

SHORT EFFECTIVE INTERVALS CONTAINING PRIMES

Habiba Kadiri
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Canada habiba.kadiri@uleth.ca

Allysa Lumley
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Canada
allysa.lumley@uleth.ca

Received: 1/9/14, Revised: 7/23/14, Accepted: 9/25/14, Published: 10/30/14

Abstract

We prove that if x is large enough, namely $x \geq x_{0}$, then there exists a prime between $x\left(1-\Delta^{-1}\right)$ and x, where Δ is an effective constant computed in terms of x_{0}.

1. Introduction

In this article, we address the problem of finding short intervals containing primes. In 1845 Bertrand conjectured that for any integer $n>3$, there always exists at least one prime number p with $n<p<2 n-2$. This was proven by Chebyshev in 1850, using elementary methods. Since then other intervals of the form $(k n,(k+1) n)$ have been investigated. We refer the reader to [1] for $k=2$ and to [12] for $k=3$. Assuming that x is arbitrarily large, the length of intervals containing primes can be drastically reduced. To date, the record is held by Baker, Harman, and Pintz [2] as they prove that there is at least one prime between x and $x+x^{0.525+\varepsilon}$. This is an impressive result since under the Riemann Hypothesis the exponent 0.525 can only be reduced to 0.5 . On the other hand, maximal gaps for the first primes have been checked numerically up to $4 \cdot 10^{18}$ by Oliveira e Silva et al. [14]. In particular, they find that the largest prime gap before this limit is 1476 and occurs at $1425172824437699411=e^{41.8008 \ldots}$. The purpose of this article is to obtain an effective result of the form: for all $x \geq x_{0}$, there exists $\Delta>0$ such that the interval $\left(x\left(1-\Delta^{-1}\right), x\right)$ contains at least one prime. In 1976 Schoenfeld's Theorem 12 of [18] gave this for $x_{0}=2010881.1$ and $\Delta=16598$. In 2003 Ramaré and Saouter improved on Schoenfeld's method by using a smoothing argument. They also extended the computations to many other values for x_{0} ($[16$, Theorem 2 and

Table 1]). In [9], the first author generalized this theorem to primes in arithmetic progression and applied this to Waring's seven cubes problem. Here, our theorem improves [16] by making use of a new explicit zero-density for the zeros of the Riemann zeta function:

Theorem 1.1. Let $x_{0} \geq 4 \cdot 10^{18}$ be a fixed constant and let $x>x_{0}$. Then there exists at least one prime p such that $\left(1-\Delta^{-1}\right) x<p<x$, where Δ is a constant depending on x_{0} and is given in Table 2.

In Section 2, we prove a general theorem (Theorem 2.7) which provides conditions for intervals of the form $\left(\left(1-\Delta^{-1}\right) x, x\right)$ to contain a prime. In Section 3, we apply this theorem to compute explicit values for Δ.

We present an example of the numerical improvement this theorem allows, for instance when $x_{0}=e^{59}$, Ramaré and Saouter [16] found that the interval gap was given by $\Delta=209257759$. In [5, page 74], Helfgott mentioned an improvement of Ramaré using Platt's latest verification of the Riemann Hypothesis [15]: $\Delta=$ 307779 681. Our Theorem 1.1 leads to $\Delta=1946282821$.

We now mention an application to the verification of the Ternary Goldbach conjecture. This conjecture was known to be true for sufficiently large integers (by Vinogradov), and Liu and Wang [11] prove it for all integers $n \geq e^{3100}$. On the other hand, the conjecture was verified for the first values of n. In [16, Corollary 1], Ramaré and Saouter verified it for $n \leq 1.132 \cdot 10^{22}$. Very recently, Oliveira e Silva et. al. [14, Theorem 2.1] extended this limit to $n \leq 8.370 \cdot 10^{26}$. In [5, Proposition A.1.], Helfgott applied the above result on short intervals containing primes $(\Delta=307779681)$ and found $n \leq 1.231 \cdot 10^{27}$. This allowed him to complete his proof $[5,6]$ of the Ternary Goldbach conjecture for the remaining integers. Here our main theorem gives:

Corollary 1.2. Every odd number larger than 5 and smaller than

$$
1966196911 \times 4 \cdot 10^{18}=7.864 \ldots \cdot 10^{27}
$$

is the sum of at most three primes.
As of today, Helfgott and Platt [7] have announced a verification up to $8.875 \cdot 10^{30}$.

2. Proof of Theorem 1.1

We recall the definition of the classical Chebyshev functions:

$$
\theta(x)=\sum_{p \leq x} \log p, \quad \psi(x)=\sum_{n \leq x} \Lambda(n), \text { with } \Lambda(n)= \begin{cases}1 & \text { if } n=p^{k} \text { for some } k \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

For each x_{0}, we want to find the largest $\Delta>0$ such that, for all $x>x_{0}$, there exists a prime between $x\left(1-\Delta^{-1}\right)$ and x. This happens as soon as $\theta(x)-\theta\left(x\left(1-\Delta^{-1}\right)\right)>0$.

2.1. Introduction of Parameters

We list here the parameters we will be using throughout the proof.

$$
\begin{align*}
& * m \text { integer with } m \geq 2 \\
& * 0 \leq u \leq 0.0001, \delta=m u \text { and } 0 \leq \delta \leq 0.0001 \\
& * 0 \leq a \leq 1 / 2 \\
& * \Delta=\left(1-(1+\delta a)(1+\delta(1-a))^{-1} e^{-u}\right)^{-1} \tag{1}\\
& * X \geq X_{0} \geq e^{38} \\
& * x=e^{u} X(1+\delta(1-a)) \geq x_{0}=e^{u} X_{0}(1+\delta(1-a)) \\
& * y=X(1+\delta a)=x\left(1-\Delta^{-1}\right)
\end{align*}
$$

2.2. Smoothing the Difference $\theta(x)-\theta(y)$

We follow here the smoothing argument of Ramaré and Saouter [16]. Let f be a positive function integrable on $(0,1)$. We denote

$$
\begin{align*}
\|f\|_{1} & =\int_{0}^{1} f(t) d t \tag{2}\\
\nu(f, a) & =\int_{0}^{a} f(t) d t+\int_{1-a}^{1} f(t) d t \tag{3}\\
\text { and } I_{\delta, u, X} & =\frac{1}{\|f\|_{1}} \int_{0}^{1}\left(\theta\left(e^{u} X(1+\delta t)\right)-\theta(X(1+\delta t))\right) f(t) d t \tag{4}
\end{align*}
$$

Note that for all $a \leq t \leq 1-a, \theta\left(e^{u} X(1+\delta t)\right)-\theta(X(1+\delta t)) \leq \theta(x)-\theta(y)$. We integrate with the positive weight f and obtain:

$$
\begin{equation*}
\int_{a}^{1-a}\left(\theta\left(e^{u} X(1+\delta t)\right)-\theta(X(1+\delta t))\right) f(t) d t \leq(\theta(x)-\theta(y)) \int_{a}^{1-a} f(t) d t \tag{5}
\end{equation*}
$$

We extend the left integral to the interval $(0,1)$ and use a Brun-Titchmarsh inequality to control the primes on the extremities $(0, a)$ and $(1-a, 1)$ of the interval (see [16, page 16, line -5$]$ or [13, Theorem 2]):

$$
\begin{align*}
\int_{t \in(0, a) \cup(1-a, 1)}\left(\theta\left(e^{u} X(1+\delta t)\right)-\right. & \theta(X(1+\delta t))) f(t) d t \\
& \leq 2(1+\delta)\left(e^{u}-1\right) \frac{\log \left(e^{u} X\right)}{\log \left(X\left(e^{u}-1\right)\right)} \nu(f, a) X \tag{6}
\end{align*}
$$

Note that [16] uses the slightly larger bound

$$
2.0004 u \frac{\log X}{\log (u X)} \nu(f, a) X
$$

Combining (5) and (6) gives

$$
\begin{equation*}
I_{\delta, u, X} \leq(\theta(x)-\theta(y)) \frac{\int_{a}^{1-a} f(t) d t}{\|f\|_{1}}+2(1+\delta)\left(e^{u}-1\right) \frac{\log \left(e^{u} X(1+\delta)\right)}{\log \left(X\left(e^{u}-1\right)\right)} \frac{\nu(f, a)}{\|f\|_{1}} X . \tag{7}
\end{equation*}
$$

Thus $\theta(x)-\theta(y)>0$ when

$$
\begin{equation*}
I_{\delta, u, X}-2(1+\delta)\left(e^{u}-1\right) \frac{\log \left(e^{u} X(1+\delta)\right)}{\log \left(X\left(e^{u}-1\right)\right)} \frac{\nu(f, a)}{\|f\|_{1}} X>0 \tag{8}
\end{equation*}
$$

It remains to establish a lower bound for $I_{\delta, u, X}$. To do so, we first approximate $\theta(x)$ with $\psi(x)$. This will allow us to translate our problem in terms of the zeros of the zeta function. We use approximations proven by Costa in [3, Theorem 5]:

Lemma 2.1. Let $x \geq e^{38}$. Then

$$
\begin{equation*}
0.999 \sqrt{x}+\sqrt[3]{x}<\psi(x)-\theta(x)<1.001 \sqrt{x}+\sqrt[3]{x} \tag{9}
\end{equation*}
$$

We have that for all $0<t<1$,

$$
\begin{align*}
& \left(\psi\left(e^{u} X(1+\delta t)\right)-\theta\left(e^{u} X(1+\delta t)\right)\right)-(\psi(X(1+\delta t))-\theta(X(1+\delta t))) \\
& <\sqrt{X} \sqrt{1+\delta}\left(1.001 e^{u / 2}-0.999+X^{-1 / 6}(1+\delta)^{-1 / 6}\left(e^{u / 3}-1\right)\right)<\omega \sqrt{X} \tag{10}
\end{align*}
$$

where we can take, under our assumptions (1),

$$
\begin{equation*}
\omega=2.05022 \cdot 10^{-3} \tag{11}
\end{equation*}
$$

We denote

$$
\begin{equation*}
J_{\delta, u, X}=\frac{1}{\|f\|_{1}} \int_{0}^{1}\left(\psi\left(e^{u} X(1+\delta t)\right)-\psi(X(1+\delta t))\right) f(t) d t \tag{12}
\end{equation*}
$$

It follows from (10) that

$$
\begin{equation*}
I_{\delta, u, X} \geq J_{\delta, u, X}-\omega \sqrt{X} \tag{13}
\end{equation*}
$$

Note that [16] used older approximations from [18], which lead to $\omega=0.0325$. To summarize, we want to find conditions on m, δ, u, a so that

$$
\begin{equation*}
J_{\delta, u, X}-\omega \sqrt{X}-2(1+\delta)\left(e^{u}-1\right) \frac{\log \left(e^{u} X(1+\delta)\right)}{\log \left(X\left(e^{u}-1\right)\right)} \frac{\nu(f, a)}{\|f\|_{1}} X>0 \tag{14}
\end{equation*}
$$

We are now left with evaluating $J_{\delta, u, X}$, which we shall do by relating it to the zeros of the Riemann zeta function through an explicit formula.

2.3. An Explicit Inequality for $J_{\delta, u, X}$

Lemma 2.2. [16, Lemma 4] Let $2 \leq b \leq c$, and let g be a continuously differentiable function on $[b, c]$. We have

$$
\begin{align*}
\int_{b}^{c} \psi(u) g(u) d u=\int_{b}^{c} u g(u)-\sum_{\varrho} & \int_{b}^{c} \frac{u^{\varrho}}{\varrho} g(u) d u \\
& +\int_{b}^{c}\left(\log 2 \pi-\frac{1}{2} \log \left(1-u^{-2}\right)\right) g(u) d u \tag{15}
\end{align*}
$$

We apply this identity to $g(t)=f\left(\delta^{-1}\left(e^{-u} X^{-1} t-1\right)\right), b=e^{u} X, c=e^{u} X(1+$ $\delta)$, and $g(t)=f\left(\delta^{-1}\left(X^{-1} t-1\right)\right), b=X, c=X(1+\delta)$, respectively. It follows that

$$
\begin{gathered}
J_{\delta, u, X}=\frac{\left(e^{u}-1\right) X}{\|f\|_{1}} \int_{0}^{1}(1+\delta t) f(t) d t-\frac{1}{\|f\|_{1}} \sum_{\varrho} \int_{0}^{1} \frac{\left(e^{u \varrho}-1\right) X^{\varrho}(1+\delta t)^{\varrho} f(t)}{\varrho} d t \\
-\frac{1}{2\|f\|_{1}} \int_{0}^{1}\left(\log \left(1-\left(e^{u} X(1+\delta t)\right)^{-2}\right)-\log \left(1-(X(1+\delta t))^{-2}\right)\right) f(t) d t .
\end{gathered}
$$

Observe that the last term is at least $-\frac{u}{2 X}$. We obtain

$$
\begin{array}{r}
\frac{J_{\delta, u, X}}{\left(e^{u}-1\right) X} \geq \frac{\int_{0}^{1}(1+\delta t) f(t) d t}{\|f\|_{1}}-\sum_{\varrho}\left|\frac{\left(e^{u \varrho}-1\right)}{\left(e^{u}-1\right) \varrho} \frac{\int_{0}^{1}(1+\delta t)^{\varrho} f(t) d t}{\|f\|_{1}}\right| X^{\mathfrak{R} \varrho \varrho-1} \\
-\frac{u}{2\left(e^{u}-1\right) X^{2}} \tag{16}
\end{array}
$$

We obtain some small savings by directly computing the first term, whereas [16, Equation (13)] uses the following bound in (16) instead:

$$
\frac{\int_{0}^{1}(1+\delta t) f(t) d t}{\|f\|_{1}} \geq \frac{u}{e^{u}-1}
$$

Let s be a complex number. We let $G_{m, \delta, u}(s)$ be the summand

$$
\begin{equation*}
G_{m, \delta, u}(s)=\frac{\left(e^{u s}-1\right)}{\left(e^{u}-1\right) s} \frac{\int_{0}^{1}(1+\delta t)^{s} f(t) d t}{\|f\|_{1}} \tag{17}
\end{equation*}
$$

and we rewrite inequality (16) as

$$
\begin{equation*}
\frac{J_{\delta, u, X}}{\left(e^{u}-1\right) X} \geq G_{m, \delta, u}(1)-\sum_{\varrho}\left|G_{m, \delta, u}(\varrho)\right| X^{\Re \mathfrak{\varrho}-1}-\frac{u}{2\left(e^{u}-1\right)} X^{-2} \tag{18}
\end{equation*}
$$

Since the right term increases with X, we can replace X with X_{0} for $X \geq X_{0}$. Note that this is also the case for

$$
\frac{\omega}{\left(e^{u}-1\right) \sqrt{X}}-2(1+\delta) \frac{\log \left(e^{u} X(1+\delta)\right)}{\log \left(X\left(e^{u}-1\right)\right)} \frac{\nu(f, a)}{\|f\|_{1}} .
$$

For simplicity we let

$$
\begin{equation*}
\Sigma=\Sigma_{m, \delta, u, X}=\sum_{\varrho}\left|G_{m, \delta, u}(\varrho)\right| X^{\mathfrak{R} \varrho-1} \tag{19}
\end{equation*}
$$

The following Proposition gives a first inequality in terms of the zeros of the Riemann zeta function and conditions on m, u, δ, a (and thus Δ) so that $\theta(x)-\theta(x(1-$ $\left.\left.\Delta^{-1}\right)\right)>0$:

Proposition 2.3. Let $m, u, \delta, a, \Delta, X_{0}$ satisfy (1). If $X \geq X_{0}$ and

$$
\begin{align*}
G_{m, \delta, u}(1)-\Sigma_{m, \delta, u, X_{0}}-\frac{u}{2\left(e^{u}-1\right)} & X_{0}^{-2}-\frac{\omega}{\left(e^{u}-1\right)} X_{0}^{-1 / 2} \\
& -\frac{2 \nu(f, a)(1+\delta)}{\|f\|_{1}} \frac{\log \left(e^{u} X_{0}(1+\delta)\right)}{\log \left(X_{0}\left(e^{u}-1\right)\right)}>0 \tag{20}
\end{align*}
$$

then there exists a prime number between $x\left(1-\Delta^{-1}\right)$ and x.
We are now going to make this lemma more explicit by providing computable bounds for the sum over the zeros $\Sigma_{m, \delta, u, X_{0}}$.

2.4. Evaluating $\boldsymbol{G}_{\boldsymbol{m}, \delta, u}$

Let f be an m-admissible function over $[0,1]$. We recall the properties it entitles according to the definition of [16]:

- f is an m-times differentiable function,
- $f^{(k)}(0)=f^{(k)}(1)=0$ for $0 \leq k \leq m-1$,
- $f \geq 0$,
- f is not identically 0 .

For $k=0, \ldots, m$ and for $s=\sigma+i \tau$ a complex number with $\tau>0$ and $0 \leq \sigma \leq 1$, we let

$$
\begin{equation*}
F_{k, m, \delta}=\frac{\int_{0}^{1}(1+\delta t)^{1+k}\left|f^{(k)}(t)\right| d t}{\|f\|_{1}} \tag{21}
\end{equation*}
$$

We provide finer estimates than [16] for $G_{m, \delta, u}$. Observe that

$$
\begin{align*}
& \left\lvert\, \begin{array}{l}
\left|\frac{e^{u s}-1}{s}\right|=\left|\int_{1}^{u} e^{x s} d x\right| \leq \int_{1}^{u} e^{x \sigma} d x=\frac{e^{u \sigma}-1}{\sigma} \\
\left|\frac{e^{u s}-1}{s}\right| \leq \frac{e^{u \sigma}+1}{\tau} \\
\text { and }\left|\int_{0}^{1}(1+\delta t)^{s} f(t) d t\right| \leq \frac{1}{\delta^{k} \tau^{k}} F_{k, m, \delta}
\end{array}\right. \text {. } \tag{22}
\end{align*}
$$

We easily deduce bounds for $G_{m, \delta, u}(s)$ by combining (22) and (24) with respectively $k=0, k=1$, and $k=m$:

$$
\begin{align*}
\left|G_{m, \delta, u}(s)\right| & \leq F_{0, m, \delta} \frac{e^{u \sigma}-1}{\left(e^{u}-1\right) \sigma} \tag{25}\\
\left|G_{m, \delta, u}(s)\right| & \leq F_{1, m, \delta} \frac{e^{u \sigma}-1}{\left(e^{u}-1\right) \sigma \delta \tau} \tag{26}\\
\text { and }\left|G_{m, \delta, u}(s)\right| & \leq F_{m, m, \delta} \frac{e^{u \sigma}-1}{\left(e^{u}-1\right) \sigma \delta^{m} \tau^{m}} \tag{27}
\end{align*}
$$

Lastly by combining (23) and (24) with $k=m$ we obtain

$$
\begin{equation*}
\left|G_{m, \delta, u}(s)\right| \leq F_{m, m, \delta} \frac{e^{u \sigma}+1}{\left(e^{u}-1\right) \delta^{m} \tau^{m+1}} \tag{28}
\end{equation*}
$$

2.5. Zeros of the Riemann Zeta Function

We denote each zero of the zeta funtion by $\varrho=\beta+i \gamma$, the number of zeros in the rectangle $0<\beta<1,0<\gamma<T$, by $N(T)$, and the number of those zeros in the rectangle $\sigma_{0}<\beta<1,0<\gamma<T$, by $N\left(\sigma_{0}, T\right)$. We assume that we have the following information.

Theorem 2.4.

1. A numerical verification of the Riemann Hypothesis: There exists $H>2$ such that if $\zeta(\beta+i \gamma)=0$ at $0 \leq \beta \leq 1$ and $0 \leq \gamma \leq H$, then $\beta=1 / 2$.
2. A direct computation of some finite sums over the first zeros:

Let $0<T_{0}<H$ and $S_{0}>0$ satisfy

$$
\begin{equation*}
\text { and } \sum_{\substack{0<\gamma \leq T_{0} \\ \beta=1 / 2}} 1 \leq N_{0}=N\left(T_{0}\right), \tag{29}
\end{equation*}
$$

3. A zero-free region:

There exists $R_{0}>0$, a constant, such that $\zeta(\sigma+i t)$ does not vanish in the region

$$
\begin{equation*}
\sigma \geq 1-\frac{1}{R_{0} \log |t|} \quad \text { and } \quad|t| \geq 2 \tag{31}
\end{equation*}
$$

4. An estimate for $N(T)$:

There exist positive constants a_{1}, a_{2}, a_{3} such that, for all $T \geq 2$,

$$
\begin{align*}
& |N(T)-P(T)| \leq R(T), \text { where } \\
& P(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}, \quad R(T)=a_{1} \log T+a_{2} \log \log T+a_{3} \tag{32}
\end{align*}
$$

5. An upper bound for $N\left(\sigma_{0}, T\right)$:

Let $3 / 5<\sigma_{0}<1$. Then there exist constants c_{1}, c_{2}, c_{3} such that, for all $T \geq H$,

$$
\begin{equation*}
N\left(\sigma_{0}, T\right) \leq c_{1} T+c_{2} \log T+c_{3} . \tag{33}
\end{equation*}
$$

Note that [16] did not use any information of the type (30), (31), or (33). Instead they used (29), the fact that all nontrivial zeros satisfied $\beta<1$, and the classical bound (32) for $N(T)$ as given in [17, Theorem 19]. Our improvement will mainly come from using a new zero-density of the form of (33).

2.6. Evaluating the Sum Over the Zeros $\Sigma_{m, \delta, u, X_{0}}$

We assume Theorem 2.4. We split the sum $\Sigma_{m, \delta, u, X_{0}}$ vertically at heights $\gamma=0$ (so as to use the symmetry with respect to the x-axis) and consider

$$
\tilde{G}_{m, \delta, u}(\beta+i \gamma)=\left|G_{m, \delta, u}(\beta+i \gamma)\right|+\left|G_{m, \delta, u}(\beta-i \gamma)\right|
$$

We then split at $\gamma=H$ (so as to take advantage of the fact that all zeros below this horizontal line satisfy $\beta=1 / 2$), and again at $\gamma=T_{0}$ and $\gamma=T_{1}$ (where T_{1} will be
chosen between T_{0} and H), and consider:

$$
\begin{align*}
\Sigma_{0} & =\sum_{0<\gamma \leq T_{0}} \tilde{G}_{m, \delta, u}(1 / 2+i \gamma) X_{0}^{-1 / 2}, \tag{34}\\
\Sigma_{1} & =\sum_{T_{0}<\gamma \leq T_{1}} \tilde{G}_{m, \delta, u}(1 / 2+i \gamma) X_{0}^{-1 / 2}, \tag{35}\\
\text { and } \Sigma_{2} & =\sum_{T_{1}<\gamma \leq H} \tilde{G}_{m, \delta, u}(1 / 2+i \gamma) X_{0}^{-1 / 2} \tag{36}
\end{align*}
$$

For the remaining zeros (those with $\gamma>H$), we make use of the symmetry with respect to the critical line, and we split at $\beta=\sigma_{0}$ for some fixed $\sigma_{0}>1 / 2$ (we will consider $9 / 10 \leq \sigma_{0} \leq 99 / 100$ for our computations). We denote

$$
\begin{align*}
\Sigma_{3}= & \sum_{\substack{\gamma>H \\
\beta=1 / 2}} \tilde{G}_{m, \delta, u}(1 / 2+i \gamma) X_{0}^{-1 / 2} \\
& +\sum_{\substack{\gamma>H \\
1 / 2<\beta \leq \sigma_{0}}}\left(\tilde{G}_{m, \delta, u}(\beta+i \gamma) X_{0}^{\beta-1}+\tilde{G}_{m, \delta, u}(1-\beta+i \gamma) X_{0}^{-\beta}\right), \tag{37}\\
\Sigma_{4}= & \sum_{\substack{\gamma>H \\
\sigma_{0}<\beta<1}}\left(\tilde{G}_{m, \delta, u}(\beta+i \gamma) X_{0}^{\beta-1}+\tilde{G}_{m, \delta, u}(1-\beta+i \gamma) X_{0}^{-\beta}\right) \tag{38}
\end{align*}
$$

As a conclusion, we have

$$
\begin{equation*}
\Sigma_{m, \delta, u, X_{0}}=\Sigma_{0}+\Sigma_{1}+\Sigma_{2}+\Sigma_{3}+\Sigma_{4} \tag{39}
\end{equation*}
$$

We state here some preliminary results (see [4, Equations (2.18), (2.19), (2.20), (2.21), (2.26)]).

Lemma 2.5. Let $T_{0}, H, R_{0}, \sigma_{0}$ be as in Theorem 2.4. Let $m \geq 2, X_{0}>10$, and T_{1} between T_{0} and H. We define

$$
\begin{align*}
& S_{1}\left(T_{1}\right)=\left(\frac{1}{2 \pi}+q\left(T_{0}\right)\right)\left(\log \frac{T_{1}}{T_{0}} \log \frac{\sqrt{T_{1} T_{0}}}{2 \pi}\right) \frac{2 R\left(T_{0}\right)}{T_{0}} \tag{40}\\
& S_{2}\left(m, T_{1}\right)=\left(\frac{1}{2 \pi}+q\left(T_{1}\right)\right)\left(\frac{1+m \log \frac{T_{1}}{2 \pi}}{m^{2} T_{1}^{m}}-\frac{1+m \log \frac{H}{2 \pi}}{m^{2} H^{m}}\right)+\frac{2 R\left(T_{1}\right)}{T_{1}^{m+1}} \tag{41}\\
& S_{3}(m)=\left(\frac{1}{2 \pi}+q(H)\right)\left(\frac{\left.1+m \log \frac{H}{2 \pi}\right)}{m^{2} H^{m}}\right)+\frac{2 R(H)}{H^{m+1}} \tag{42}\\
& S_{4}\left(m, \sigma_{0}\right)=\left(c_{1}\left(1+\frac{1}{m}\right)+\frac{c_{2} \log H}{H}+\left(c_{3}+\frac{c_{2}}{m+1}\right) \frac{1}{H}\right) \frac{1}{H^{m}} \tag{43}\\
& S_{5}\left(X_{0}, m, \sigma_{0}\right)=\left(c_{1}+\frac{c_{2} \log H}{H}+\frac{c_{3}}{H}+\left(c_{1}+\frac{c_{2}}{H}\right) \frac{R_{0}}{2 \log X_{0}} \frac{(\log H)^{2}}{\left(\frac{m R_{0}}{\log X_{0}}\right)(\log H)^{2}-1}\right) \frac{1}{H^{m}} \tag{44}
\end{align*}
$$

We assume Theorem 2.4. Then

$$
\begin{align*}
& \sum_{T_{0}<\gamma \leq T_{1}} \frac{1}{\gamma} \leq S_{1}\left(T_{1}\right) \tag{45}\\
& \sum_{T_{1}<\gamma \leq H} \frac{1}{\gamma^{m+1}} \leq S_{2}\left(m, T_{1}\right) \tag{46}\\
& \sum_{\gamma>H} \frac{1}{\gamma^{m+1}} \leq S_{3}(m) \tag{47}\\
& \sum_{\substack{\gamma>H \\
\sigma_{0}<\beta<1}} \frac{1}{\gamma^{m+1}} \leq S_{4}\left(m, \sigma_{0}\right) \tag{48}
\end{align*}
$$

Moreover, if $\log X_{0}<R_{0} m(\log H)^{2}$, then

$$
\begin{equation*}
\sum_{\substack{\gamma>H \\ \sigma_{0}<\beta<1}} \frac{X_{0}^{\frac{-1}{R_{0} \log \gamma}}}{\gamma^{m+1}} \leq S_{5}\left(X_{0}, m, \sigma_{0}\right) X_{0}^{\frac{-1}{R_{0} \log H}} . \tag{49}
\end{equation*}
$$

Lemma 2.6. Let m, δ, X_{0} satisfy (1). We assume Theorem 2.4. If $\log X_{0}<$ $R_{0} m(\log H)^{2}$, then

$$
\begin{align*}
& \Sigma_{m, \delta, u, X_{0}} \leq B_{0}(m, \delta) X_{0}^{-1 / 2}+B_{1}\left(m, \delta, T_{1}\right) X_{0}^{-1 / 2}+B_{2}\left(m, \delta, T_{1}\right) X_{0}^{-1 / 2} \\
&+B_{3}(m, \delta)\left(X_{0}^{\sigma_{0}-1}+X_{0}^{-\sigma_{0}}\right)+B_{41}\left(X_{0}, m, \delta, \sigma_{0}\right) X_{0}^{-\frac{1}{R_{0} \log (H)}} \\
&+B_{42}\left(m, \delta, \sigma_{0}\right) X_{0}^{-1+\frac{1}{R_{0} \log H}} \tag{50}
\end{align*}
$$

where the B_{i} 's are respectively defined in (51), (54), (58), (60), (62), and (63).
Proof. We investigate two ways to evaluate Σ_{0} and Σ_{1}. For Σ_{0}, we can either combine (26) with (30), which computes $\sum_{0<\gamma \leq T_{0}} \gamma^{-1}$, or (25) with (29), which computes $\sum_{0<\gamma \leq T_{0}} 1$. We denote

$$
\begin{equation*}
B_{0}(m, \delta)=\min \left(\Sigma_{01}(m, \delta), \Sigma_{02}(m, \delta)\right) \tag{51}
\end{equation*}
$$

with

$$
\begin{equation*}
\Sigma_{01}(m, \delta)=\frac{4 F_{1, m, \delta}}{\left(e^{u / 2}+1\right) \delta} S_{0} \quad \text { and } \quad \Sigma_{02}(m, \delta)=\frac{4 F_{0, m, \delta}}{\left(e^{u / 2}+1\right)} N_{0} \tag{52}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\Sigma_{0} \leq B_{0}(m, \delta) X_{0}^{-1 / 2} \tag{53}
\end{equation*}
$$

For Σ_{1}, we can either combine (26) with the bound (45) for $\sum_{T_{0}<\gamma \leq T_{1}} \gamma^{-1}$, or (25) with the bound (32) for $N(T)$ from Theorem 2.4. We denote

$$
\begin{equation*}
B_{1}\left(m, \delta, T_{1}\right)=\min \left(\Sigma_{11}\left(m, \delta, T_{1}\right), \Sigma_{12}\left(m, \delta, T_{1}\right)\right) \tag{54}
\end{equation*}
$$

with

$$
\begin{equation*}
\Sigma_{11}\left(m, \delta, T_{1}\right)=\frac{4 F_{1, m, \delta}}{\left(e^{u / 2}+1\right) \delta} S_{1}\left(T_{1}\right), \text { and } \Sigma_{12}\left(m, \delta, T_{1}\right)=\frac{4 F_{0, m, \delta}}{e^{u / 2}+1}\left(N\left(T_{1}\right)-N_{0}\right) \tag{55}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\Sigma_{1} \leq B_{1}\left(m, \delta, T_{1}\right) X_{0}^{-1 / 2} \tag{56}
\end{equation*}
$$

It follows from (28) and (46) that

$$
\begin{equation*}
\Sigma_{2} \leq B_{2}\left(m, \delta, T_{1}\right) X_{0}^{-1 / 2} \tag{57}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{2}\left(m, \delta, T_{1}\right)=\frac{2 F_{m, m, \delta}}{\left(e^{u / 2}-1\right) \delta^{m}} S_{2}\left(m, T_{1}\right) \tag{58}
\end{equation*}
$$

We use (28) to bound \tilde{G} in Σ_{3} :

$$
\Sigma_{3} \leq \frac{2 F_{m, m, \delta}}{\left(e^{u}-1\right) \delta^{m}} \sum_{\substack{\gamma>H \\ 1 / 2 \leq \beta \leq \sigma_{0}}} \frac{\left(e^{u \beta}+1\right) X_{0}^{\beta-1}+\left(e^{u(1-\beta)}+1\right) X_{0}^{-\beta}}{\gamma^{m+1}}
$$

Note that since $\log X_{0}>u$, then $\left(e^{u \beta}+1\right) X_{0}^{\beta-1}+\left(e^{u(1-\beta)}+1\right) X_{0}^{-\beta}$ increases with $\beta \geq 1 / 2$. Moreover, we use (47) to bound the sum $\sum_{\substack{\gamma>H \\ \beta \geq 1 / 2}} \gamma^{-(m+1)}$, and we obtain

$$
\begin{equation*}
\Sigma_{3} \leq B_{3}\left(m, \delta, \sigma_{0}\right) X_{0}^{\sigma_{0}-1}+B_{3}\left(m, \delta, 1-\sigma_{0}\right) X_{0}^{-\sigma_{0}} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{3}(m, \delta, \sigma)=\frac{2 F_{m, m, \delta}}{\delta^{m}} \frac{e^{u \sigma}+1}{e^{u}-1} S_{3}(m) \tag{60}
\end{equation*}
$$

For Σ_{4} we again use (28) to bound \tilde{G} and the fact that $X_{0}^{\beta-1}+X_{0}^{-\beta}$ increases with β. Since $\beta \leq 1-\frac{1}{R_{0} \log \gamma}$ and $\gamma>H$, we obtain

$$
\Sigma_{4} \leq \frac{2\left(e^{u}+1\right) F_{m, m, \delta}}{\left(e^{u}-1\right) \delta^{m}}\left(\sum_{\substack{\gamma>H \\ \sigma_{0}<\beta<1}} \frac{X_{0}^{-\frac{1}{R_{0} \log \gamma}}}{\gamma^{m+1}}+X_{0}^{-1+\frac{1}{R_{0} \log H}} \sum_{\substack{\gamma>H \\ \sigma_{0}<\beta<1}} \frac{1}{\gamma^{m+1}}\right)
$$

We apply (48) and (49) to bound the above sums over the zeros and obtain

$$
\begin{equation*}
\Sigma_{4} \leq B_{41}\left(X_{0}, m, \delta, \sigma_{0}\right) X_{0}^{-\frac{1}{R_{0} \log (H)}}+B_{42}\left(m, \delta, \sigma_{0}\right) X_{0}^{-1+\frac{1}{R_{0} \log H}} \tag{61}
\end{equation*}
$$

with

$$
\begin{align*}
& B_{41}\left(X_{0}, m, \delta, \sigma_{0}\right)=\frac{2\left(e^{u}+1\right) F_{m, m, \delta}}{\left(e^{u}-1\right) \delta^{m}} S_{5}\left(X_{0}, m, \sigma_{0}\right) \tag{62}\\
& B_{42}\left(m, \delta, \sigma_{0}\right)=\frac{2\left(e^{u}+1\right) F_{m, m, \delta}}{\left(e^{u}-1\right) \delta^{m}} S_{4}\left(m, \sigma_{0}\right) \tag{63}
\end{align*}
$$

Note that $G_{m, \delta, u}(1)=F_{0, m, \delta}$. Finally we apply Proposition 2.3 and Lemma 2.6.

2.7. Main Theorem

Theorem 2.7. Let $m, u, \delta, a, \Delta, X_{0}$, and x satisfy (1). Let $T_{0}, H, R_{0}, \sigma_{0}$ be as in Theorem 2.4. We assume Theorem 2.4. If $X \geq X_{0}$ and

$$
\begin{align*}
& F_{0, m, \delta}-B_{0}(m, \delta) X_{0}^{-1 / 2}-B_{1}\left(m, \delta, T_{1}\right) X_{0}^{-1 / 2}-B_{2}\left(m, \delta, T_{1}\right) X_{0}^{-1 / 2} \\
&-B_{3}\left(m, \delta, \sigma_{0}\right) X_{0}^{\sigma_{0}-1}-B_{3}(m, \delta, 1\left.-\sigma_{0}\right) X_{0}^{-\sigma_{0}}-B_{41}\left(X_{0}, m, \delta, \sigma_{0}\right) X_{0}^{-\frac{1}{R_{0} \log H}} \\
&-B_{42}\left(m, \delta, \sigma_{0}\right) X_{0}^{-1+\frac{1}{R_{0} \log H}}-\frac{u}{2\left(e^{u}-1\right)} X_{0}^{-2}-\frac{\omega}{\left(e^{u}-1\right)} X_{0}^{-1 / 2} \\
&-\frac{2 \nu(f, a)(1+\delta)}{\|f\|_{1}} \frac{\log \left(e^{u} X_{0}(1+\delta)\right)}{\log \left(X_{0}\left(e^{u}-1\right)\right)}>0, \tag{64}
\end{align*}
$$

then there exists a prime number between $x\left(1-\Delta^{-1}\right)$ and x.

3. Computations

3.1. Introducing the Smooth Weight f

We choose the same weight as [16]. That is

$$
f_{m}(t)=(4 t(1-t))^{m} \text { if } 0 \leq t \leq 1, \text { and } 0 \text { otherwise. }
$$

Faber and Kadiri proved in [4] that a primitive form of f_{m} provided a near optimal weight to estimate $\psi(x)$. Thus we believe that the above weight should also be near optimal to evaluate $\psi(y)-\psi(x)$ when y is close to x. We recall [16, Lemma 6]:

$$
\begin{align*}
& \left\|f_{m}\right\|_{1}=\frac{2^{2 m}(m!)^{2}}{(2 m+1)!} \tag{65}\\
& \left\|f_{m}^{(m)}\right\|_{2}=\frac{2^{2 m} m!}{\sqrt{2 m+1}} \tag{66}
\end{align*}
$$

We now provide estimates for $F_{k, m, \delta}$ as defined in (21).
Lemma 3.1. Let $m \geq 2, \delta>0$, and $0<\sigma<1$. We define

$$
\begin{aligned}
& \lambda_{0}(m, \delta)=\frac{(2 m+1)!}{2^{2 m-1}(m!)^{2}} \\
& \lambda_{1}(m, \delta)=\frac{(1+\delta)^{2}(2 m+1)!}{2^{2 m-1}(m!)^{2}} \\
& \lambda(m, \delta)=\sqrt{\frac{(1+\delta)^{2 m+3}-1}{\delta(2 m+3)}} \frac{(2 m+1)!}{m!\sqrt{2 m+1}}
\end{aligned}
$$

Then

$$
\begin{align*}
& 1 \leq F_{0, m, \delta} \leq 1+\delta \tag{67}\\
& \lambda_{0}(m, \delta) \leq F_{1, m, \delta}(\sigma) \leq \lambda_{1}(m, \delta) \tag{68}\\
& F_{m, m, \delta}(\sigma) \leq \lambda(m, \delta) \tag{69}
\end{align*}
$$

Proof. Inequalities (67) follow trivially from the fact that $1 \leq(1+\delta t) \leq 1+\delta$.
To bound $F_{1, m, \delta}$, we note that

$$
\frac{\left\|f_{m}^{\prime}\right\|_{1}}{\left\|f_{m}\right\|_{1}} \leq F_{1, m, \delta} \leq \frac{(1+\delta)^{2}\left\|f_{m}^{\prime}\right\|_{1}}{\left\|f_{m}\right\|_{1}}
$$

Since $f_{m}^{\prime}(t)$ has the same sign as $1-2 t$, we have

$$
\left\|f_{m}^{\prime}\right\|_{1}=\int_{1}^{1 / 2} f_{m}^{\prime}(t) d t-\int_{1 / 2}^{1} f_{m}^{\prime}(t) d t=2 f_{m}(1 / 2)-f_{m}(0)-f_{m}(1)=2
$$

This together with (65) achieves (68).
Lastly, for $F_{m . m, \delta}$, we apply (66) together with the Cauchy-Schwarz inequality:

$$
F_{m, m, \delta}(\sigma) \leq \frac{\sqrt{\int_{0}^{1}(1+\delta t)^{2(m+1)} d t} \sqrt{\int_{0}^{1}\left|f_{m}^{(m)}(t)\right|^{2} d t}}{\left\|f_{m}\right\|_{1}}=\sqrt{\frac{(1+\delta)^{2 m+3}-1}{\delta(2 m+3)}} \frac{\left\|f_{m}^{(m)}\right\|_{2}}{\left\|f_{m}\right\|_{1}}
$$

Note that, while $F_{0, m, \delta}$ and $F_{1, m, \delta}$ can be easily computed as integrals, this is not the case for $F_{m, m, \delta}$. The following observation helps us to compute $F_{m, m, \delta}$ directly. We recognize in the definition of $f_{m}^{(m)}$ the analogue of Rodrigues' formula for the shifted Legendre polynomials:

$$
f_{m}^{(m)}(t)=4^{m} m!P_{m}(1-2 t)
$$

where $P_{m}(x)$ is the $m^{t h}$ Legendre polynomial, and

$$
P_{m}(1-2 t)=(-1)^{m} \sum_{k=0}^{m}\binom{m}{k}\binom{m+k}{k}(-t)^{k} .
$$

For each $P_{m}(1-2 t)$, we denote $r_{j, m}$, with $j=0, \ldots, m$, its $m+1$ roots. Since $P_{m}(1-2 t)$ alternates sign between each root, we have

$$
\begin{aligned}
& F_{m, m, \delta}=\frac{\int_{0}^{1}(1+\delta t)^{m+1}\left|P_{m}(1-2 t)\right| d t}{\|f\|_{1}} \\
&=\frac{1}{\|f\|_{1}} \sum_{j=0}^{m-1}(-1)^{j} \int_{r_{j}}^{r_{j+1}}(1+\delta t)^{m+1} P_{m}(1-2 t) d t
\end{aligned}
$$

and GP-Pari is able to compute quickly this sum of polynomial integrals.

3.2. Explicit Results About the Zeros of the Riemann Zeta Function

We provide here the latest values for the constants appearing in Theorem 2.4:
Theorem 3.2.

1. A numerical verification of the Riemann Hypothesis (Platt [15]):

$$
H=3.061 \cdot 10^{10}
$$

2. A direct computation of some finite sums over the first zeros (using A. Odlyzko's list of zeros):

For $T_{0}=1132491$, then $N_{0}=N\left(T_{0}\right)=2001052$, and $S_{0}=11.637732363$.
3. A zero-free region (Kadiri [8, Theorem 1.1]):

$$
R_{0}=5.69693
$$

4. An estimate for $N(T)$ (Rosser [17, Theorem 19]):

$$
a_{1}=0.137, a_{2}=0.443, a_{3}=1.588
$$

5. An upper bound for $N\left(\sigma_{0}, T\right)$ (Kadiri [10]): For all $T \geq H$,

$$
N(\sigma, T) \leq c_{1} T+c_{2} \log T+c_{3}
$$

where the c_{i} 's are given in Table 1.
Table 1: $N(\sigma, T) \leq c_{1} T+c_{2} \log T+c_{3}$.

σ	c_{1}	c_{2}	c_{3}
0.90	5.8494	0.4659	$-1.7905 \cdot 10^{11}$
0.91	5.6991	0.4539	$-1.7444 \cdot 10^{11}$
0.92	5.5564	0.4426	$-1.7007 \cdot 10^{11}$
0.93	5.4206	0.4318	$-1.6592 \cdot 10^{11}$
0.94	5.2913	0.4215	$-1.6196 \cdot 10^{11}$
0.95	5.1680	0.4116	$-1.5819 \cdot 10^{11}$
0.96	5.0503	0.4023	$-1.5458 \cdot 10^{11}$
0.97	4.9379	0.3933	$-1.5114 \cdot 10^{11}$
0.98	4.8304	0.3848	$-1.4785 \cdot 10^{11}$
0.99	4.7274	0.3766	$-1.4470 \cdot 10^{11}$

Note that [17, Theorem 19] was recently improved by T. Trudgian in [19, Corollary 1] with $a_{1}=0.111, a_{2}=0.275, a_{3}=2.450$. Our results are valid with either Rosser's or Trudgian's bounds.

3.3. Understanding the Contribution of the Low Lying Zeros

We assume Theorem 3.2 and that

$$
\begin{equation*}
m \geq m_{0}=5, \delta<\delta_{0}=2 \cdot 10^{-8}, \text { and } T_{1}>t_{1}=10^{9} \tag{70}
\end{equation*}
$$

(this would be consistent with the values we choose in Table 2). We observe that

$$
B_{0}(m, \delta)=\Sigma_{02}(m, \delta) \text { and } B_{1}\left(m, \delta, T_{1}\right)=\Sigma_{12}(m, \delta) .
$$

where Σ_{02} and Σ_{12} are defined in (52) and (55), respectively. In other words, it turns out that we obtain a smaller bound for the sum over the small zeros $(0<$ $\gamma<T)$ by using $N(T)$ directly instead of evaluating $\sum_{0<\gamma<T} \gamma^{-1}$. This essentially comes from the fact that our choice of parameters ensures $\delta \ll \frac{F_{1, m, \delta} S_{0}}{F_{0, m, \delta} N_{0}}$ and $\delta \ll$ $\frac{F_{1, m, \delta} S_{1}\left(T_{1}\right)}{F_{0, m, \delta}\left(N\left(T_{1}\right)-N_{0}\right)}$. We first prove the inequality

$$
\begin{equation*}
\frac{S_{1}(t)}{N(t)} \geq c_{0} \frac{\log t}{t} \tag{71}
\end{equation*}
$$

Proof. We denote
$w_{1}=\frac{1}{2}\left(\frac{1}{2 \pi}+q\left(T_{0}\right)\right)=0.0795 \ldots, w_{2}=-\log (2 \pi)\left(\frac{1}{2 \pi}+q\left(T_{0}\right)\right)=-0.2925 \ldots$,
$w_{3}=\left(\frac{1}{2 \pi}+q\left(T_{0}\right)\right)\left(\frac{-\log ^{2}\left(T_{0}\right)}{2}+\log \left(T_{0}\right) \log (2 \pi)\right)+\frac{2 R\left(T_{0}\right)}{T_{0}}=-11.3860 \ldots$,
$v_{1}=\frac{1}{2 \pi}=0.1591 \ldots, v_{2}=\frac{-\log (2 \pi)}{2 \pi}-1=-1.2925 \ldots, v_{3}=a_{1}=0.137$,
$v_{4}=a_{2}=0.443, v_{5}=a_{3}+\frac{7}{8}=2.463$.
and
$S_{1}(t)=w_{1}(\log t)^{2}+w_{2} \log t+w_{3}, P(t)+R(t)=v_{1} t \log t+v_{2} t+v_{3} \log t+v_{4} \log \log t+v_{5}$.
From (40) and Theorem 3.2 (d), we have

$$
\frac{S_{1}(t)}{N(t)} \geq \frac{S_{1}(t)}{P(t)+R(t)}=\frac{w_{1}(\log t)^{2}+w_{2} \log t+w_{3}}{v_{1} t \log t+v_{2} t+v_{3} \log t+v_{4} \log \log t+v_{5}}
$$

Since $t>t_{1}=10^{9}$, we deduce the bound

$$
\begin{equation*}
\frac{S_{1}(t)}{N(t)} \geq c_{0} \frac{\log t}{t} \tag{72}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=\frac{w_{1}+\frac{w_{2}}{\log t_{1}}+\frac{w_{3}}{\left(\log t_{1}\right)^{2}}}{v_{1}+\frac{v_{3}}{t_{1}}+\frac{v_{4} \log \log t_{1}}{t_{1} \log t_{1}}+\frac{v_{5}}{t_{1} \log t_{1}}} \geq 0.7508 \tag{73}
\end{equation*}
$$

We now establish that

$$
\max \left(\Sigma_{01}+\Sigma_{11}, \Sigma_{01}+\Sigma_{12}, \Sigma_{02}+\Sigma_{11}\right) \leq \Sigma_{02}+\Sigma_{12}
$$

We make use of Lemma 3.1, to provide estimates for the $F_{k, m, \delta}$'s in (72), and of the assumptions (70) on m, δ, T_{1}.

Proof. We have

$$
\begin{array}{r}
\left(\Sigma_{01}+\Sigma_{11}\right)-\left(\Sigma_{02}+\Sigma_{12}\right)=\frac{4}{e^{u / 2}+1}\left(\frac{F_{1, m, \delta}}{\delta}\left(S_{0}+S_{1}\left(T_{1}\right)\right)-F_{0, m, \delta} N\left(T_{1}\right)\right) \\
>\frac{4(1+\delta) N\left(T_{1}\right)}{e^{u / 2}+1}\left(\frac{\left(2 m_{0}+1\right)!}{2^{2 m_{0}-1}\left(m_{0}!\right)^{2}} \frac{1}{\delta_{0}\left(1+\delta_{0}\right)}\left(\frac{S_{0}}{P\left(t_{1}\right)+R\left(t_{1}\right)}+c_{0} \frac{\log t_{1}}{t_{1}}\right)-1\right) \\
>\frac{4(1+\delta) N\left(T_{1}\right)}{e^{u / 2}+1}(2.4796-1)>0
\end{array}
$$

We have

$$
\begin{aligned}
& \left(\Sigma_{01}+\Sigma_{12}\right)-\left(\Sigma_{02}+\Sigma_{12}\right)=\left(\frac{S_{0}}{\delta} F_{1, m, \delta}-N_{0} F_{0, m, \delta}\right) \frac{4}{e^{u / 2}+1} \\
> & \frac{4(1+\delta) N_{0}}{e^{u / 2}+1}\left(\frac{\left(2 m_{0}+1\right)!}{2^{2 m_{0}-1}\left(m_{0}!\right)^{2}} \frac{1}{\delta_{0}\left(1+\delta_{0}\right)} \frac{S_{0}}{N_{0}}-1\right)>\frac{4(1+\delta) N_{0}}{e^{u / 2}+1}(1574-1)>0
\end{aligned}
$$

Finally,

$$
\begin{array}{r}
\left(\Sigma_{02}+\Sigma_{11}\right)-\left(\Sigma_{02}+\Sigma_{12}\right)=\frac{4}{e^{u / 2}+1}\left(\frac{F_{1, m, \delta}}{\delta} S_{1}\left(T_{1}\right)-F_{0, m, \delta}\left(N\left(T_{1}\right)-N_{0}\right)\right) \\
>\frac{4(1+\delta)\left(N\left(T_{1}\right)-N_{0}\right)}{e^{u / 2}+1}\left(\frac{\left(2 m_{0}+1\right)!}{2^{2 m_{0}-1}\left(m_{0}!\right)^{2}} \frac{1}{\delta_{0}\left(1+\delta_{0}\right)} \frac{S_{1}\left(t_{1}\right)}{\left(\frac{S\left(t_{1}\right) t_{1}}{c_{0} \log t_{1}}-N_{0}\right)}-1\right) \\
>\frac{4(1+\delta)\left(N\left(T_{1}\right)-N_{0}\right)}{e^{u / 2}+1}(1.3737-1)>0
\end{array}
$$

3.4. Table of Computations

The values for T_{1} and a given in the next table are rounded down to the last digit. We start the computations at $x_{0} \geq 4 \cdot 10^{18}$, that is $\log x_{0} \geq 42.8328 \ldots$.

Table 2: For all $x \geq x_{0}$, there exists a prime between $x\left(1-\Delta^{-1}\right)$ and x.

| $\log x_{0}$ | m | δ | T_{1} | σ_{0} | a | Δ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\log \left(4 \cdot 10^{18}\right)$ | 5 | $3.580 \cdot 10^{-8}$ | 272519712 | 0.92 | 0.2129 | 36082898 |
| 43 | 5 | $3.349 \cdot 10^{-8}$ | 291316980 | 0.92 | 0.2147 | 38753947 |
| 44 | 6 | $2.330 \cdot 10^{-8}$ | 488509984 | 0.92 | 0.2324 | 61162616 |
| 45 | 7 | $1.628 \cdot 10^{-8}$ | 797398875 | 0.92 | 0.2494 | 95381241 |
| 46 | 8 | $1.134 \cdot 10^{-8}$ | 1284120197 | 0.92 | 0.2651 | 148306019 |
| 47 | 9 | $8.080 \cdot 10^{-9}$ | 1996029891 | 0.92 | 0.2836 | 227619375 |
| 48 | 11 | $6.000 \cdot 10^{-9}$ | 3204848430 | 0.93 | 0.3050 | 346582570 |
| 49 | 15 | $4.682 \cdot 10^{-9}$ | 5415123831 | 0.93 | 0.3275 | 518958776 |
| 50 | 20 | $3.889 \cdot 10^{-9}$ | 8466793105 | 0.93 | 0.3543 | 753575355 |
| 51 | 28 | $3.625 \cdot 10^{-9}$ | 12399463961 | 0.93 | 0.3849 | 1037917449 |
| 52 | 39 | $3.803 \cdot 10^{-9}$ | 16139006408 | 0.93 | 0.4127 | 1313524036 |
| 53 | 48 | $4.088 \cdot 10^{-9}$ | 18290358817 | 0.93 | 0.4301 | 1524171138 |
| 54 | 54 | $4.311 \cdot 10^{-9}$ | 19412056863 | 0.93 | 0.4398 | 1670398039 |
| 55 | 56 | $4.386 \cdot 10^{-9}$ | 19757119193 | 0.93 | 0.4445 | 1770251249 |
| 56 | 59 | $4.508 \cdot 10^{-9}$ | 20210075547 | 0.93 | 0.4481 | 1838818070 |
| 57 | 59 | $4.506 \cdot 10^{-9}$ | 20219045843 | 0.93 | 0.4496 | 1886389443 |
| 58 | 61 | $4.590 \cdot 10^{-9}$ | 20495459359 | 0.93 | 0.4514 | 1920768795 |
| 59 | 61 | $4.589 \cdot 10^{-9}$ | 20499925573 | 0.93 | 0.4522 | 1946282821 |
| 60 | 61 | $4.588 \cdot 10^{-9}$ | 20504393735 | 0.93 | 0.4527 | 1966196911 |
| 150 | 64 | $4.685 \cdot 10^{-9}$ | 21029543983 | 0.96 | 0.4641 | 2442159714 |

3.5. Verification of the Ternary Goldbach Conjecture

Proof of Corollary 1.2. Let $N=4 \cdot 10^{18}$. We follow Oliveira e Silva, Herzog and Pardi's argument in [14] where the authors computed all the prime gaps up to $4 \cdot 10^{18}$. From Table 2, we have that for $x=e^{60}$ and $\Delta=1966090061$, there exists at least one prime in the interval $(x-x / \Delta, x]$. This one has length $5.8082 \cdot 10^{16}$. Then $N \Delta=7.8647 \cdot 10^{27}$ and we may infer that the gap between consecutive primes up to $N \Delta$ can be no larger than N (since $N \Delta / \Delta=N$). The corollary follows by using all the odd primes up to $N \Delta$ to extend the minimal Goldbach partitions of $4,6, \ldots, N$ up to $N \Delta$ (the method of computation is explained in [14, Section 1]). We also note that $N+2=211+(N-209)$ and $N+4=313+(N-309)$, where $211,313, N-209$, and $N-309$ are all prime. Thus, there is at least one way to write each odd number greater than 5 and smaller than $N \Delta$ as the sum of at most 3 primes.

Acknowledgments. The authors would like to thank Nathan Ng and Adam Felix for their comments on this article.

References

[1] M. El Bachraoui, Primes in the interval [2n, 3n], Int. J. Contemp. Math. Sci. 1 (2006), no. 13-16, 617-621.
[2] R. Baker, G. Harman \& J. Pintz, The difference between consecutive primes II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562.
[3] N. Costa Pereira, Estimates for the Chebyshev Function $\psi(x)-\theta(x)$, Math. Comp. 44 (1985), no. 169, 211-221.
[4] L. Faber, H. Kadiri, Explicit new bounds for $\psi(x)$, to appear in Math. Comp.
[5] H. Helfgott, Minor arcs for Goldbach's problem, arXiv:1205.5252v1, 2012.
[6] H. Helfgott, Major arcs for Goldbach's theorem, arxiv: 1305.2897, 2013.
[7] H. Helfgott, D. Platt, Numerical verification of the ternary Goldbach conjecture up to $8.875 \cdot 10^{30}$, Exp. Math. 22 (2013), no. 4, 406-409.
[8] H. Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. 117 (2005), no. 4, 303-339.
[9] H. Kadiri, Short effective intervals containing primes in arithmetic progressions and the seven cubes problem, Math. Comp. 77 (2008), no. 263, 1733-1748
[10] H. Kadiri, A zero density result for the Riemann zeta function, Acta Arith. 160 (2013), no. 2, 185-200.
[11] M. C. Liu, T. Z. Wang, On the Vinogradov bound in the three primes Goldbach conjecture, Acta Arith. 105 (2002), no. 2, 133-175
[12] A. Loo, On the primes in the interval [3n, 4n], Int. J. Contemp. Math. Sci. 6 (2011), no. 37-40, 1871-1882.
[13] H. Montgomery, R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[14] T. Oliveira e Silva, S. Herzog, S. Pardi, Empirical verification of the even Goldbach conjecture, and computation of prime gaps, up to $4 \cdot 10^{18}$, Math. Comp. 83 (2014), no. 288, 2033-2060.
[15] D. Platt, Computing degree 1 L-functions rigorously, Ph.D. Thesis, University of Bristol, 2011.
[16] O. Ramaré , Y. Saouter, Short effective intervals containing primes J. Number Theory 98 (2003), no. 1, 10-33.
[17] J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63, (1941). 211-232.
[18] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$ II, Math. Comp. 30 (1976), no. 134, 337-360.
[19] T. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280-292.

