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Abstract
In this note, we consider ordered partitions of integers such that each entry is no
more than a fixed portion of the sum. We give a method for constructing all such
compositions as well as both an explicit formula and a generating function describing
the number of k-tuples whose entries are bounded in this way and sum to a fixed
value g.

1. Introduction

Imagine having 100 pieces of candy to split among three children, but with the
following restriction: the oldest child cannot receive more than one-third of the
candy, the middle child cannot get more than two-fifths of the candy, and the
youngest child cannot get more than two-sevenths of the candy. How many ways
are there to split the candy between the three children? Are there more or fewer
ways to split 101 pieces with the same restrictions? In this note, we address these
questions and the more general question of counting compositions (also known as
ordered partitions) of integers so that no part is more than a fixed portion of the
total.

More precisely, let us fix an integer k and for each 1  i  k let ↵i be a rational
number so that the sum of any k � 1 of the ↵i is at most 1 but that all k of the
↵i add up to more than 1 (note that if the ↵i sum to 1 or less than one then the
question is trivial). We wish to count the number of ordered k-tuples of integers
[g1, g2, . . . , gk] with 0  gi  ↵i

Pk
j=1 gj for each i. We will call such a composition

↵-communal and our goal is to understand the structure of the set of ↵-communal
compositions.

As is often the case with counting questions, one might reasonably ask for either
an explicit formula for f(g), the number of ↵-communal compositions of a given
integer g, or for a nice closed form of the generating function defined by F (x) =P

f(g)xg. In this note we answer both questions: in particular, Section 2 describes
an explicit formula for f(g). In Section 3 we show that the set of ↵-communal
compositions forms a monoid and we describe an explicit structure for this monoid.



INTEGERS: 14 (2014) 2

These results lead to Theorem 3.3, in which we give a closed form description of
F (x).

We close our note with a section giving examples of the results in the previous
sections. One special case we consider is the case where all of the ↵i are equal
to 1

k�1 . This situation was studied by the author in [5], where we referred to the
k-tuples simply as communal compositions. Example 4.2 shows that some of the
results of that paper are special cases of the results in this note.

It is worth pointing out that the problem we are considering in this note is related,
but not identical, to the “17 Horses Puzzle,” in which three sons are supposed to
split 17 horses so that one son gets 1

2 , one son gets 1
3 and the final son gets 1

9 of
the horses. A fuller discussion of this problem attributing it to Tartaglia in the
sixteenth century can be found in [6, Problem 2.11].

2. Combinatorial Formula

In this section, we give an explicit formula for f(g), the number of ↵-communal
k-tuples summing to g, for any fixed integer g. In particular, let ↵ = {↵i}k

i=1 be a
set of rational numbers so that the sum of any k � 1 of these numbers is at most 1
but the sum of all k is at least 1. We wish to count the number of ordered k-tuples
of integers [g1, . . . , gk] so that

P
gi = g and 0  gi  ↵ig for all i.

Given an ↵-communal k-tuple [g1, . . . , gk] with
P

gi = g, we set ✏i = b↵igc � gi.
The condition that our k-tuple is ↵-communal implies that each ✏i 2 Z�0. We set
sg =

P
i ✏i and note that it is a simple calculation to see that sg =

P
ib↵igc � g.

Conversely, given a set of k nonnegative integers {✏i} so that
P

✏i = sg, we set
gi = b↵igc � ✏i. It is clear that gi  b↵igc. On the other hand, our hypotheses on
the ↵i include the fact that for any fixed j we have that

P
i6=j ↵i  1. Thus, we

compute:

X
i6=j

↵i  1

X
i6=j

↵ig  g

X
i6=j

b↵igc  g

X
i

b↵igc � g  b↵jgc

sg  b↵jgc ,
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which implies that ✏j  b↵igc and therefore that each gj � 0. Moreover, one can
check that

P
gi = g, implying that [g1, . . . , gk] is an ↵-communal k-tuple summing

to g.
In particular, there is a natural bijection between the set of ↵-communal k-tuples

summing to g and the number of k-tuples of nonnegative integers summing to sg.
In order to count these, we will use the following lemma, which is standard in
combinatorial number theory. One proof can be found in [3, Proposition 21.5].

Lemma 2.1. The number of solutions to the equation x1 + . . .+xk = m, where all
of the xi are nonnegative integers, is equal to the binomial coe�cient

�m+k�1
k�1

�
.

The following theorem is an immediate consequence.

Theorem 2.2. The number of ↵-communal k-tuples whose entries sum to g is given
by the binomial coe�cient

f(g) =
✓ Pk

i=1b↵igc � g + k � 1
k � 1

◆
.

If the rational number ↵i is expressed in lowest terms as mi
ni

and we set n to be
the least common multiple of the ni, then we note that the formula in Theorem 2.2
can be instead expressed as a collection of n polynomials of degree k� 1 depending
on the value of g mod n. We return to this formula in explicit examples in Section
4.

3. Structure of ↵-Communal Compositions

To begin, let us fix a k-tuple (↵1, . . . ,↵k). We leave the proof of the following lemma
to the reader:

Lemma 3.1. If x = [x1, . . . , xk] and y = [y1, . . . , yk] are ↵-communal k-tuples then
so is their sum x + y = [x1 + y1, . . . , xk + yk].

In particular, the set of ↵-communal k-tuples forms a submonoid of the additive
monoid Zk

�0. This leads to the natural question of finding a set of generators for the
set. In order to do so, let us first introduce some notation. We write the rational
number ↵i as the fraction mi

ni
in lowest terms and define N to be the productQk

i=1 ni. Additionally, we set A = N(
Pk

i=1 ↵i� 1) and ↵̂i = 1�
P

j 6=i ↵j . For each
i, let us define the k-tuple xi as follows:

xi =
N

ni
[↵1, . . . ,↵i�1, ↵̂i,↵i+1, . . . ,↵k].

We note that the entries of each xi are nonnegative integers because of the
assumption that the sum of any k � 1 of the ↵i is at most 1. Moreover, it is an
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easy exercise to check that each xi is ↵-communal, and by Lemma 3.1 every triple
obtained as a nonnegative integral linear combination of the xi will be as well.

Lemma 3.2. Let g = [g1, . . . , gk] be an ↵-communal k-tuple with g =
P

gi. Then
one can write g as the sum of the xi in the following way:

g =
kX

j=1

mjg � njgj

A
xj .

Proof. Let h = (h1, . . . , hk) be the k-tuple defined by h =
Pk

j=1(mjg� njgj)xj . In
particular, we can compute that the ith coordinate of h is:

hi =
X
j 6=i

(mjg � njgj)
Nmj

ninj
+ (mig � nigi)

0
@N

ni
�
X
j 6=i

Nmj

ninj

1
A

= ↵iNg �
X
j 6=i

↵iNgj �Ngi +
X
j 6=i

↵jNgi

= Ngi(
kX

j=1

↵j � 1)

= Agi .

The lemma immediately follows.

By assumption, mjg � njgj for each j, so the coe�cients are all nonnegative. In
particular, if each mjg � njgj is a multiple of A then we have shown that one can
write the g as an integral combination of the xi. In particular, if A = 1 then the xi

form a basis for the monoid of ↵-communal k-tuples, a situation which we explore
in Example 4.1. In the case where A > 1 we will not get all k-tuples in this manner.
To cover this case, let aj be the least residue of mjg�njgj mod A. Then it follows
that (mjg � njgj � aj)/A is a nonnegative integer and we compute:

kX
i=1

mig � nigi � ai

A
xi = [g1, . . . , gk]�

kX
i=1

ai

A
xi = [g1, . . . , gk]� [b1, . . . , bk]

where

bj =
1
A

0
@N ↵̂j

aj

nj
+ N↵j

X
i6=j

ai

ni

1
A .

In particular, we can write any ↵-communal k-tuple g = [g1, . . . , gk] in a unique
way as the sum of a ‘base’ k-tuple [b1, . . . , bk] and a nonnegative integral combination
of the xi. Moreover, because the k-tuples g and xi consist of integers, it must be
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the case that the bi are all integers, and therefore the base k-tuples that we need to
consider are exactly those arising from k-tuples (a1, . . . , ak) of least residues which
make them integers. In particular, they will be the k-tuples in the set:

A =
⇢

(a1, . . . , ak)
0  ai < A
N ↵̂j

aj

nj
+ N↵j

P
i6=j

ai
ni
⌘ 0 mod A for all 1  j  k

�

which will have at most Ak elements and for ‘generic’ choices of the ↵i will have
Ak�1 elements – if the mi and ni are all relatively prime to A then one deduces that
the congruence conditions are in fact equivalent and allows one to get an explicit
formula for ak in terms of the other ai.

For each a 2 A, we define b(a) to be the sum of the entries in the corresponding
base k-tuple, and we can compute:

b(a) =
kX

j=1

bj =
kX

j=1

N

A

0
@↵̂j

aj

nj
+ ↵j

X
i6=j

ai

ni

1
A

=
N

A

kX
j=1

↵̂j
aj

nj
+

N

A

X
i6=j

↵jai

ni

=
N

A

 
kX

i=1

ai

ni

!
.

It follows that the number of ↵-communal k-tuples summing to g is the same
as the number of ways to write g as the sum of a number of the form b(a) for
some k-tuple (a1, . . . , ak) 2 A and a nonnegative integral linear combination of
the numbers N

ni
. Theorem 3.3 is an immediate consequence using basic facts on

generating functions (see [2] or [7], for example).

Theorem 3.3. Let f(g) be the number of k-tuples of nonnegative integers g1, . . . , gk

so that
P

gi = g and gi  ↵ig, where the ↵i are rational numbers as described above.
Then the function f(g) can be described by a generating function in the following
way:

F (x) =
1X

g=0

f(g)xg =
P

a2A xb(a)Qk
i=1(1� xN/ni)

.

4. Examples

Computing explicit formulas from Theorem 3.3 requires an understanding of the
set A, which depends strongly on the relationships between the ↵i. This can be
complicated in general, but in many specific cases, such as when the mi and ni
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share common factors, the terms reduce greatly and one can write simple closed
forms for the generating function F (x). We close this note with some examples and
applications.

Example 4.1. Let k = 3 with ↵1 = 1
2 , ↵2 = 1

3 , ↵3 = 1
5 . In particular, ↵1 + ↵2 +

↵3 = 31
30 so we see that A = 1. As discussed in the previous section, this implies

that every ↵-communal triple can be written as a nonnegative integral combination
of the triples x1 = [7, 5, 3], x2 = [5, 3, 2], x3 = [3, 2, 1]. In particular, the generating
function whose coe�cients give us the number of ↵-communal triples summing to
g is given by F (x) = ((1 � x15)(1 � x10)(1 � x6))�1. At the same time, Theorem
2.2 tells us that a formula for the number of ↵-communal triples summing to g is
given by

f(g) =
✓
b g

2c+ b g
3c+ b g

5c � g + 2
2

◆
.

Other examples of k-tuples so that the term A equals 1, making it particu-
larly easy to write down the structure of ↵-communal compositions, include ↵ =
(2
5 , 1

17 , 7
23 , 9

38 ), (1
4 , 1

7 , 2
11 , 4

13 , 2
17 ), and ( 3

11 , 3
13 , 2

15 , 1
17 , 7

23 ).

Example 4.2. We next wish to apply our results to the classical problem of count-
ing triangles with a fixed perimeter and integer sides, as considered by Andrews in
[1]. In our context, this is the case where k = 3 and each of the ↵i = 1

2 , so each
mi = 1 and each ni = 2. We wish to consider the more general situation where we
set ↵i = 1

k�1 for each 1  i  k.
Let ` be the least residue of g modulo k � 1. In particular we have b g

k�1c =
g�`
k�1 2 Z. It follows from Theorem 2.2 that the number of ↵-communal k-tuples
summing to g is given by the function

f(g) =
✓ g�`k

k�1 + k � 1
k � 1

◆
.

As an illustration, in the case k = 3 this reduces to the formula f(g) = 1
8 (g2 +

6g + 8) if g is even and 1
8 (g2 � 1) if g is odd.

If we instead wish to find the generating function describing the sequence {f(g)},
we note that in the notation of Section 3 we can compute that A = (k� 1)k�1 and
the set A consists of all k-tuples (a1, . . . ak) so that 0  ai < (k � 1)k�1 and all
of the ai are congruent modulo k � 1. In particular, we can write the set A as a
disjoint union of sets As for 0  s  (k � 2) where all of the ai are congruent to
s modulo k � 1. We note that if a 2 As then we have that b(a) =

P
ai ⌘ s (mod

(k � 1)) as well.
We observe that for any g ⌘ 0 (mod (k�1)), the number of ways to write it as a

sum of k numbers which are multiples of k � 1 is straightforward to compute, and
standard results about generating functions imply thatX

a2A0

x
P

ai = (1 + xk�1 + x2(k�1) + . . . + x(k�2)(k�1))k.
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Similarly, there is a bijection between k-tuples in As whose entries sum to g and
k-tuples in A0 whose entries sum to g � ks, allowing one to compute that

X
a2As

xb(a) = xks(1 + xk�1 + . . . + x(k�2)(k�1))k.

We now use Theorem 3.3 to compute the generating function explicitly:

F (x) =
P

a2A xb(a)Qk
i=1(1� xN/ni)

=
(1 + xk + . . . + xk(k�2))(1 + xk�1 + x2(k�1) + . . . + x(k�2)(k�1))k

(1� x(k�1)2)k

=
(1� xk(k�1))(1� x(k�1)2)k

(1� xk)(1� xk�1)k(1� x(k�1)2)k

=
1� xk(k�1)

(1� xk)(1� xk�1)k
,

which agrees with the formula given in [5, Thm 10].

Example 4.3. Let k = 3 and mi = 1, and n1 = n2 = 2 with n3 = n � 2. In this
case, A = 4 and one can see that (a1, a2, a3) 2 A if and only if a1 ⌘ a2 (mod 2) and
a3 ⌘ a1 + a1+a2

2 n (mod 2). In particular, if n is odd then A consists of the sixteen
triples:

(0, 0, 0) (0, 0, 2) (2, 2, 0) (2, 2, 2)
(0, 2, 1) (0, 2, 3) (2, 0, 1) (2, 0, 3)
(1, 1, 0) (1, 1, 2) (3, 3, 0) (3, 3, 2)
(1, 3, 1) (1, 3, 3) (3, 1, 1) (3, 1, 3)

.

One can then use Theorem 3.3 to compute that the generating function in this
case is:

F (x) =
1+x2+xn+2xn+1+xn+2+2xn+3+x2n+2x2n+1+x2n+2+2x2n+3+x3n+x3n+2

(1� x4)(1� x2n)2

=
1 + 2xn+1 + x2n

(1� x2)(1� xn)(1� x2n)
.

Similarly, if n is even one can show that the generating function simplifies to

F (x) =
1 + xn+1

(1� x2)(1� xn)2
.

One can additionally use Theorem 2.2 to show that the number of ↵-communal
triples summing to g is given by f(g) = 1

2 (b g
nc+ 1)(b g

nc+ ✏g), where ✏g = 2 if g is
even and ✏g = 0 if g is odd.



INTEGERS: 14 (2014) 8

It is worth noting that this question was one of the original motivations for this
note, as it is related to the question of counting the irreducible components of the
moduli space of dihedral covers of the projective line. While we will not go into de-
tails here, the interested reader might consult [5, §5] and [4] for the similar problem
comparing (1

2 , 1
2 , 1

2 )-communal triples to the moduli space of (Z/2Z)2-covers of P1.

Example 4.4. Returning to the example from the opening paragraph of this note,
let us let ↵1 = 1

3 ,↵2 = 2
5 and ↵3 = 2

7 . Then A = 2 and A consists of triples
(a1, a2, a3) with either one or three entries equalling 0 and the others equalling 1.
In particular, we see that any division of candy that satisfies our restrictions can be
written as the sum of one of the triples in the set {[0, 0, 0], [6, 7, 5], [8, 10, 7], [9, 11, 8]}
and an integral linear combination of the triples [5, 6, 4], [7, 8, 6], [11, 14, 10]. More-
over, the generating function associated to this problem is

F (x) =
1 + x18 + x25 + x28

(1� x15)(1� x21)(1� x35)
.

A computer algebra system will now tell us that the expansion of this as a power
series includes the terms

F (x) = . . . x97 + 3x98 + 3x99 + 3x100 + x101 + 3x102 + 3x103 + . . .

which tells us that there are three ways to distribute 100 pieces of candy according
to these rules (in particular, they are [32, 40, 28], [33, 39, 28], and [33, 40, 27]) but a
unique way of dividing 101 pieces, [33, 40, 28].
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