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Abstract
A Carmichael number N is a super-Carmichael (sC) number if (p±1) | (N�1) for all
p|N . These numbers are somewhat related to the strong Fibonacci pseudoprimes.
The smallest such number, 17 ·31 ·41 ·43 ·89 ·97 ·167 ·331, was discovered by Richard
Pinch. In this paper we prove that an sC number must have at least four prime
factors and there are only finitely many sC numbers N =

Qd
i=1 pi with a given set

of d� 3 prime factors p1, . . . , pd�3. Four methods for finding sC numbers are given.
We report that if there are any sC numbers with exactly four prime factors, then
the smallest prime factor is greater than 4000.

1. Introduction

The Baillie-PSW test [3, 14] is a probable prime test based on a combination of a
strong Fermat probable prime test and a strong Lucas probable prime test. Many
computer algebra systems and software packages use some version of this test. A
Lucas sequence is chosen such that the Jacobi symbol (D|N) = �1, where N is the
number to be tested for primality and D is the discriminant of the Lucas sequence.
If one does not require (D|N) = �1, then a counterexample N may be an odd
squarefree composite number such that (p ± 1) | (N � 1) for all primes p | N .
We call such numbers super-Carmichael (sC) numbers. They are somewhat related
to the strong Fibonacci pseudoprimes. The smallest such number, 17 · 31 · 41 ·
43 · 89 · 97 · 167 · 331, discovered by Pinch [11, 2 Section 4], is a strong Fibonacci
pseudoprime. There are infinitely many Carmichael numbers [1] (i.e., infinitely
many squarefree numbers N such that p� 1 | N � 1 for all primes p|N) and there
are infinitely many squarefree numbers N such that p+1 | N �1 for all primes p|N
[2, 15]. Whether or not the intersection of these sets is infinite is still an open
problem. In this paper we prove that an sC number must have at least four prime
factors and there are only finitely many (possibly none) sC numbers N =

Qd
i=1 pi

with a given set of d� 3 prime factors p1, . . . , pd�3. This leads to a method for the
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search of sC numbers. We report that if there are any sC numbers with exactly
four prime factors, then p1 > 4000 and N > 1024.

2. Some Properties and Theorems for Super-Carmichael Numbers

Let N =
Qd

i=1 pi with primes p1 < p2 < · · · < pd be an sC number. Since (pj ± 1)
divides N � 1, it follows that pi does not divide pj ± 1 for all i and j. This forces
p1 � 5. We call a set of two or more distinct odd primes compatible if pi does not
divide pj ± 1 for all i and j. For each prime p dividing N we have

N � 1 = (p� 1)
✓

N

p
+ 1

◆
+

N

p
� p

and
N � 1 = (p + 1)

✓
N

p
� 1

◆
� N

p
+ p ,

which implies that
p2 � 1

2

���� N

p
� p . (2.1)

Since (p2
i � 1)/2 ⌘ 0 (mod 12), it follows that N ⌘ 1 (mod 12). The divisibility

in (2.1) is strong enough to deduce that there are only finitely many sC numbers
N =

Qd
i=1 pi with a given set of d � 3 prime factors p1, . . . , pd�3. To accomplish

this write N = Pqrs, where P =
Qd�3

i=1 pi, q = pd�2, r = pd�1 and s = pd. Then

tq :=
2Prs� 2q

q2 � 1
, tr :=

2Pqs� 2r
r2 � 1

, ts :=
2Pqr � 2s

s2 � 1
(2.2)

are positive integers with tq > tr > ts, tq > 2P and ts < 2P .
We will now show that q satisfies a polynomial of degree at most eight whose

coe�cients depend on tq, tr, ts and P , where P � 1. We begin with the equations

tq(q2 � 1) + 2q = 2Prs (2.3)

tr(r2 � 1) + 2r = 2Pqs (2.4)

ts(s2 � 1) + 2s = 2Pqr (2.5)

obtained from (2.2). Observe that gcd(tqtrts, P qrs) = 1. Eliminating s from (2.3)
and (2.4) yields

(trr2 + 2r � tr)r = (tqq2 + 2q � tq)q ,

which expands to the r-cubic polynomial

trr
3 + 2r2 � trr � (tqq2 + 2q � tq)q = 0 . (2.6)
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From (2.3) we obtain

s =
tq(q2 � 1) + 2q

2Pr
.

Substituting this into (2.5) gives the r-cubic polynomial

8P 3qr3 + 4P 2tsr
2 � 4P (tqq2 + 2q � tq)r � ts(tqq2 + 2q � tq)2 = 0 . (2.7)

Subtracting 8P 3q times (2.6) from tr times (2.7) yields the r-quadratic polynomial

4P 2(trts � 4Pq)r2 � 4Ptr(tqq2 + 2q � tq � 2P 2q)r

�trts(tqq2 + 2q � tq)2 � 8P 3q2(tqq2 + 2q � tq) = 0. (2.8)

Since q does not divide trts, the leading coe�cient of this polynomial is nonzero.
Equation (2.8) can be used to remove the terms involving r2 and r3 from (2.6).
This yields an r-linear polynomial Ar �B = 0, where

B = (tqq2 + 2q � tq)(tqq2 + 2q � tq � 2P 2q)

⇥
⇥
(tqtrts � 8P 3)trq2 + 2(t2r � 4P 2)tsq � (tqtr � 2Pts)trts

⇤
.

For the time being we will assume that B, and hence A, are nonzero. We can now
express r = B/A as a rational function of tq, tr, ts, P and q. Substituting this
expression for r into (2.8) and removing the nonzero factor

(tqq2 + 2q � tq)2(trts � 4Pq)2 = (2Prs)2
✓

4(Pqrs� 1)(Pq � rs)
(r2 � 1)(s2 � 1)

◆2

,

we obtain an 8th degree q-polynomial

C8q
8 + C7q

7 + · · · + C0 = 0 , (2.9)

whose coe�cients are polynomials in tq, tr, ts and P . The leading coe�cient of this
polynomial is

C8 = tq(tqtrts � 8P 3)3 ;

the other coe�cients are too cumbersome to write down.
Now suppose that B = 0. Since q does not divide tq, it follows that

(tqtrts � 8P 3)trq2 + 2(t2r � 4P 2)tsq � (tqtr � 2Pts)trts = 0 . (2.10)

Observe that tr | 8P 2qts and ts | 8P 3q2tr. Since gcd(tqtrts, P qrs) = 1, it follows
that tr | 8ts and ts | 8tr, which implies that tr/ts = 2, 4 or 8.

Theorem 1. There are no super-Carmichael numbers with exactly three prime
factors.

Proof. This is the case P = 1. Let N = qrs, where q < r < s are primes. Then
s2 � 1 > qr. From the definition of ts we have ts(s2 � 1) = 2qr � 2s < 2qr,
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which forces ts = 1 and s2 = 2qr � 2s + 1 < 2qr < 2qs. Therefore s < 2q and
tr(r2 � 1) = 2qs � 2r < 4q2 � 2r < 4(q2 � 1), which implies that tr < 4. Since
ts < tr, we must have tr = 2 or tr = 3. Observe that s2 < 2qr, q2s2 < 2q3r < 2r4,
qs <

p
2r2, 2qs <

p
8r2 < 3r2+2r�3. Hence tr(r2�1) = 2qs�2r < 3(r2�1). This

forces tr = 2. Since r < s < 2q and q � 5, we have tq(q2�1) = 2rs�2q < 8q2�2q <
8(q2�1), and so tq < 8. Hence tqq3 = q(2rs�2q+tq) = 2N�(2q�tq)q < 2N . Since
s2 < 2qr, it follows that s3 < 2qrs = 2N . Since tr = 2, we have 2(r2�1) = 2qs�2r,
r3 = qrs � r2 + r = N � r(r � 1) < N . Therefore N3 = q3r3s3 < 2q3N2, which
implies that 2N < 4q3. We now have tqq3 < 2N < 4q3, which forces tq = 3 because
2 = tr < tq.

With ts = 1, tr = 2, tq = 3 and P = 1, equation (2.6) becomes

2r3 + 2r2 � 2r � (3q2 + 2q � 3)q = 0 (2.11)

and equation (2.8) becomes

4(2q � 1)r2 + 12(q2 � 1)r � (q2 � 2q + 3)(3q2 + 2q � 3) = 0 . (2.12)

Using (2.12) to remove the terms in (2.11) involving r2 and r3 we obtain

(q + 1)(6q2 + 19q � 29)r � 3(q2 + 2)(3q2 + 2q � 3) = 0 .

Therefore
r =

3(q2 + 2)(3q2 + 2q � 3)
(q + 1)(6q2 + 19q � 29)

.

Substituting this into (2.12) we get

(3q4 � 16q3 � 78q2 � 168q � 1)(3q2 + 2q � 3)2(2q � 1)2 = 0 .

Since (3q2 + 2q � 3)2(2q � 1)2 > 0, it follows that

3q4 � 16q3 � 78q2 � 168q � 1 = 0 ,

or
(3q3 � 16q2 � 78q � 168)q = 1 ,

which is impossible.

Throughout the rest of this paper we will assume that P > 1. This really means
P � p1 � 5.

Theorem 2. Given P =
Qd�3

i=1 pi with primes p1 < p2 < · · · < pd�3, there are only
finitely many super-Carmichael numbers N = Pqrs with primes pd�3 < q < r < s.

Remark. The analogous theorem for Carmichael numbers has only finitely many
Carmichael numbers if all but the largest two prime factors are assigned. This was
proved by Beeger [4] for the case d = 3 and by Duparc [5] in general. (See also [11].)
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Proof. The idea of the proof is to show that if q is chosen too large, then the
product tqtrts falls between 8P 3 � 1 and 8P 3, or between 8P 3 and 8P 3 + 1. The
boundedness of this product follows from

tqtrts =
(2Prs� 2q)(2Pqs� 2r)(2Pqr � 2s)

(q2 � 1)(r2 � 1)(s2 � 1)

= 8P 3
⇣
1� q

Prs

⌘⇣
1� r

Pqs

⌘⇣
1� s

Pqr

⌘⇣
1+

1
q2 � 1

⌘⇣
1+

1
r2 � 1

⌘⇣
1+

1
s2 � 1

⌘

< 8P 3
⇣
1 +

1
q2 � 1

⌘3

 8P 3
⇣
1 +

1
72 � 1

⌘3
.

Therefore, given P , there are only finitely many values for tq, tr and ts. Also, if
q > 5P 3/2, then

tqtrts < 8P 3
⇣
1 +

1
q2 � 1

⌘3
< 8P 3 + 1 .

From the definition of ts we get s2 < 2Pqr, (s/r)2 < 2Pq/r < 2P and s/r <p
2P . To obtain a lower bound for tqtrts we begin with

tqtrts =
(2Prs� 2q)(2Pqs� 2r)(2Pqr � 2s)

(q2 � 1)(r2 � 1)(s2 � 1)

= 8P 3
⇣
1� q

Prs

⌘⇣
1� r

Pqs

⌘⇣
1� s

Pqr

⌘⇣
1+

1
q2 � 1

⌘⇣
1+

1
r2 � 1

⌘⇣
1+

1
s2 � 1

⌘

> 8P 3
⇣
1� 1

Ps

⌘⇣
1� 1

Pq

⌘⇣
1� s

Pqr

⌘

> 8P 3
⇣
1� 1

Pq

⌘2⇣
1�

p
2p

Pq

⌘
.

Since P � 5, we find that if q > 20P 5/2, then tqtrts > 8P 3 � 1.
Since P does not divide tqtrts, we get tqtrts 6= 8P 3. Therefore if q > 20P 5/2,

then 8P 3�1 < tqtrts < 8P 3 or 8P 3 < tqtrts < 8P 3 +1, which is impossible. Hence
q < 20P 5/2, which proves that given P there are only finitely many values for q.
Since r2 < s2 < 2Pqr, we get r < 2Pq and s <

p
2Pqr < 2Pq, which completes the

proof that given P there are only finitely many values for q, r and s.

Remark. Based on the many sC numbers we have encountered, it appears that
tqtrts > 8P 3 and s5 < N , but we have no idea how to prove this. This would
imply that all sC numbers have at least six prime factors. If we relax some of the
conditions and define P = 239, q = 29, r = 71 and s = 701, then tq, tr and ts are
positive integers and tqtrts < 8P 3.
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3. Organization of a Search

Before initiating a search we went through the list [9] of all base 2 Fermat pseudo-
primes below 264 and checked if any of these are sC numbers and found the following
six examples:

17 · 31 · 41 · 43 · 89 · 97 · 167 · 331 ,
41 · 53 · 79 · 103 · 239 · 271 · 509 ,
17 · 37 · 41 · 71 · 79 · 97 · 113 · 131 · 191 ,
17 · 61 · 71 · 89 · 197 · 311 · 769 · 2729 ,
19 · 41 · 43 · 71 · 89 · 127 · 199 · 449 · 991 ,
29 · 37 · 79 · 181 · 191 · 449 · 701 · 3457 .

The first three were discovered by Pinch [12, Section 5]. We also found 13 squarefree
base 2 Fermat pseudoprimes satisfying (p+1) | (N�1) for all primes p | N including
the following two examples each with 6 prime factors:

11 · 29 · 71 · 79 · 181 · 251 , 13 · 251 · 683 · 3571 · 5281 · 11119 .

Note that the squares of the Wieferich primes 1093 and 3511 are base 2 Fermat
pseudoprimes satisfying (p + 1) | (N � 1) for all primes p | N .

One way to conduct a search for sC numbers with d prime factors is to run P =Qd�3
i=1 pi through products of d�3 compatible primes up to a some preassigned bound

M . The inner three loops have ts, tr and tq running through ranges determined by

ts < 2P ,
tr > ts ,
tq > tr ,
tq > 2P ,
gcd(tstrtq, P ) = 1 ,

tstrtq > 8P 3

✓
1� 1

Pq1

◆✓
1� 1

Ps1

◆✓
1�

p
2p

Pq1

◆
,

tstrtq < 8P 3

✓
1 + 1

q2
1�1

◆✓
1 + 1

r2
1�1

◆✓
1 + 1

s2
1�1

◆
,

where q1, r1 and s1 are the next three primes greater than pd�3. Inside of these
loops, if tr/ts = 2, 4 or 8, then the polynomial (2.10) is tested for prime integer
roots q > pd�3 using the MAPLE subroutine isolve. If there are any, then for these
values of q we test if (2.8) has a prime integer solution r > q. If so, then we put
s = (tqq2 + 2q � tq)/(2Pr) and check if s is a prime > r and verify all divisibility
conditions necessary for N = Pqrs to be an sC number. If (2.10) does not give rise
to a sC number or tr/ts is not equal to 2, 4 or 8, then the polynomial (2.9) is tested
for prime integer roots q > pd�3. If there are any, then we compute r = B/A and
s = (tqq2 + 2q � tq)/(2Pr), and check the primality of r and s, and all divisibility
conditions necessary for N = Pqrs to be an sC number. This method worked well
for d = 4. In this case the variable P = p1 runs through the primes � 5. We report
that if there are any sC numbers with exactly four prime factors, then the smallest
prime factor must be greater than 4000 and N > 1024 (see below).
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To increase the lower bound for sC numbers with exactly four prime factors we
initiated a search looping ts and s through appropriate ranges. More precisely,
suppose N = pqrs < X, where p < q < r < s are primes, ts := (2pqr� 2s)/(s2 � 1)
is an integer and X is some preassigned bound. Then ts < 2p < 2X1/4 and
s < (2X/ts)1/3+1 since (s�1)3ts < (s3�s)ts = 2N�2s2 < 2X. In the outer loop ts
ranges through the positive integers < 2X1/4 and in the inner loop s ranges through
the odd primes < (2X/ts)1/3 + 1. Before checking if n := ts(s2 � 1)/2 + s = N/s is
a product of three primes p < q < r with r < s it is best to first check that N = ns
is a base 2 Fermat pseudoprime. If n is a product of three primes p < q < r with
r < s, then the divisibility conditions for N to be an sC number are checked. With
X = 1024 we found no sC numbers with exactly four prime factors.

Another way to conduct a search for sC numbers is to modify the method used
by Pinch [11] to find all Carmichael numbers less than some preassigned bound X.
Assume that N =

Qd
i=1 pi is an sC number less than X and with exactly d prime

factors. One obtains all such N by first looping through all compatible sets of
d � 1 primes such that p1p2 · · · pj�1p

d+1�j
j < X, j = 1, 2, . . . , d � 1. At search

level d � 1 let P =
Qd�1

i=1 pi, L = lcm{(p2
i � 1)/2}d�1

i=1 , and solve the congruence
Pp ⌘ 1 (mod L) for p, where 0 < p < L. Next, check if p satisfies the following
conditions: (i) pd�1 < p <

p
2P , (ii) p is prime, and (iii) (p2�1)/2 divides P �p. If

all of these conditions are satisfied, then N = Pp is an sC number. If (p+L)2 < 2P ,
then increment p by L and retest the above conditions. We completed this search
with 5  d  12 for various values of X between 1016 and 1024. Before testing
condition (iii) we checked if N = Pp is a base 2 Fermat pseudoprime. Four more
sC numbers slightly beyond 264 were found. They are:

17 · 29 · 37 · 41 · 151 · 199 · 449 · 571 · 5851 ,
41 · 53 · 79 · 137 · 139 · 181 · 239 · 271 · 1429 ,
13 · 17 · 19 · 29 · 41 · 89 · 97 · 127 · 199 · 251 · 449 ,
17 · 23 · 29 · 37 · 41 · 43 · 61 · 109 · 199 · 419 · 881 .

We found no reason why any prime p1 � 5 could not be the smallest prime factor
of some sC number N . However, since the prime factors of N must be compatible,
sC numbers with p1 very small are more likely to be large. For this reason we decided
to try a method based on a probabilistic argument by Erdös [8] for constructing
Carmichael numbers. This method begins by choosing a number M with many
small factors. Next, a list P of the primes p not dividing M such that p± 1 divides
M is constructed. It is reasonable to assume that the subproducts of the primes in
P are roughly equidistributed (mod M) among the �(M) reduced residue classes
(mod M). If 2|P| > �(M), where |P| is the cardinality of P, then there is a good
chance that some subproduct N of the primes in P will be congruent to 1(mod
M). This number N will be an sC number because for every prime p|N we have
p± 1 | M | N � 1. The relatively large sC number

7 ·37 · 53 · 59 · 109 · 131 · 191 · 229 · 571 · 683 · 919 · 929
·1151 · 1451 · 1871 · 4751 · 7019 · 7039 · 7129 · 51679 · 244529
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was discovered using M = 27 · 34 · 53 · 112 · 13 · 17 · 19 · 23 · 29 · 31, which has |P| = 51
and 2|P| ⇡ �(M). With M = 27 · 33 · 52 · 7 · 13 · 17 · 19 · 23 · 29 the sC number

11 · 41 · 47 · 79 · 127 · 137 · 151 · 181 · 233 · 271 · 701 · 911 · 919 · 1103 · 1217 · 9281 · 13339

was discovered. To speed up the search for a subproduct N ⌘ 1 (mod M) let A
be a set of the 15 or so largest primes in P and let S be the list of inverses (mod
M) of all subproducts of A. Next, search through the subproducts of the primes
in P that are not in A and contain the prime p1, testing for a match (mod M) in
S. With |A| = 15, searching a space of size 250 in reasonable time was the limit of
our MAPLE program. Searching for an sC number with p1 = 5 is well beyond this
limit.

We found it necessary to modify the above method in the search for sC numbers N
with a small number of prime factors. Suppose that the prime factors of N lie in P.
If L := lcm{(p2�1)/2 : p|N} is a proper divisor of M , then N may not be discovered
by the above method. To remedy this problem without slowing down the program
too much, we first selected the subproducts of P that are congruent to 1(mod M1),
where M1 is a proper divisor of M with very small prime factors, say M1 = 23 ·32 ·5·7
(we are assuming that M1 |L). This will eliminate most of the subproducts of P.
Next, we check if the subproduct N is a base 2 Fermat pseudoprime, and if so, then
we compute L and test if N ⌘ 1 (mod L). Using this modification we rediscovered
several sC numbers having a small number of prime factors, and found a new one
with exactly 10 prime factors:

41 · 53 · 67 · 103 · 151 · 379 · 571 · 701 · 2393 · 5851 .

This number N has 24 not dividing N�1. In our original program all the integers M
that were selected were divisible by larger powers of 2, which explains why this sC
number was missed. The number 41 ·53 ·79 ·137 ·139 ·181 ·239 ·271 ·1429, discovered
earlier using the algorithm of Pinch, has 23 dividing L and 19 not dividing N � 1.
This number was rediscovered by our modified Erdös program.

4. Williams Numbers

In the Baillie-PSW primality test a Lucas sequence is chosen so that the Jacobi
symbol (D|N) = �1, where N is the number to be tested for primality and D is
the discriminant of the Lucas sequence. Pomerance [13] gave a heuristic argument
suggesting that there are infinitely many counterexamples, but no one has ever found
one. Based on his argument it is highly probable that there exist odd squarefree
composite numbers N with the property that p � 1 | N � 1 and p + 1 | N + 1 for
all primes p|N . Echi [7] calls such numbers Williams numbers (more precisely, 1-
Williams numbers). There are infinitely many Carmichael numbers [1] (i.e. infinitely
many squarefree numbers N such that p�1 | N�1 for all primes p|N) and there are
infinitely many squarefree numbers N such that p+1 | N +1 for all primes p|N [6,
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15]. Whether or not the intersection of these sets is infinite, or even nonempty, is
still an open problem. A study of Williams numbers was undertaken by McIntosh
and Mitra [10]. One of the reasons that Williams numbers appear to be much
more rare than sC numbers is that the definition of a compatible set of primes for
Williams numbers requires gcd(pi � 1, pj + 1) = 2 for all i and j.

Acknowledgement. Support by the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged. The author thanks Carl Pomerance
for bringing to his attention several interesting papers on this subject.
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