# EXPANSIONS IN NON-INTEGER BASES: LOWER ORDER REVISITED 

Simon Baker<br>School of Mathematics, University of Manchester, Manchester, United Kingdom simonbaker412@gmail.com<br>Nikita Sidorov<br>School of Mathematics, University of Manchester, Manchester, United Kingdom<br>sidorov@manchester.ac.uk

Received: 1/2/14, Accepted: 5/21/14, Published: 10/8/14

Abstract
Let $q \in(1,2)$ and $x \in\left[0, \frac{1}{q-1}\right]$. We say that a sequence $\left(\varepsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}$ is an expansion of $x$ in base $q$ (or a $q$-expansion) if

$$
x=\sum_{i=1}^{\infty} \varepsilon_{i} q^{-i} .
$$

For any $k \in \mathbb{N}$, let $\mathcal{B}_{k}$ denote the set of $q$ such that there exists $x$ with exactly $k$ expansions in base $q$. In 2009, the second-named author showed $\min \mathcal{B}_{2}=q_{2} \approx$ 1.71064, the appropriate root of $x^{4}=2 x^{2}+x+1$. In this paper we show that for any $k \geq 3, \min \mathcal{B}_{k}=q_{f} \approx 1.75488$, the appropriate root of $x^{3}=2 x^{2}-x+1$.

## 1. Introduction

Let $q \in(1,2)$ and $I_{q}=\left[0, \frac{1}{q-1}\right]$. Given $x \in \mathbb{R}$, we say that a sequence $\left(\varepsilon_{i}\right)_{i=1}^{\infty} \in$ $\{0,1\}^{\mathbb{N}}$ is a $q$-expansion for $x$ if

$$
\begin{equation*}
x=\sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{q^{i}} . \tag{1}
\end{equation*}
$$

Expansions in non-integer bases were pioneered in the papers of Rényi [10] and Parry [9].

It is a simple exercise to show that $x$ has a $q$-expansion if and only if $x \in I_{q}$. When (1) holds, we will adopt the notation $x=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)_{q}$. Given $x \in I_{q}$, we
denote the set of $q$-expansions for $x$ by $\Sigma_{q}(x)$, i.e.,

$$
\Sigma_{q}(x)=\left\{\left(\varepsilon_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}}: \sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{q^{i}}=x\right\}
$$

In [5] it is shown that for $q \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ the set $\Sigma_{q}(x)$ is uncountable for all $x \in$ $\left(0, \frac{1}{q-1}\right)$. The endpoints of $I_{q}$ trivially have a unique $q$-expansion for all $q \in(1,2)$. In [14] it is shown that for $q=\frac{1+\sqrt{5}}{2}$ every $x \in\left(0, \frac{1}{q-1}\right)$ has uncountably many $q$-expansions unless $x=\frac{(1+\sqrt{5}) n}{2} \bmod 1$, for some $n \in \mathbb{Z}$, in which case $\Sigma_{q}(x)$ is infinite countable. Moreover, in [3] it is shown that for all $q \in\left(\frac{1+\sqrt{5}}{2}, 2\right)$ there exists $x \in\left(0, \frac{1}{q-1}\right)$ with a unique $q$-expansion. In this paper we will be interested in the set of $q \in(1,2)$ for which there exists $x \in I_{q}$ with precisely $k q$-expansions. More specifically, we will be interested in the set

$$
\mathcal{B}_{k}:=\left\{q \in(1,2) \mid \text { there exists } x \in\left(0, \frac{1}{q-1}\right) \text { satisfying } \# \Sigma_{q}(x)=k\right\}
$$

It was shown in [4] that $\mathcal{B}_{k} \neq \varnothing$ for any $k \geq 2$. Similarly we can define $\mathcal{B}_{\aleph_{0}}$ and $\mathcal{B}_{2 \aleph_{0}}$. The reader should bear in mind the possibility that the number of expansions could lie strictly between countable infinite and the continuum. By the above remarks it is clear that $\mathcal{B}_{1}=\left(\frac{1+\sqrt{5}}{2}, 2\right)$. In [12] the following theorem was shown to hold.

Theorem 1.1. - The smallest element of $\mathcal{B}_{2}$ is

$$
q_{2} \approx 1.71064
$$

the appropriate root of $x^{4}=2 x^{2}+x+1$.

- The next smallest element of $\mathcal{B}_{2}$ is

$$
q_{f} \approx 1.75488
$$

the appropriate root of $x^{3}=2 x^{2}-x+1$.

- For each $k \in \mathbb{N}$ there exists $\gamma_{k}>0$ such that $\left(2-\gamma_{k}, 2\right) \subset \mathcal{B}_{j}$ for all $1 \leq j \leq k$.

The following theorem is the central result of the present paper. It answers a question posed by V. Komornik [7] (see also [12, Section 5]).

Theorem 1.2. For $k \geq 3$ the smallest element of $\mathcal{B}_{k}$ is $q_{f}$.
The range of $q>\frac{1+\sqrt{5}}{2}$ which are "sufficiently close" to the golden ratio is referred to in [12] as the lower order, which explains the title of the present paper.

In the course of our proof of Theorem 1.2 we will also show that $q_{f} \in \mathcal{B}_{\aleph_{0}}$. Combined with our earlier remarks, Theorem 1.1, Theorem 1.2, and a result in [11] which states that for $q \in\left[\frac{1+\sqrt{5}}{2}, 2\right)$ almost every $x \in I_{q}$ has a continuum of $q$-expansions, we can conclude the following.

Theorem 1.3. In base $q_{f}$ all situations occur: there exist $x \in I_{q}$ having exactly $k$ $q$-expansions for each $k=1,2, \ldots, k=\aleph_{0}$ or $k=2^{\aleph_{0}}$. Moreover, $q_{f}$ is the smallest $q \in(1,2)$ satisfying this property.

Before proving Theorem 1.2 it is necessary to recall some theory. In what follows we fix $T_{q, 0}(x)=q x$ and $T_{q, 1}(x)=q x-1$. We will typically denote an element of $\bigcup_{n=0}^{\infty}\left\{T_{q, 0}, T_{q, 1}\right\}^{n}$ by $a$; here $\left\{T_{q, 0}, T_{q, 1}\right\}^{0}$ denotes the set consisting of the identity map. Moreover, if $a=\left(a_{1}, \ldots, a_{n}\right)$ we shall use $a(x)$ to denote $\left(a_{n} \circ \cdots \circ a_{1}\right)(x)$ and $|a|$ to denote the length of $a$.

We let

$$
\Omega_{q}(x)=\left\{\left(a_{i}\right)_{i=1}^{\infty} \in\left\{T_{q, 0}, T_{q, 1}\right\}^{\mathbb{N}}:\left(a_{n} \circ \ldots \circ a_{1}\right)(x) \in I_{q} \text { for all } n \in \mathbb{N}\right\}
$$

The significance of $\Omega_{q}(x)$ is made clear by the following lemma.
Lemma 1.4. $\# \Sigma_{q}(x)=\# \Omega_{q}(x)$ where our bijection identifies $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ with $\left(T_{q, \varepsilon_{i}}\right)_{i=1}^{\infty}$.
The proof of Lemma 1.4 is contained within [2]. It is an immediate consequence of Lemma 1.4 that we can interpret Theorem 1.2 in terms of $\Omega_{q}(x)$ rather than $\Sigma_{q}(x)$.

An element $x \in I_{q}$ satisfies $T_{q, 0}(x) \in I_{q}$ and $T_{q, 1}(x) \in I_{q}$ if and only if $x \in$ $\left[\frac{1}{q}, \frac{1}{q(q-1)}\right]$. Moreover, if $\# \Sigma_{q}(x)>1$ or equivalently $\# \Omega_{q}(x)>1$, then there exists a unique minimal sequence of transformations $a$ such that $a(x) \in\left[\frac{1}{q}, \frac{1}{q(q-1)}\right]$. In what follows we let $S_{q}:=\left[\frac{1}{q}, \frac{1}{q(q-1)}\right]$. The set $S_{q}$ is usually referred to as the switch region. We will also make regular use of the fact that if $x \in I_{q}$ and $a$ is a sequence of transformations such that $a(x) \in I_{q}$, then

$$
\begin{equation*}
\# \Omega_{q}(x) \geq \# \Omega_{q}(a(x)) \text { or equivalently } \# \Sigma_{q}(x) \geq \# \Sigma_{q}(a(x)) \tag{2}
\end{equation*}
$$

This is immediate from the definition of $\Omega_{q}(x)$ and Lemma 1.4.
In the course of our proof of Theorem 1.2 we will frequently switch between $\Sigma_{q}(x)$ and the dynamical interpretation of $\Sigma_{q}(x)$ provided by Lemma 1.4. Often considering $\Omega_{q}(x)$ will help our exposition.

The following lemma is a consequence of [6, Theorem 2].
Lemma 1.5. Let $q \in\left(\frac{1+\sqrt{5}}{2}, q_{f}\right]$, if $x \in I_{q}$ has a unique $q$-expansion $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$, then

$$
\left(\varepsilon_{i}\right)_{i=1}^{\infty} \in\left\{0^{k}(10)^{\infty}, 1^{k}(10)^{\infty}, 0^{\infty}, 1^{\infty}\right\}
$$

where $k \geq 0$. Similarly, if $\left(\varepsilon_{i}\right)_{i=1}^{\infty} \in\left\{0^{k}(10)^{\infty}, 1^{k}(10)^{\infty}, 0^{\infty}, 1^{\infty}\right\}$, then for $q \in$ $\left(\frac{1+\sqrt{5}}{2}, 2\right) x=\left(\left(\varepsilon_{i}\right)_{i=1}^{\infty}\right)_{q}$ has a unique $q$-expansion given by $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$.

In Lemma 1.5 we have adopted the notation $\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)^{k}$ to denote the concatenation of $\left(\varepsilon_{1} \ldots \varepsilon_{n}\right) \in\{0,1\}^{n}$ by itself $k$ times and $\left(\varepsilon_{1} \ldots \varepsilon_{n}\right)^{\infty}$ to denote the infinite
sequence obtained by concatenating $\varepsilon_{1} \ldots \varepsilon_{n}$ by itself infinitely many times. We will use this notation throughout.

The following lemma follows from the branching argument first introduced in [13].

Lemma 1.6. Let $k \geq 2, x \in I_{q}$, and suppose $\# \Sigma_{q}(x)=k$ or equivalently $\# \Omega_{q}(x)=$ $k$. If $a$ is the unique minimal sequence of transformations such that $a(x) \in S_{q}$, then

$$
\# \Omega_{q}\left(T_{q, 1}(a(x))\right)+\# \Omega_{q}\left(T_{q, 0}(a(x))\right)=k
$$

Moreover, $1 \leq \# \Omega_{q}\left(T_{q, 1}(a(x))\right)<k$ and $1 \leq \# \Omega_{q}\left(T_{q, 0}(a(x))\right)<k$.
The following result is an immediate consequence of Lemma 1.4 and Lemma 1.6.
Corollary 1.7. $\mathcal{B}_{k} \subset \mathcal{B}_{2}$ for all $k \geq 3$.
An outline of our proof of Theorem 1.2 is as follows: first of all we will show that $q_{f} \in \mathcal{B}_{k}$ for all $k \geq 1$. Then by Theorem 1.1 and Corollary 1.7, to prove Theorem 1.2, it suffices to show that $q_{2} \notin \mathcal{B}_{k}$ for all $k \geq 3$. But by an application of Lemma 1.6 , to show that $q_{2} \notin \mathcal{B}_{k}$ for all $k \geq 3$ it suffices to show that $q_{2} \notin \mathcal{B}_{3}$ and $q_{2} \notin \mathcal{B}_{4}$. This will yield the claim of Theorem 1.2.

## 2. Proof that $q_{f} \in \mathcal{B}_{k}$ for all $k \geq 1$

To show that $q_{f} \in \mathcal{B}_{k}$ for all $k \geq 1$, we construct an $x \in I_{q_{f}}$ satisfying $\# \Sigma_{q_{f}}(x)=k$ explicitly.
Proposition 2.1. For each $k \geq 1$ the number $x_{k}=\left(1(0000)^{k-1} 0(10)^{\infty}\right)_{q_{f}}$ satisfies $\# \Sigma_{q_{f}}\left(x_{k}\right)=k$. Moreover, $x_{\aleph_{0}}=\left(10^{\infty}\right)_{q_{f}}$ satisfies card $\Sigma_{q_{f}}(x)=\aleph_{0}$.

Proof. We proceed by induction. For $k=1$ we have $x_{1}=\left((10)^{\infty}\right)_{q_{f}}$, and therefore $\# \Sigma_{q_{f}}\left(x_{1}\right)=1$ by Lemma 1.5. Let us assume $x_{k}=\left(1(0000)^{k-1} 0(10)^{\infty}\right)_{q_{f}}$ satisfies $\# \Sigma_{q_{f}}\left(x_{k}\right)=k$. To prove our result, it suffices to show that $x_{k+1}=$ $\left(1(0000)^{k} 0(10)^{\infty}\right)_{q_{f}}$ satisfies $\# \Sigma_{q_{f}}\left(x_{k+1}\right)=k+1$.

We begin by remarking that by Lemma $\left.1.5\left((0000)^{k} 0(10)^{\infty}\right)\right)_{q_{f}}$ has a unique $q_{f}$-expansion. Therefore there is a unique $q_{f}$-expansion of $x_{k+1}$ beginning with 1 . Furthermore, it is a simple exercise to show that $q_{f}$ satisfies the equation $x^{4}=$ $x^{3}+x^{2}+1$, which implies that $\left(0(1101)(0000)^{k-1} 0(10)^{\infty}\right)$ is also a $q_{f}$-expansion for $x_{k+1}$.

To prove the claim, we will show that if $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is a $q$-expansion for $x_{k+1}$ and $\varepsilon_{1}=0$, then $\varepsilon_{2}=1, \varepsilon_{3}=1$ and $\varepsilon_{4}=0$. Which combined with our inductive hypothesis implies that the set of $q$-expansions for $x_{k+1}$ satisfying $\varepsilon_{1}=0$ consists of $k$ distinct elements. Combining these $q$-expansions with the unique $q$-expansion of $x_{k+1}$ satisfying $\varepsilon_{1}=1$ we may conclude $\# \Sigma_{q_{f}}\left(x_{k+1}\right)=k+1$.

Let us suppose $\varepsilon_{1}=0$; if $\varepsilon_{2}=0$, then we would require

$$
x_{k+1}=\left(1(0000)^{k} 0(10)^{\infty}\right)_{q_{f}} \leq\left(00(1)^{\infty}\right)_{q_{f}}
$$

however, $x_{k+1}>\frac{1}{q_{f}}$ and $\sum_{i=3}^{\infty} \frac{1}{q^{2}}<\frac{1}{q}$ for all $q>\frac{1+\sqrt{5}}{2}$, and therefore $\varepsilon_{2}=1$. If $\varepsilon_{3}=0$, then we would require

$$
\begin{equation*}
x_{k+1}=\left(1(0000)^{k} 0(10)^{\infty}\right)_{q_{f}} \leq\left(010(1)^{\infty}\right)_{q_{f}} \tag{3}
\end{equation*}
$$

which is equivalent to

$$
x_{k+1}=\frac{1}{q_{f}}+\frac{1}{q_{f}^{4 k+3}} \sum_{i=0}^{\infty} \frac{1}{q_{f}^{2 i}} \leq \frac{1}{q_{f}^{2}}+\frac{1}{q_{f}^{4}} \sum_{i=0}^{\infty} \frac{1}{q_{f}^{i}}
$$

however,

$$
\frac{1}{q_{f}}=\frac{1}{q_{f}^{2}}+\frac{1}{q_{f}^{4}} \sum_{i=0}^{\infty} \frac{1}{q_{f}^{i}}
$$

whence (3) cannot occur and $\varepsilon_{3}=1$. Now let us suppose $\varepsilon_{4}=1$. Then we must have

$$
\begin{equation*}
x_{k+1}=\left(1(0000)^{k} 0(10)^{\infty}\right)_{q_{f}} \geq\left(01110^{\infty}\right)_{q_{f}} \tag{4}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
x_{k+1}=\frac{1}{q_{f}}+\frac{1}{q_{f}^{4 k+3}} \sum_{i=0}^{\infty} \frac{1}{q_{f}^{2 i}} \geq \frac{1}{q_{f}^{2}}+\frac{1}{q_{f}^{3}}+\frac{1}{q_{f}^{4}} \tag{5}
\end{equation*}
$$

The left-hand side of (5) is maximized when $k=1$, and therefore to show that $\varepsilon_{4}=0$ it suffices to show that

$$
\begin{equation*}
\frac{1}{q_{f}}+\frac{1}{q_{f}^{7}} \sum_{i=0}^{\infty} \frac{1}{q_{f}^{2 i}} \geq \frac{1}{q_{f}^{2}}+\frac{1}{q_{f}^{3}}+\frac{1}{q_{f}^{4}} \tag{6}
\end{equation*}
$$

does not hold. By a simple manipulation (6) is equivalent to

$$
\begin{equation*}
q_{f}^{6}-q_{f}^{5}-2 q_{f}^{4}+q_{f}^{2}+q_{f}+1 \geq 0 \tag{7}
\end{equation*}
$$

but by an explicit calculation we can show that the left-hand side of (7) is strictly negative; therefore (4) does not hold and $\varepsilon_{4}=0$.

Now we consider $x_{\aleph_{0}}$. Replicating our analysis for $x_{k}$, we can show that if $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ is a $q$-expansion for $x_{\aleph_{0}}$ and $\varepsilon_{1}=0$, then $\varepsilon_{2}=1$. Unlike our previous case it is possible for $\varepsilon_{3}$ be equal to 0 ; however, in this case $\varepsilon_{i}=1$ for all $i \geq 4$. If $\varepsilon_{3}=1$, then as in our previous case we must have $\varepsilon_{4}=0$. We observe that

$$
x_{\aleph_{0}}=\left(10^{\infty}\right)_{q_{f}}=\left(010(1)^{\infty}\right)_{q_{f}}=\left(011010^{\infty}\right)_{q_{f}}
$$

Clearly, there exists a unique $q$-expansion for $x_{\aleph_{0}}$ satisfying $\varepsilon_{1}=1$ and a unique $q$-expansion for $x_{\aleph_{0}}$ satisfying $\varepsilon_{1}=0, \varepsilon_{2}=1$ and $\varepsilon_{3}=0$. Therefore all other $q$ expansions of $x_{\aleph_{0}}$ have (0110) as a prefix. Repeating the above argument arbitrarily many times we can determine that all the $q_{f}$-expansions of $x_{\aleph_{0}}$ are of the form:

$$
\begin{aligned}
x_{\aleph_{0}} & =\left(10^{\infty}\right)_{q_{f}} \\
& =\left(010(1)^{\infty}\right)_{q_{f}} \\
& =\left(011010^{\infty}\right)_{q_{f}} \\
& =\left(0110010(1)^{\infty}\right)_{q_{f}} \\
& =\left(0110011010^{\infty}\right)_{q_{f}} \\
& =\left(01100110010(1)^{\infty}\right)_{q_{f}} \\
& =\left(01100110011010^{\infty}\right)_{q_{f}}
\end{aligned}
$$

which is clearly infinite countable.
Thus, to prove Theorem 1.2, it suffices to show that $q_{2} \notin \mathcal{B}_{3} \cup \mathcal{B}_{4}$. This may look like a fairly innocuous exercise, but in reality it requires a substantial effort.

## 3. Proof that $q_{2} \notin \mathcal{B}_{3}$

By Lemma 1.6, to show that $q_{2} \notin \mathcal{B}_{k}$ for all $k \geq 3$, it suffices to show $q_{2} \notin \mathcal{B}_{3}$ and $q_{2} \notin \mathcal{B}_{4}$. To prove this, we begin by characterizing those $x \in S_{q_{2}}$ that satisfy $\# \Sigma_{q_{2}}(x)=2$. To simplify our notation, we denote for the rest of the paper $\beta:=q_{2}$ and $T_{i}:=T_{q_{2}, i}$ for $i=0,1$.

Proposition 3.1. The only $x \in S_{\beta}$ which satisfy $\# \Sigma_{\beta}(x)=2$ are

$$
x=\left(01(10)^{\infty}\right)_{\beta}=\left(10000(10)^{\infty}\right)_{\beta} \text { and } x=\left(0111(10)^{\infty}\right)_{\beta}=\left(100(10)^{\infty}\right)_{\beta}
$$

Proof. It was shown in the proof of [12, Proposition 2.4] that if $\frac{1+\sqrt{5}}{2}<q<q_{f}$ and $y, y+1$ have unique $q$-expansions, then necessarily $q=\beta$ and either $y=$ $\left(0000(10)^{\infty}\right)_{\beta}$ and $y+1=\left(1(10)^{\infty}\right)_{\beta}$ or $y=\left(00(10)^{\infty}\right)_{\beta}$ and $y+1=\left(111(10)^{\infty}\right)_{\beta}$ respectively. Since for either case there exists a unique $x \in S_{\beta}$ such that $\beta x-1=y$, Lemma 1.6 yields the claim.

In what follows we will let $\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}=01(10)^{\infty},\left(\varepsilon_{i}^{2}\right)_{i=1}^{\infty}=10000(10)^{\infty},\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}=$ $0111(10)^{\infty}$ and $\left(\varepsilon_{i}^{4}\right)_{i=1}^{\infty}=100(10)^{\infty}$.

Remark 3.2. Let $\left(\bar{\varepsilon}_{i}\right)_{i=1}^{\infty}=\left(1-\varepsilon_{i}\right)_{i=1}^{\infty}$, we refer to $\left(\bar{\varepsilon}_{i}\right)_{i=1}^{\infty}$ as the reflection of $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$. Clearly $\left(\bar{\varepsilon}_{i}^{1}\right)_{i=1}^{\infty}=\left(\varepsilon_{i}^{4}\right)_{i=1}^{\infty}$ and $\left(\bar{\varepsilon}_{i}^{2}\right)_{i=1}^{\infty}=\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}$. This is to be expected
as every $x \in I_{q}$ satisfies $\# \Sigma_{q}(x)=\# \Sigma_{q}\left(\frac{1}{q-1}-x\right)$ and mapping $\left(\varepsilon_{i}\right)_{i=1}^{\infty}$ to $\left(\bar{\varepsilon}_{i}\right)_{i=1}^{\infty}$ is a bijection between $\Sigma_{q}(x)$ and $\Sigma_{q}\left(\frac{1}{q-1}-x\right)$. If $\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}$ and $\left(\varepsilon_{i}^{2}\right)_{i=1}^{\infty}$ were not the reflections of $\left(\varepsilon_{i}^{4}\right)_{i=1}^{\infty}$ and $\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}$ respectively, then there would exist other $x \in S_{\beta}$ satisfying $\# \Sigma_{\beta}(x)=2$, contradicting Proposition 3.1.

In this section we show that no $x \in I_{\beta}$ can satisfy $\# \Sigma_{\beta}(x)=3$. To show that $\beta \notin \mathcal{B}_{3}$ and $\beta \notin \mathcal{B}_{4}$ we will make use of the following proposition.

Proposition 3.3. Suppose $x \in I_{\beta}$ satisfies $\# \Sigma_{\beta}(x)=2$ or equivalently $\# \Omega_{\beta}(x)=$ 2. Then there exists a unique sequence of transformations a such that $a(x) \in S_{\beta}$. Moreover, $a(x)=\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ or $a(x)=\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$.

Proof. Since $\# \Omega_{\beta}(x)=2$, there must exist $a$ satisfying $a(x) \in S_{\beta}$; otherwise $\# \Omega_{\beta}(x)=1$. We begin by showing uniqueness; suppose $a^{\prime}$ satisfies $a^{\prime}(x) \in S_{\beta}$ and $a^{\prime} \neq a$. If $\left|a^{\prime}\right|<|a|$, then we have two cases. If $a^{\prime}$ is a prefix of $a$, then by (2) and Lemma 1.6,

$$
\# \Omega_{\beta}(x) \geq \# \Omega_{\beta}\left(a^{\prime}(x)\right)=\# \Omega_{\beta}\left(T_{0}\left(a^{\prime}(x)\right)\right)+\# \Omega_{\beta}\left(T_{1}\left(a^{\prime}(x)\right)\right) \geq 3
$$

which contradicts $\# \Omega_{\beta}(x)=2$. If $a^{\prime}$ is not a prefix of $a$, then there exists $b \in$ $\bigcup_{n=0}^{\infty}\left\{T_{0}, T_{1}\right\}^{n}$ such that $b(x) \in S_{\beta}$ and either $b 0$ is a prefix for $a^{\prime}$ and $b 1$ is a prefix for $a$, or $b 0$ is a prefix for $a$ and $b 1$ is a prefix for $a^{\prime}$. In either case it follows from (2) and Lemma 1.6 that

$$
\# \Omega_{\beta}(x) \geq \# \Omega_{\beta}(b(x))=\# \Omega_{\beta}\left(T_{0}(b(x))\right)+\# \Omega_{\beta}\left(T_{1}(b(x))\right) \geq 4
$$

a contradiction. By analogous arguments we can show that if $\left|a^{\prime}\right|=|a|$ or $\left|a^{\prime}\right|>|a|$, then this implies $\# \Omega_{\beta}(x)>2$. Therefore, $a$ must be unique.

Now let $a$ be the unique sequence of transformations such that $a(x) \in S_{\beta}$. By Lemma 1.6,

$$
\# \Omega_{\beta}\left(T_{0}(a(x))\right)=\# \Omega_{\beta}\left(T_{1}(a(x))\right)=1
$$

However, it follows from Proposition 3.1 that this can only happen when $a(x)=$ $\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ or $a(x)=\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$.

Remark 3.4. By Proposition 3.3, to show that $x \in I_{\beta}$ satisfies card $\Sigma_{\beta}(x)>2$ (or equivalently, card $\Omega_{\beta}(x)>2$ ), it suffices to construct a sequence of transformations $a$ such that $a(x) \in S_{\beta}$ with $a(x) \neq\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $a(x) \neq\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. We will make regular use of this strategy in our later proofs.

Before proving $\beta \notin \mathcal{B}_{3}$ it is appropriate to state numerical estimates ${ }^{1}$ for $S_{\beta}$, $\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. Our calculations yield

$$
S_{\beta}=[0.584575 \ldots, 0.822599 \ldots]
$$

[^0]| $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ | Iterates of $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ (To 6 decimal places) |
| :---: | :---: |
| $\left(0(01)^{\infty}\right)_{\beta}+1$ | Unique $q$-expansion by Proposition 3.1 |
| $\left(00(01)^{\infty}\right)_{\beta}+1$ | $1.177400,1.014114,0.734788$ |
| $\left(000(01)^{\infty}\right)_{\beta}+1$ | Unique $q$-expansion by Proposition 3.1 |
| $\left(0000(01)^{\infty}\right)_{\beta}+1$ | $1.060622,0.8143482$ |
| $\left(00000(01)^{\infty}\right)_{\beta}+1$ | $1.035438,0.771266$ |
| $\left(000000(01)^{\infty}\right)_{\beta}+1$ | $1.020716,0.746082$ |
| 1 | $1,0.710644$ |

Table 1: Successive iterates of $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ falling into $S_{\beta} \backslash\left\{\left(\varepsilon^{1}\right)_{\beta},\left(\varepsilon^{3}\right)_{\beta}\right\}$

$$
\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}=0.645198 \ldots \text { and }\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}=0.761976 \ldots
$$

These estimates will make clear when $a(x) \in S_{\beta}$ and whether $a(x)=\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ or $a(x)=\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$.

Theorem 3.5. We have $\beta \notin \mathcal{B}_{3}$.
Proof. Suppose $x^{\prime} \in I_{\beta}$ satisfies $\# \Sigma_{\beta}\left(x^{\prime}\right)=3$ or equivalently $\# \Omega_{\beta}\left(x^{\prime}\right)=3$. Let $a$ denote the unique minimal sequence of transformations such that $a\left(x^{\prime}\right) \in S_{\beta}$. By considering reflections, we may assume without loss of generality that

$$
\# \Omega_{\beta}\left(T_{1}\left(a\left(x^{\prime}\right)\right)\right)=1 \text { and } \# \Omega_{\beta}\left(T_{0}\left(a\left(x^{\prime}\right)\right)\right)=2
$$

Put $x=T_{1}\left(a\left(x^{\prime}\right)\right)$; by a simple argument it can be shown that $x \neq 0$, so we may assume that $x=\left(0^{k}(01)^{\infty}\right)_{\beta}$ for some $k \geq 1$. To show that $\beta \notin \mathcal{B}_{3}$ we consider $T_{0}\left(a\left(x^{\prime}\right)\right)=x+1=\left(0^{k}(01)^{\infty}\right)_{\beta}+1$. We will show that for each $k \geq 1$ there exists a finite sequence of transformations $a$ such that $a(x+1) \in S_{\beta}, a(x+1) \neq$ $\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $a(x+1) \neq\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. By Proposition 3.3 and Remark 3.4, this implies $\# \Omega_{\beta}(x+1)>2$, which is a contradiction. Hence $\beta \notin \mathcal{B}_{3}$.

Table 1 states the orbits of $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ under $T_{0}$ and $T_{1}$ until eventually $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ is mapped into $S_{\beta}$. Table 1 also includes the orbit of 1 under $T_{0}$ and $T_{1}$ until 1 is mapped into $S_{\beta}$. The reason we have included the orbit of 1 is because $\left(0^{k}(01)^{\infty}\right)_{\beta}+1 \rightarrow 1$ as $k \rightarrow \infty$. Therefore understanding the orbit of 1 allows us to understand the orbit of $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ for large values of $k$.

By inspection of Table 1, we conclude that for $1 \leq k \leq 6$ either $\left(0^{k}(01)^{\infty}\right)_{\beta}+1$ has a unique $q$-expansion which contradicts $\# \Omega_{\beta}\left(T_{0}\left(a\left(x^{\prime}\right)\right)\right)=2$, or there exists $a$ such that $a\left(\left(0^{k}(01)^{\infty}\right)_{\beta}+1\right) \in S_{\beta}$ with $a\left(\left(0^{k}(01)^{\infty}\right)_{\beta}+1\right) \neq\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $a\left(\left(0^{k}(01)^{\infty}\right)_{\beta}+1\right) \neq\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. By Proposition 3.3, this contradicts $\# \Omega_{\beta}(x+1)=2$.

To conclude our proof, it suffices to show that for each $k \geq 7$ there exists $a$ such that $a\left(\left(0^{k}(01)^{\infty}\right)_{\beta}+1\right) \in S_{\beta}, a\left(\left(0^{k}(01)^{\infty}\right)_{\beta}+1\right) \neq\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $a\left(\left(0^{k}(01)^{\infty}\right)_{\beta}+\right.$ 1) $\neq\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. For all $k \geq 7$, we have $\left(0^{k}(01)^{\infty}\right)_{\beta}+1 \in\left(1,\left(000000(01)^{\infty}\right)_{\beta}+1\right)$; however, by inspection of Table 1 , it is clear that $T_{1}(x) \in(0.710644 \ldots, 0.746082 \ldots)$
for all $x \in\left(1,\left(000000(01)^{\infty}\right)_{\beta}+1\right)$. Therefore, we can infer that such an $a$ exists for all $k \geq 7$, which concludes our proof.

## 4. Proof that $q_{2} \notin \mathcal{B}_{4}$

To prove $\beta \notin \mathcal{B}_{4}$, we will use a similar method to that used in the previous section, the primary difference being there are more cases to consider. Before giving our proof we give details of these cases.

Suppose $x^{\prime} \in I_{\beta}$ satisfies $\# \Sigma_{\beta}\left(x^{\prime}\right)=4$ or equivalently $\# \Omega_{\beta}\left(x^{\prime}\right)=4$. Let $a^{\prime}$ denote the unique minimal sequence of transformations such that $a^{\prime}(x) \in S_{\beta}$. By Lemma 1.6,

$$
\# \Omega_{\beta}\left(T_{0}\left(a^{\prime}\left(x^{\prime}\right)\right)\right)+\# \Omega_{\beta}\left(T_{1}\left(a^{\prime}\left(x^{\prime}\right)\right)\right)=4
$$

By Theorem 3.5, $\# \Omega_{\beta}\left(T_{0}\left(a^{\prime}\left(x^{\prime}\right)\right)\right) \neq 3$ and $\# \Omega_{\beta}\left(T_{1}\left(a^{\prime}\left(x^{\prime}\right)\right)\right) \neq 3$, whence

$$
\begin{equation*}
\# \Omega_{\beta}\left(T_{0}\left(a^{\prime}\left(x^{\prime}\right)\right)\right)=\# \Omega_{\beta}\left(T_{1}\left(a^{\prime}\left(x^{\prime}\right)\right)\right)=2 \tag{8}
\end{equation*}
$$

Letting $x=T_{1}\left(a^{\prime}\left(x^{\prime}\right)\right)$, we observe that (8) is equivalent to

$$
\begin{equation*}
\# \Omega_{\beta}(x)=\# \Omega_{\beta}(x+1)=2 \tag{9}
\end{equation*}
$$

By Proposition 3.3, there exists a unique sequence of transformations $a$ such that $a(x) \in S_{\beta}$ and $a(x)=\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ or $a(x)=\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. We now determine the possible unique sequences of transformations $a$ that satisfy $a(x) \in S_{\beta}$.

To determine the unique $a$ such that $a(x) \in S_{\beta}$, it is useful to consider the interval $\left[\frac{1}{\beta^{2}-1}, \frac{\beta}{\beta^{2}-1}\right]$. The significance of this interval is that $T_{0}\left(\frac{1}{\beta^{2}-1}\right)=\frac{\beta}{\beta^{2}-1}$ and $T_{1}\left(\frac{\beta}{\beta^{2}-1}\right)=\frac{1}{\beta^{2}-1}$. The monotonicity of the maps $T_{0}$ and $T_{1}$ implies that if $x \in\left(0, \frac{1}{\beta-1}\right)$ and $x \notin\left[\frac{1}{\beta^{2}-1}, \frac{\beta}{\beta^{2}-1}\right]$, then there exists $i \in\{0,1\}$ and a minimal $k \geq 1$ such that $T_{i}^{k}(x) \in\left[\frac{1}{\beta^{2}-1}, \frac{\beta}{\beta^{2}-1}\right]$. Furthermore, $S_{\beta} \subset\left[\frac{1}{\beta^{2}-1}, \frac{\beta}{\beta^{2}-1}\right]$, in view of $\beta>\frac{1+\sqrt{5}}{2}$.

In particular, if $x \in\left(0, \frac{1}{\beta^{2}-1}\right)$, then there exists a minimal $k \geq 1$ such that $T_{0}^{k}(x) \in\left(\frac{1}{\beta^{2}-1}, \frac{\beta}{\beta^{2}-1}\right) ; T_{0}^{k}(x)$ cannot equal $\frac{1}{\beta^{2}-1}$ or $\frac{\beta}{\beta^{2}-1}$ as this would imply $\# \Omega_{\beta}(x)=1$. There are three cases to consider: either $T_{0}^{k}(x) \in S_{\beta}$, in which case $T_{0}^{k}(x)=\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ or $T_{0}^{k}(x)=\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$ by Proposition 3.3, or alternatively $T_{0}^{k}(x) \in\left(\frac{1}{\beta^{2}-1}, \frac{1}{\beta}\right)$ or $T_{0}^{k}(x) \in\left(\frac{1}{\beta(\beta-1)}, \frac{\beta}{\beta^{2}-1}\right)$. It is a simple exercise to show that if $T_{0}^{k}(x)=\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$ or $T_{0}^{k}(x) \in\left(\frac{1}{\beta(\beta-1)}, \frac{\beta}{\beta^{2}-1}\right)$, then $k \geq 2$. By Lemma 1.4 and Proposition 3.3, if $T_{0}^{k}(x) \in S_{\beta}$, then

$$
x=\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta} \text { for some } k \geq 1 \text { or } x=\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta} \text { for some } k \geq 2
$$

For any $q \in\left(\frac{1+\sqrt{5}}{2}, q_{f}\right)$ and $y \in\left(\frac{1}{q^{2}-1}, \frac{1}{q}\right)$ there exists a unique minimal sequence $a^{\prime \prime}$ such that $a^{\prime \prime}(y) \in S_{q}$. Moreover, $a^{\prime \prime}(y)=\left(T_{q, 1} \circ T_{q, 0}\right)^{j}(y)$ for some $j \geq 1$
and $\left(T_{q, 1} \circ T_{q, 0}\right)^{i}(y) \in\left(\frac{1}{q^{2}-1}, \frac{1}{q}\right)$ for all $i<k$. For all $y \in\left(\frac{1}{q^{2}-1}, \frac{1}{q}\right)$ we have that $\left(T_{q, 1} \circ T_{q, 0}\right)(y)=q^{2} y-1<q-1$. Furthermore, it can be checked directly that $\beta-1<\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. Hence if $T_{0}^{k}(x) \in\left(\frac{1}{\beta^{2}-1}, \frac{1}{\beta}\right)$, then

$$
x=\left(0^{k}(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}
$$

for some $k \geq 1$ and $j \geq 1$. By a similar argument it can be shown that if $T_{0}^{k}(x) \in$ $\left(\frac{1}{\beta(\beta-1)}, \frac{\beta}{\beta^{2}-1}\right)$, then

$$
x=\left(0^{k}(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta},
$$

for some $k \geq 2$ and $j \geq 1$. The above arguments are summarized in the following proposition.

Proposition 4.1. Let $x$ be as in (9); then one of the following four cases holds:

$$
\begin{align*}
& x=\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta} \text { for some } k \geq 1  \tag{10}\\
& x=\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta} \text { for some } k \geq 2  \tag{11}\\
& x=\left(0^{k}(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta} \text { for some } k \geq 1 \text { and } j \geq 1 \tag{12}
\end{align*}
$$

or

$$
\begin{equation*}
x=\left(0^{k}(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta} \text { for some } k \geq 2 \text { and } j \geq 1 \tag{13}
\end{equation*}
$$

To prove that $\beta \notin \mathcal{B}_{4}$ we will show that for each of the four cases described in Proposition 4.1 there exists $a$ such that

$$
\begin{equation*}
a(x+1) \in S_{\beta} \backslash\left\{\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta},\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}\right\} \tag{14}
\end{equation*}
$$

which contradicts $\# \Omega_{\beta}(x+1)=2$ by Proposition 3.3 and Remark 3.4.
For the majority of our cases an argument analogous to that used in Section 3 will suffice. However, in the case where $k=1,3$ in (12) and $k=2,4$ in (13) a different argument is required. We refer to these cases as the exceptional cases. For the exceptional cases we will also show (14); however, the approach used in slightly more technical and as such we will treat these cases separately.

Proposition 4.2. For each of the cases described by Proposition 4.1 there exists a such that (14) holds.

Proof of Proposition 4.2 for the non-exceptional cases. In the cases where we have $x=\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ for some $k \geq 1$ or $x=\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$ for some $k \geq 1$ it is clear that $x \rightarrow 0$ as $k \rightarrow \infty$. Therefore, to understand the orbit of $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+$ 1 or $\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ for large values of $k$, it suffices to consider the orbit of 1 . Similarly, in the cases described by (12) and (13), if we fix $k \geq 1$, then, as $j \rightarrow$ $\infty$, both $\left(0^{k}(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $\left(0^{k}(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$ converge to $\left(0^{l}(10)^{\infty}\right)$ for some $l \geq 1$. Consequently, in order to understand the orbits of $\left(0^{k}(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$

| $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ (to 6 decimal places $)$ |
| :---: | :---: |
| $\left(0\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.377166,1.355842,1.319363,1.256961$, |
| $\left(00\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.150213,0.967605,0.655228$ |
| $\left(000\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.220482,1.087810,0.860857,0.472620,0.808484$ |
| $\left(0000\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.128888,0.931126,0.592825$ |
| $\left(00000\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.075344,0.839532,0.436141,0.746082$ |
| $\left(000000\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.044044,0.785989$ |
| 1 | $1.025747,0.754688$ |
|  | $1,0.710644$ |

Table 2: Successive iterates of $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$
and $\left(0^{k}(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ for large values of $j$, it suffices to consider the orbit of $\left(0^{l}(10)^{\infty}\right)_{\beta}+1$, for some $l \geq 1$. By considering these limits it will be clear when a sequence of transformations $a$ exists that satisfies (14) for large values of $k$ and $j$.

We begin by considering the case $x=\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$. Table 2 plots successive (unique) iterates of $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ until $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ is mapped into $S_{\beta}$ for $1 \leq k \leq 6$. It is clear from inspection of Table 2 that for $1 \leq k \leq 6$ there exists $a$ such that $a(x+1) \in S_{\beta}, a(x+1) \neq\left(\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}$ and $a(x+1) \neq\left(\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}$. The case $k \geq 7$ follows from the fact that $\left(0^{k}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1 \in\left(1,\left(000000\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1\right)$ for all $k \geq 7$ and $T_{1}(y) \in(0.710644 \ldots, 0.754688 \ldots)$ for all $y \in\left(1,\left(000000\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1\right)$. The case described by (11) follows by an analogous argument, so we omit the details and just include the relevant orbits in Table 3.

For the non-exceptional cases described by (12) and (13) an analogous argument works for the first few values of $k$ by considering the limit of $x+1$ as $j \rightarrow \infty$, so, as above, we just include the relevant orbits in Table 3 . It is clear by inspection of Table 3 that $\left(0^{k}(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1 \in\left(1,\left(00000001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1\right)$ for all $k \geq 7$ and $j \geq 1$. However, $T_{1}(y) \in(0.710644 \ldots, 0.749023 \ldots)$ for all $y \in$ $\left(1,\left(00000001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1\right)$; by inspection of Table 3, we can conclude the case described by (12) in the non-exceptional cases. Similarly, it is clear from inspection of Table 3 that $\left(0^{k}(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1 \in\left(1,\left(0000000(10)^{\infty}\right)_{\beta}+1\right)$ for all $k \geq 8$ and $j \geq 1$. However, $T_{1}(y) \in(0.710644 \ldots, 0.7460826 \ldots)$ for all $y \in\left(1,\left(0000000(10)^{\infty}\right)_{\beta}+1\right)$, therefore by inspection of Table 3 we can conclude the case described by (13) in the non-exceptional cases.

Proof of Proposition 4.2 for the exceptional cases. The reason we cannot use the same method as used for the non-exceptional cases is because as $j \rightarrow \infty$ the limits of $\left(0(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1,\left(000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1,\left(00(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ and $\left(0000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ all have unique $\beta$-expansions, which follows from Proposition 3.1. As a consequence of the uniqueness of the $\beta$-expansion of the relevant limit, the number of transformations required to map $x+1$ into $S_{\beta}$ becomes arbitrarily large as $j \rightarrow \infty$. However, the following proposition shows that we can still

| $\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ (to 6 decimal places) |
| :---: | :---: |
| $\left(00\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.260388,1.156076,0.977635,0.672385$ |
| $\left(000\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.152216,0.971032,0.661091$ |
| $\left(0000\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.088982,0.862860,0.476047,0.814348$ |
| $\left(00000\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.052016, 0.799626 |
| $\left(000000\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.030407, 0.762660 |
| $\left(0000000\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.017775,0.741051$ |
| 1 | 1, 0.710644 |
| $\left(00(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(00(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(0001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.192123,1.039298,0.777869$ |
| $\left(000101\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.182431,1.022720,0.749510$ |
| $\left(00(01)^{\infty}\right)_{\beta}+1$ | $1.177400,1.014114,0.734788$ |
| $\left(0000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(0000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(000001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.065653,0.822954,0.407782,0.697570$ |
| $\left(00000101\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.062342, 0.817289 |
| $\left(0000(01)^{\infty}\right)_{\beta}+1$ | 1.060622, 0.814348 |
| $\left(00000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(00000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(0000001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.038379, 0.776297 |
| $\left(00000(01)^{\infty}\right)_{\beta}+1$ | 1.035438, 0.771266 |
| $\left(000000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(000000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(00000001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.022435, 0.749023 |
| $\left(000000(01)^{\infty}\right)_{\beta}+1$ | 1.020716, 0.746082 |
| $\left(000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(00010\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.168794,0.999391,0.709603$ |
| $\left(000(10)^{\infty}\right)_{\beta}+1$ | $1.177400,1.014114,0.734788$ |
| $\left(00000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(00000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(0000010\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.057681, 0.809317 |
| $\left(00000(10)^{\infty}\right)_{\beta}+1$ | 1.060622, 0.814348 |
| $\left(000000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(000000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(00000010\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.033719, 0.768326 |
| $\left(000000(10)^{\infty}\right)_{\beta}+1$ | $1.035438,0.771266$ |
| $\left(0000000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | Iterates of $\left(0000000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ |
| $\left(000000010\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | 1.019711, 0.744363 |
| $\left(0000000(10)^{\infty}\right)_{\beta}+1$ | 1.020716, 0.746082 |

Table 3: Successive iterates of $\left(0^{k}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$
construct an $a$ satisfying (14) for all but three of the exceptional cases.
Proposition 4.3. The following identities hold:

$$
\begin{align*}
\left(\left(T_{1} \circ T_{0}\right)^{j-2} \circ\left(T_{1}\right)^{4}\right)\left(\left(0(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1\right) & =\frac{\beta-1}{\beta^{3}\left(\beta^{2}-1\right)}+\frac{1}{\beta^{2}-1}  \tag{15}\\
& \approx 0.59282 \text { for } j \geq 3 \\
\left(\left(T_{1} \circ T_{0}\right)^{j} \circ\left(T_{1}\right)^{2}\right)\left(\left(000(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1\right) & =\frac{\beta-1}{\beta^{3}\left(\beta^{2}-1\right)}+\frac{1}{\beta^{2}-1}  \tag{16}\\
& \approx 0.59282 \text { for } j \geq 1 \\
\left(\left(T_{0} \circ T_{1}\right)^{j-1} \circ\left(T_{1}\right)^{3}\right)\left(\left(00(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1\right) & =\frac{\beta}{\beta^{2}-1}+\frac{1-\beta}{\beta^{3}\left(\beta^{2}-1\right)}  \tag{17}\\
& \approx 0.81434 \text { for } j \geq 2
\end{align*}
$$

and

$$
\begin{align*}
\left(\left(T_{0} \circ T_{1}\right)^{j+1} \circ\left(T_{1}\right)\right)\left(\left(0000(10)^{j}\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1\right) & =\frac{\beta}{\beta^{2}-1}+\frac{1-\beta}{\beta^{3}\left(\beta^{2}-1\right)}  \tag{18}\\
& \approx 0.81434 \text { for } j \geq 1
\end{align*}
$$

Proof. Each of the identities (15), (16), (17) and (18) is proved by similar arguments, so we will just show that (15) holds. Note that

$$
\left(0(01)^{j}\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1=\frac{\beta^{2 j+2}+\beta-1}{\beta^{2 j+3}\left(\beta^{2}-1\right)}+1
$$

for all $j \geq 1$. We observe the following:

$$
\begin{aligned}
& \left(\left(T_{1} \circ T_{0}\right)^{j-2} \circ\left(T_{1}\right)^{4}\right)\left(\frac{\beta^{2 j+2}+\beta-1}{\beta^{2 j+3}\left(\beta^{2}-1\right)}+1\right) \\
= & \left(T_{1} \circ T_{0}\right)^{j-2}\left(\frac{\beta^{2 j+2}+\beta-1}{\beta^{2 j-1}\left(\beta^{2}-1\right)}+\beta^{4}-\beta^{3}-\beta^{2}-\beta-1\right) \\
= & \beta^{2 j-4}\left(\frac{\beta^{2 j+2}+\beta-1}{\beta^{2 j-1}\left(\beta^{2}-1\right)}+\beta^{4}-\beta^{3}-\beta^{2}-\beta-1\right)-\sum_{i=0}^{j-3} \beta^{2 i} \\
= & \frac{\beta^{2 j+2}+\beta-1}{\beta^{3}\left(\beta^{2}-1\right)}+\beta^{2 j}-\beta^{2 j-1}-\beta^{2 j-2}-\beta^{2 j-3}-\beta^{2 j-4}-\frac{\beta^{2 j-4}-1}{\beta^{2}-1} \\
= & \frac{\beta^{2 j+2}}{\beta^{3}\left(\beta^{2}-1\right)}+\beta^{2 j}-\beta^{2 j-1}-\beta^{2 j-2}-\beta^{2 j-3}-\beta^{2 j-4}-\frac{\beta^{2 j-4}}{\beta^{2}-1}+\frac{\beta-1}{\beta^{3}\left(\beta^{2}-1\right)}+\frac{1}{\beta^{2}-1} .
\end{aligned}
$$

Therefore, to conclude our proof, it suffices to show that

$$
\begin{equation*}
\frac{\beta^{2 j+2}}{\beta^{3}\left(\beta^{2}-1\right)}+\beta^{2 j}-\beta^{2 j-1}-\beta^{2 j-2}-\beta^{2 j-3}-\beta^{2 j-4}-\frac{\beta^{2 j-4}}{\beta^{2}-1}=0 \tag{19}
\end{equation*}
$$

| Exceptional cases | Iterates (to 6 decimal places) |
| :---: | :---: |
| $\left(001\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.328654,1.272854,1.177400,1.014114,0.734788$ |
| $\left(00101\left(\varepsilon_{i}^{1}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.312076,1.244495,1.128888,0.931126,0.592825$ |
| $\left(0010\left(\varepsilon_{i}^{3}\right)_{i=1}^{\infty}\right)_{\beta}+1$ | $1.288747,1.204588,1.060622,0.814348$ |

Table 4: Remaining exceptional cases: $k=1, j \in\{1,2\}$ in (12) and $k=2, j=1$ in (13)

By manipulating the left-hand side of (19), we conclude that satisfying (19) is equivalent to

$$
\frac{\beta^{2 j-1}-\beta^{2 j-4}+\left(\beta^{2 j}-\beta^{2 j-1}-\beta^{2 j-2}-\beta^{2 j-3}-\beta^{2 j-4}\right)\left(\beta^{2}-1\right)}{\beta^{2}-1}=0
$$

or

$$
\frac{\beta^{2 j-3}(\beta-1)\left(\beta^{4}-2 \beta^{2}-\beta-1\right)}{\beta^{2}-1}=0 .
$$

This is true in view of $\beta^{4}-2 \beta^{2}-\beta-1=0$.
Proposition 4.3 and Table 4 (which displays the orbits of the exceptional cases that are not covered by Proposition 4.3) conclude our proof of Proposition 4.2 for all the exceptional cases. Therefore, $\beta \notin \mathcal{B}_{4}$, and Theorem 1.2 holds.

## 5. Open Questions

To conclude the paper, we pose a few open questions:

- What is the topology of $\mathcal{B}_{k}$ for $k \geq 2$ ? In particular, what is the smallest limit point of $\mathcal{B}_{k}$ ? Is it below or above the Komornik-Loreti constant introduced in [8]?
- What is the smallest $q$ such that $x=1$ has $k q$-expansions? (For $k=1$ this is precisely the Komornik-Loreti constant.)
- What is the structure of $\mathcal{B}_{\aleph_{0}} \cap\left(\frac{1+\sqrt{5}}{2}, q_{f}\right)$ ? In view of the results of the present paper, knowing this would lead to a complete understanding of card $\Sigma_{q}(x)$ for all $q \leq q_{f}$ and all $x \in I_{q}$.
- Let, as above,

$$
\mathcal{B}_{\infty}=\bigcap_{k=1}^{\infty} \mathcal{B}_{k} \cap \mathcal{B}_{\aleph_{0}} \cap \mathcal{B}_{2^{\aleph_{0}}}
$$

By Theorem 1.3, $q_{f}$ is the smallest element of $\mathcal{B}_{\infty}$. What is the second smallest element of $\mathcal{B}_{\infty}$ ? What is the topology of $\mathcal{B}_{\infty}$ ?

- In [1] the authors study the order in which periodic orbits appear in the set of points with unique $q$-expansion; they show that as $q \uparrow 2$, the order in which periodic orbits appear in the set of uniqueness is intimately related to the classical Sharkovskiĭ ordering. Does a similar result hold in our case? That is, if $k>k^{\prime}$ with respect to the usual Sharkovskiĭ ordering, does this imply $\mathcal{B}_{k} \subset \mathcal{B}_{k^{\prime}}$ ?

Acknowledgment. The authors are grateful to Vilmos Komornik for useful suggestions.

## References

[1] J,-P. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: the Sharkovskǐ ordering, Ergod. Th. Dynam. Systems 29 (2009), 1055-1074.
[2] S. Baker, Generalised golden ratios over integer alphabets, arXiv:1210.8397 [math.DS].
[3] Z. Daróczy and I. Katai, Univoque sequences, Publ. Math. Debrecen 42 (1993), 397-407.
[4] P. Erdős, I. Joó, On the number of expansions $1=\sum q^{-n_{i}}$, Ann. Univ. Sci. Budapest 35 (1992), 129-132.
[5] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions $1=$ $\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems, Bull. Soc. Math. Fr. 118 (1990), 377-390.
[6] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001), 535-543.
[7] V. Komornik, Open problems session of "Dynamical Aspects of Numeration" workshop, Paris, 2006.
[8] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), no. 7, 636-639.
[9] W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960) 401-416.
[10] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957) 477-493.
[11] N. Sidorov, Almost every number has a continuum of $\beta$-expansions, Amer. Math. Monthly 110 (2003), 838-842.
[12] N. Sidorov, Expansions in non-integer bases: lower, middle and top orders, J. Number Th. 129 (2009), 741-754.
[13] N. Sidorov, Universal $\beta$-expansions, Period. Math. Hungar. 47 (2003), 221-231.
[14] N. Sidorov and A. Vershik, Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems Monatsh. Math. 126 (1998), 215-261.


[^0]:    ${ }^{1}$ The explicit calculations performed in this paper were done using MATLAB. In our calculations we approximated $\beta$ by 1.710644095045033 , which is correct to the first fifteen decimal places.

