)_\beta$ and $a(x+1) \neq ((\varepsilon_i^3)_{i=1}^\infty)_\beta$. By Proposition 3.3 and Remark 3.4, this implies $\#\Omega_\beta(x+1) > 2$, which is a contradiction. Hence $\beta \notin \mathcal{B}_3$.

Table 1 states the orbits of $(0^k(01)^{\infty})_{\beta} + 1$ under T_0 and T_1 until eventually $(0^k(01)^{\infty})_{\beta} + 1$ is mapped into S_{β} . Table 1 also includes the orbit of 1 under T_0 and T_1 until 1 is mapped into S_{β} . The reason we have included the orbit of 1 is because $(0^k(01)^{\infty})_{\beta} + 1 \rightarrow 1$ as $k \rightarrow \infty$. Therefore understanding the orbit of 1 allows us to understand the orbit of $(0^k(01)^{\infty})_{\beta} + 1$ for large values of k.

By inspection of Table 1, we conclude that for $1 \le k \le 6$ either $(0^k(01)^{\infty})_{\beta} + 1$ has a unique q-expansion which contradicts $\#\Omega_{\beta}(T_0(a(x'))) = 2$, or there exists a such that $a((0^k(01)^{\infty})_{\beta} + 1) \in S_{\beta}$ with $a((0^k(01)^{\infty})_{\beta} + 1) \ne ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ and $a((0^k(01)^{\infty})_{\beta} + 1) \ne ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. By Proposition 3.3, this contradicts $\#\Omega_{\beta}(x+1) = 2$.

To conclude our proof, it suffices to show that for each $k \ge 7$ there exists a such that $a((0^k(01)^{\infty})_{\beta} + 1) \in S_{\beta}$, $a((0^k(01)^{\infty})_{\beta} + 1) \ne ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ and $a((0^k(01)^{\infty})_{\beta} + 1) \ne ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. For all $k \ge 7$, we have $(0^k(01)^{\infty})_{\beta} + 1 \in (1, (000000(01)^{\infty})_{\beta} + 1);$ however, by inspection of Table 1, it is clear that $T_1(x) \in (0.710644..., 0.746082...)$

for all $x \in (1, (00000(01)^{\infty})_{\beta} + 1)$. Therefore, we can infer that such an *a* exists for all $k \ge 7$, which concludes our proof.

4. Proof that $q_2 \notin \mathcal{B}_4$

To prove $\beta \notin \mathcal{B}_4$, we will use a similar method to that used in the previous section, the primary difference being there are more cases to consider. Before giving our proof we give details of these cases.

Suppose $x' \in I_{\beta}$ satisfies $\#\Sigma_{\beta}(x') = 4$ or equivalently $\#\Omega_{\beta}(x') = 4$. Let a' denote the unique minimal sequence of transformations such that $a'(x) \in S_{\beta}$. By Lemma 1.6,

$$\#\Omega_{\beta}(T_0(a'(x'))) + \#\Omega_{\beta}(T_1(a'(x'))) = 4.$$

By Theorem 3.5, $\#\Omega_{\beta}(T_0(a'(x'))) \neq 3$ and $\#\Omega_{\beta}(T_1(a'(x'))) \neq 3$, whence

$$\#\Omega_{\beta}(T_0(a'(x'))) = \#\Omega_{\beta}(T_1(a'(x'))) = 2.$$
(8)

Letting $x = T_1(a'(x'))$, we observe that (8) is equivalent to

$$#\Omega_{\beta}(x) = #\Omega_{\beta}(x+1) = 2.$$
(9)

By Proposition 3.3, there exists a unique sequence of transformations a such that $a(x) \in S_{\beta}$ and $a(x) = ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ or $a(x) = ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. We now determine the possible unique sequences of transformations a that satisfy $a(x) \in S_{\beta}$.

To determine the unique *a* such that $a(x) \in S_{\beta}$, it is useful to consider the interval $\left[\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}\right]$. The significance of this interval is that $T_0\left(\frac{1}{\beta^2-1}\right) = \frac{\beta}{\beta^2-1}$ and $T_1\left(\frac{\beta}{\beta^2-1}\right) = \frac{1}{\beta^2-1}$. The monotonicity of the maps T_0 and T_1 implies that if $x \in (0, \frac{1}{\beta-1})$ and $x \notin \left[\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}\right]$, then there exists $i \in \{0, 1\}$ and a minimal $k \ge 1$ such that $T_i^k(x) \in \left[\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}\right]$. Furthermore, $S_{\beta} \subset \left[\frac{1}{\beta^2-1}, \frac{\beta}{\beta^2-1}\right]$, in view of $\beta > \frac{1+\sqrt{5}}{2}$.

In particular, if $x \in (0, \frac{1}{\beta^2 - 1})$, then there exists a minimal $k \ge 1$ such that $T_0^k(x) \in (\frac{1}{\beta^2 - 1}, \frac{\beta}{\beta^2 - 1})$; $T_0^k(x)$ cannot equal $\frac{1}{\beta^2 - 1}$ or $\frac{\beta}{\beta^2 - 1}$ as this would imply $\#\Omega_\beta(x) = 1$. There are three cases to consider: either $T_0^k(x) \in S_\beta$, in which case $T_0^k(x) = ((\varepsilon_i^1)_{i=1}^\infty)_\beta$ or $T_0^k(x) = ((\varepsilon_i^3)_{i=1}^\infty)_\beta$ by Proposition 3.3, or alternatively $T_0^k(x) \in (\frac{1}{\beta^2 - 1}, \frac{1}{\beta})$ or $T_0^k(x) \in (\frac{1}{\beta(\beta - 1)}, \frac{\beta}{\beta^2 - 1})$. It is a simple exercise to show that if $T_0^k(x) = ((\varepsilon_i^3)_{i=1}^\infty)_\beta$ or $T_0^k(x) \in (\frac{1}{\beta(\beta - 1)}, \frac{\beta}{\beta^2 - 1})$, then $k \ge 2$. By Lemma 1.4 and Proposition 3.3, if $T_0^k(x) \in S_\beta$, then

$$x = (0^k (\varepsilon_i^1)_{i=1}^\infty)_\beta$$
 for some $k \ge 1$ or $x = (0^k (\varepsilon_i^3)_{i=1}^\infty)_\beta$ for some $k \ge 2$.

For any $q \in (\frac{1+\sqrt{5}}{2}, q_f)$ and $y \in (\frac{1}{q^2-1}, \frac{1}{q})$ there exists a unique minimal sequence a'' such that $a''(y) \in S_q$. Moreover, $a''(y) = (T_{q,1} \circ T_{q,0})^j(y)$ for some $j \geq 1$

and $(T_{q,1} \circ T_{q,0})^i(y) \in (\frac{1}{q^2-1}, \frac{1}{q})$ for all i < k. For all $y \in (\frac{1}{q^2-1}, \frac{1}{q})$ we have that $(T_{q,1} \circ T_{q,0})(y) = q^2y - 1 < q - 1$. Furthermore, it can be checked directly that $\beta - 1 < ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. Hence if $T_0^k(x) \in (\frac{1}{\beta^2-1}, \frac{1}{\beta})$, then

$$x = (0^k (01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta,$$

for some $k \ge 1$ and $j \ge 1$. By a similar argument it can be shown that if $T_0^k(x) \in (\frac{1}{\beta(\beta-1)}, \frac{\beta}{\beta^2-1})$, then

$$x = (0^k (10)^j (\varepsilon_i^3)_{i=1}^\infty)_\beta,$$

for some $k \ge 2$ and $j \ge 1$. The above arguments are summarized in the following proposition.

Proposition 4.1. Let x be as in (9); then one of the following four cases holds:

$$x = (0^k (\varepsilon_i^1)_{i=1}^\infty)_\beta \text{ for some } k \ge 1,$$
(10)

$$x = (0^k (\varepsilon_i^3)_{i=1}^\infty)_\beta \text{ for some } k \ge 2,$$
(11)

$$x = (0^{k} (01)^{j} (\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} \text{ for some } k \ge 1 \text{ and } j \ge 1$$
(12)

or

$$x = (0^k (10)^j (\varepsilon_i^3)_{i=1}^\infty)_\beta \text{ for some } k \ge 2 \text{ and } j \ge 1.$$

$$(13)$$

To prove that $\beta \notin \mathcal{B}_4$ we will show that for each of the four cases described in Proposition 4.1 there exists a such that

$$a(x+1) \in S_{\beta} \setminus \{ ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}, ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta} \},$$

$$(14)$$

which contradicts $\#\Omega_{\beta}(x+1) = 2$ by Proposition 3.3 and Remark 3.4.

For the majority of our cases an argument analogous to that used in Section 3 will suffice. However, in the case where k = 1, 3 in (12) and k = 2, 4 in (13) a different argument is required. We refer to these cases as the *exceptional cases*. For the exceptional cases we will also show (14); however, the approach used in slightly more technical and as such we will treat these cases separately.

Proposition 4.2. For each of the cases described by Proposition 4.1 there exists a such that (14) holds.

Proof of Proposition 4.2 for the non-exceptional cases. In the cases where we have $x = (0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ for some $k \ge 1$ or $x = (0^k (\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$ for some $k \ge 1$ it is clear that $x \to 0$ as $k \to \infty$. Therefore, to understand the orbit of $(0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$ or $(0^k (\varepsilon_i^3)_{i=1}^{\infty})_{\beta} + 1$ for large values of k, it suffices to consider the orbit of 1. Similarly, in the cases described by (12) and (13), if we fix $k \ge 1$, then, as $j \to \infty$, both $(0^k (01)^j (\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ and $(0^k (10)^j (\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$ converge to $(0^l (10)^{\infty})$ for some $l \ge 1$. Consequently, in order to understand the orbits of $(0^k (01)^j (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$

$(0^k (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	Iterates of $(0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$ (to 6 decimal places)
$(0(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.377166, 1.355842, 1.319363, 1.256961,
	1.150213, 0.967605, 0.655228
$(00(\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} + 1$	1.220482, 1.087810, 0.860857, 0.472620, 0.808484
$(000(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.128888, 0.931126, 0.592825
$(0000(\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} + 1$	1.075344, 0.839532, 0.436141, 0.746082
$(00000(\varepsilon_i^1)_{i=1}^\infty)_{\beta} + 1$	1.044044, 0.785989
$(000000(\varepsilon_i^1)_{i=1}^\infty)_{\beta} + 1$	1.025747, 0.754688
1	1,0.710644

Table 2: Successive iterates of $(0^k (\varepsilon_i^1)_{i=1}^\infty)_{\beta} + 1$

and $(0^k(10)^j(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$ for large values of j, it suffices to consider the orbit of $(0^l(10)^\infty)_\beta + 1$, for some $l \ge 1$. By considering these limits it will be clear when a sequence of transformations a exists that satisfies (14) for large values of k and j.

We begin by considering the case $x = (0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$. Table 2 plots successive (unique) iterates of $(0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$ until $(0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$ is mapped into S_{β} for $1 \leq k \leq 6$. It is clear from inspection of Table 2 that for $1 \leq k \leq 6$ there exists a such that $a(x+1) \in S_{\beta}$, $a(x+1) \neq ((\varepsilon_i^1)_{i=1}^{\infty})_{\beta}$ and $a(x+1) \neq ((\varepsilon_i^3)_{i=1}^{\infty})_{\beta}$. The case $k \geq 7$ follows from the fact that $(0^k (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1 \in (1, (000000(\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1)$ for all $k \geq 7$ and $T_1(y) \in (0.710644..., 0.754688...)$ for all $y \in (1, (000000(\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1)$. The case described by (11) follows by an analogous argument, so we omit the details and just include the relevant orbits in Table 3.

For the non-exceptional cases described by (12) and (13) an analogous argument works for the first few values of k by considering the limit of x + 1 as $j \to \infty$, so, as above, we just include the relevant orbits in Table 3. It is clear by inspection of Table 3 that $(0^k(01)^j(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1 \in (1, (0000001(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1)$ for all $k \ge 7$ and $j \ge 1$. However, $T_1(y) \in (0.710644..., 0.749023...)$ for all $y \in$ $(1, (00000001(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1)$; by inspection of Table 3, we can conclude the case described by (12) in the non-exceptional cases. Similarly, it is clear from inspection of Table 3 that $(0^k(10)^j(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1 \in (1, (000000(10)^\infty)_\beta + 1)$ for all $k \ge 8$ and $j \ge 1$. However, $T_1(y) \in (0.710644..., 0.7460826...)$ for all $y \in (1, (0000000(10)^\infty)_\beta + 1)$, therefore by inspection of Table 3 we can conclude the case described by (13) in the non-exceptional cases.

Proof of Proposition 4.2 for the exceptional cases. The reason we cannot use the same method as used for the non-exceptional cases is because as $j \to \infty$ the limits of $(0(01)^j(\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$, $(000(01)^j(\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1$, $(00(10)^j(\varepsilon_i^3)_{i=1}^{\infty})_{\beta} + 1$ and $(0000(10)^j(\varepsilon_i^3)_{i=1}^{\infty})_{\beta} + 1$ all have unique β -expansions, which follows from Proposition 3.1. As a consequence of the uniqueness of the β -expansion of the relevant limit, the number of transformations required to map x + 1 into S_{β} becomes arbitrarily large as $j \to \infty$. However, the following proposition shows that we can still

$(0^k (\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	Iterates of $(0^k (\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$ (to 6 decimal places)
$(00(\varepsilon_i^3)_{i=1}^\infty)_{\beta} + 1$	1.260388, 1.156076, 0.977635, 0.672385
$(000(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$	1.152216, 0.971032, 0.661091
$(0000(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	1.088982, 0.862860, 0.476047, 0.814348
$(00000(\varepsilon_i^3)_{i=1}^\infty)_{\beta} + 1$	1.052016, 0.799626
$(000000(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	1.030407, 0.762660
$(0000000(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	1.017775, 0.741051
1	1,0.710644
$\frac{(00(01)^j (\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1}{(0001(\varepsilon_i^1)_{i=1}^{\infty})_{\beta} + 1}$	Iterates of $(00(01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$
$(0001(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.192123, 1.039298, 0.777869
$(000101(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.182431, 1.022720, 0.749510
$\frac{(00(01)^{\infty})_{\beta} + 1}{(0000(01)^{j}(\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} + 1}$	1.177400, 1.014114, 0.734788
$(0000(01)^{j}(\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} + 1$	Iterates of $(0000(01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$
$\frac{(000001(\varepsilon_i^1)_{i=1}^{\infty})\beta + 1}{(000001(\varepsilon_i^1)_{i=1}^{\infty})\beta + 1}$	1.065653, 0.822954, 0.407782, 0.697570
$(00000101(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.062342, 0.817289
$(0000(01)^{\infty})_{\beta} + 1$	1.060622, 0.814348
$(00000(01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	Iterates of $(00000(01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$
$(0000001(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.038379, 0.776297
$(00000(01)^{\infty})_{\beta} + 1$	1.035438, 0.771266
$\frac{(00000(01)^{j}(\varepsilon_{1}^{1})_{i=1}^{\infty})_{\beta} + 1}{(000000(01)^{j}(\varepsilon_{1}^{1})_{i=1}^{\infty})_{\beta} + 1}$	Iterates of $(000000(01)^{j}(\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} + 1$
$(0000001(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.022435, 0.749023
$(000000(01)^{\infty})_{\beta} + 1$	1.020716, 0.746082
$\frac{(000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1}{(000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1}$	Iterates of $(000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$
$(00010(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$	1.168794, 0.999391, 0.709603
$\frac{(000(10)^{\infty})_{\beta} + 1}{(00000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1}}{(0000010(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1}$	1.177400, 1.014114, 0.734788
$(00000(10)^j (\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	Iterates of $(00000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$
$(0000010(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	1.057681, 0.809317
$(00000(10)^{\infty})_{\beta} + 1$	1.060622, 0.814348
$(000000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$	Iterates of $(000000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$
$(00000010(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	1.033719, 0.768326
$(000000(10)^{\infty})_{\beta} + 1$	1.035438, 0.771266
$(000000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$	Iterates of $(000000(10)^{j}(\varepsilon_{i}^{3})_{i=1}^{\infty})_{\beta} + 1$
$\frac{(00000010(\varepsilon_i^3)_{i=1}^\infty)_\beta}{(00000010(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1}$	1.019711, 0.744363
$(0000000(10)^{\infty})_{\beta} + 1$	1.020716, 0.746082

Table 3: Successive iterates of $(0^k (\varepsilon_i^3)_{i=1}^{\infty})_{\beta} + 1$

construct an a satisfying (14) for all but three of the exceptional cases.

Proposition 4.3. The following identities hold:

$$((T_1 \circ T_0)^{j-2} \circ (T_1)^4)((0(01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1) = \frac{\beta - 1}{\beta^3 (\beta^2 - 1)} + \frac{1}{\beta^2 - 1}$$
(15)
\$\approx 0.59282\$ for \$j \ge 3\$,

$$((T_1 \circ T_0)^j \circ (T_1)^2)((000(01)^j (\varepsilon_i^1)_{i=1}^\infty)_\beta + 1) = \frac{\beta - 1}{\beta^3 (\beta^2 - 1)} + \frac{1}{\beta^2 - 1}$$
(16)
\$\approx 0.59282\$ for \$j \ge 1\$,

$$((T_0 \circ T_1)^{j-1} \circ (T_1)^3)((00(10)^j (\varepsilon_i^3)_{i=1}^\infty)_\beta + 1) = \frac{\beta}{\beta^2 - 1} + \frac{1 - \beta}{\beta^3 (\beta^2 - 1)}$$
(17)
\$\approx 0.81434\$ for \$j \ge 2\$

and

$$((T_0 \circ T_1)^{j+1} \circ (T_1))((0000(10)^j (\varepsilon_i^3)_{i=1}^\infty)_\beta + 1) = \frac{\beta}{\beta^2 - 1} + \frac{1 - \beta}{\beta^3 (\beta^2 - 1)}$$
(18)
\$\approx 0.81434\$ for \$j \ge 1\$.

Proof. Each of the identities (15), (16), (17) and (18) is proved by similar arguments, so we will just show that (15) holds. Note that

$$(0(01)^{j}(\varepsilon_{i}^{1})_{i=1}^{\infty})_{\beta} + 1 = \frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+3}(\beta^{2} - 1)} + 1,$$

for all $j \ge 1$. We observe the following:

$$\begin{split} &((T_1 \circ T_0)^{j-2} \circ (T_1)^4) \Big(\frac{\beta^{2j+2} + \beta - 1}{\beta^{2j+3}(\beta^2 - 1)} + 1 \Big) \\ = &(T_1 \circ T_0)^{j-2} \Big(\frac{\beta^{2j+2} + \beta - 1}{\beta^{2j-1}(\beta^2 - 1)} + \beta^4 - \beta^3 - \beta^2 - \beta - 1 \Big) \\ = &\beta^{2j-4} \Big(\frac{\beta^{2j+2} + \beta - 1}{\beta^{2j-1}(\beta^2 - 1)} + \beta^4 - \beta^3 - \beta^2 - \beta - 1 \Big) - \sum_{i=0}^{j-3} \beta^{2i} \\ = &\frac{\beta^{2j+2} + \beta - 1}{\beta^3(\beta^2 - 1)} + \beta^{2j} - \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4} - \frac{\beta^{2j-4} - 1}{\beta^2 - 1} \\ = &\frac{\beta^{2j+2}}{\beta^3(\beta^2 - 1)} + \beta^{2j} - \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4} - \frac{\beta^{2j-4} - 1}{\beta^3 - 1} + \frac{\beta^{2j-4} - 1}{\beta^2 - 1} + \frac{\beta^{2j-4} - 1}{$$

Therefore, to conclude our proof, it suffices to show that

$$\frac{\beta^{2j+2}}{\beta^3(\beta^2-1)} + \beta^{2j} - \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4} - \frac{\beta^{2j-4}}{\beta^2-1} = 0.$$
(19)

Exceptional cases	Iterates (to 6 decimal places)
$(001(\varepsilon_i^1)_{i=1}^\infty)_\beta + 1$	1.328654, 1.272854, 1.177400, 1.014114, 0.734788
$(00101(\varepsilon_i^1)_{i=1}^\infty)_{\beta} + 1$	1.312076, 1.244495, 1.128888, 0.931126, 0.592825
$(0010(\varepsilon_i^3)_{i=1}^\infty)_\beta + 1$	1.288747, 1.204588, 1.060622, 0.814348

Table 4: Remaining exceptional cases: $k = 1, j \in \{1, 2\}$ in (12) and k = 2, j = 1 in (13)

By manipulating the left-hand side of (19), we conclude that satisfying (19) is equivalent to

$$\frac{\beta^{2j-1} - \beta^{2j-4} + (\beta^{2j} - \beta^{2j-1} - \beta^{2j-2} - \beta^{2j-3} - \beta^{2j-4})(\beta^2 - 1)}{\beta^2 - 1} = 0$$

or

$$\frac{\beta^{2j-3}(\beta-1)(\beta^4-2\beta^2-\beta-1)}{\beta^2-1} = 0$$

This is true in view of $\beta^4 - 2\beta^2 - \beta - 1 = 0$.

Proposition 4.3 and Table 4 (which displays the orbits of the exceptional cases that are not covered by Proposition 4.3) conclude our proof of Proposition 4.2 for all the exceptional cases. Therefore, $\beta \notin \mathcal{B}_4$, and Theorem 1.2 holds.

5. Open Questions

To conclude the paper, we pose a few open questions:

- What is the topology of \mathcal{B}_k for $k \geq 2$? In particular, what is the smallest limit point of \mathcal{B}_k ? Is it below or above the Komornik-Loreti constant introduced in [8]?
- What is the smallest q such that x = 1 has k q-expansions? (For k = 1 this is precisely the Komornik-Loreti constant.)
- What is the structure of $\mathcal{B}_{\aleph_0} \cap \left(\frac{1+\sqrt{5}}{2}, q_f\right)$? In view of the results of the present paper, knowing this would lead to a complete understanding of card $\Sigma_q(x)$ for all $q \leq q_f$ and all $x \in I_q$.
- Let, as above,

$$\mathcal{B}_{\infty} = igcap_{k=1}^{\infty} \mathcal{B}_k \cap \mathcal{B}_{leph_0} \cap \mathcal{B}_{2^{leph_0}}.$$

By Theorem 1.3, q_f is the smallest element of \mathcal{B}_{∞} . What is the second smallest element of \mathcal{B}_{∞} ? What is the topology of \mathcal{B}_{∞} ?

• In [1] the authors study the order in which periodic orbits appear in the set of points with unique q-expansion; they show that as $q \uparrow 2$, the order in which periodic orbits appear in the set of uniqueness is intimately related to the classical Sharkovskiĭ ordering. Does a similar result hold in our case? That is, if k > k' with respect to the usual Sharkovskiĭ ordering, does this imply $\mathcal{B}_k \subset \mathcal{B}_{k'}$?

Acknowledgment. The authors are grateful to Vilmos Komornik for useful suggestions.

References

- J.-P. Allouche, M. Clarke and N. Sidorov, *Periodic unique beta-expansions: the Sharkovskii ordering*, Ergod. Th. Dynam. Systems **29** (2009), 1055–1074.
- [2] S. Baker, Generalised golden ratios over integer alphabets, arXiv:1210.8397 [math.DS].
- [3] Z. Daróczy and I. Katai, Univoque sequences, Publ. Math. Debrecen 42 (1993), 397-407.
- [4] P. Erdős, I. Joó, On the number of expansions $1 = \sum q^{-n_i}$, Ann. Univ. Sci. Budapest **35** (1992), 129–132.
- [5] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems, Bull. Soc. Math. Fr. **118** (1990), 377–390.
- [6] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001), 535–543.
- [7] V. Komornik, Open problems session of "Dynamical Aspects of Numeration" workshop, Paris, 2006.
- [8] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), no. 7, 636–639.
- [9] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960) 401–416.
- [10] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957) 477–493.
- [11] N. Sidorov, Almost every number has a continuum of β -expansions, Amer. Math. Monthly **110** (2003), 838-842.
- [12] N. Sidorov, Expansions in non-integer bases: lower, middle and top orders, J. Number Th. 129 (2009), 741–754.
- [13] N. Sidorov, Universal β-expansions, Period. Math. Hungar. 47 (2003), 221–231.
- [14] N. Sidorov and A. Vershik, Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems Monatsh. Math. 126 (1998), 215–261.