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Abstract
We prove that the generalized binomial coe�cients associated with the Jordan to-
tient functions are all integers. In the process, we also demonstrate the integrality
of generalized binomials coming from other number-theoretic sequences including
the Dedekind psi function. We finish by initiating the search for combinatorial
interpretations of these coe�cients.

1. Introduction

The binomial coe�cients are sometimes defined as the ratio of factorials✓
m

n

◆
=

m!
n!(m� n)!

instead of as the number of n-subsets of an m-set. A problem with this is that a
novice may not believe these numbers are integral; however, the formula intrigues
upon the realization that the ratio, though undefined for n > m, is in fact an
integer when n  m. Using this definition of binomial coe�cients, it makes sense to
construct “generalized binomial coe�cients” for any sequence of nonzero integers in
the following way (see [7]). If C = (c1, c2, c3, . . .) is a sequence of nonzero integers
then we define the C-factorial by

(m!)C =

(
cmcm�1 · · · c1 when m 6= 0
1 when m = 0.

Next, we use the C-factorial to define the generalized binomial coe�cients associated
with C, called the C-nomial coe�cients:

✓
m

n

◆
C

=

(
(m!)C

(n!)C((m�n)!)C
when 0  n  m

0 otherwise.
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Using the sequence of nonzero natural numbers leads to the traditional binomial
coe�cients. As a warm-up exercise, we define, for each k � 1, the sequence of
k-th powers Nk = (1k, 2k, 3k, 4k, . . .). The following computation shows that the
associated generalized binomial coe�cients are integers:✓

m

n

◆
Nk

=
mk · (m� 1)k · · · 2k · 1k

nk · (n� 1)k · · · 1k · (m� n)k · (m� n� 1)k · · · 1k
=

✓
m

n

◆k

. (1)

The construction of generalized binomial coe�cients can be performed for any
nonzero integer sequence; however, it is unlikely the process will result in integers.
Nonetheless, the following lemma, proven in [7], provides a su�cient condition for
integrality.

Lemma 1 (Knuth and Wilf [7]). For any sequence, C, of nonzero integers the
C-nomial coe�cients are all integers if gcd(Ci, Cj) = Cgcd(i,j) for all i, j > 0.

Many families of sequences have been shown to have integral generalized binomial
coe�cients. For instance, using the Fibonacci sequence leads to the Fibotorials
and Fibonomial coe�cients (see [4], [3], or [5]). Using q-analogs of the natural
numbers leads to the q-factorial and the Gaussian binomial coe�cients (see [6] or
[7]). Additionally, in [2], we describe a simple family of sequences for which the
binomial coe�cients are integral and are related to arithmetic in di↵erent bases.

The purpose of this note is to investigate the generalized factorial and binomial
coe�cients for the family of Jordan totient functions, Jk, where Jk(n) counts the
number of k-tuples of positive integers less than or equal to n that form a coprime
(k + 1)-tuple with n. These functions generalize J1 = ', Euler’s totient function,
which counts the number of positive integers less than or equal to and coprime to n.
For example, the sequences for ' = J1 and J2 through J10 are A000010, A007434,
A059376, A059377, A059378, and A069091-A06905 in [1]. Unfortunately, the totient
functions do not satisfy the conditions of Lemma 1; for example, '(gcd(7, 13)) = 1
while gcd('(7),'(13)) = 6.

Given a totient function, Jk, and a natural number m we write m!Jk for the Jk-
factorial; we call this the k-totientorial (see A001088 for the 1-totientorial in [1]).
Likewise, we let

�m
n

�
Jk

represent the associated binomial coe�cients and call these
the k-totienomial coe�cients. Even though the totient sequences do not satisfy
Lemma 1, we will demonstrate that the totienomial coe�cients are all integers (see
Figure 1). On our path to the proof, we will encounter a few other sequences that
have integral generalized binomial coe�cients as well.

2. Radinomials

Given any natural number n, we define the radical of n, denoted rad(n), as the
product of primes dividing n, i.e. rad(n) =

Q
p|n p. The radical sequence is A007947
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n�k 0 1 2 3 4 5 6 7 8
0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0
3 1 2 2 1 0 0 0 0 0
4 1 2 4 2 1 0 0 0 0
5 1 4 8 8 4 1 0 0 0
6 1 2 8 8 8 2 1 0 0
7 1 6 12 24 24 12 6 1 0
8 1 4 24 24 48 24 24 4 1

Figure 1: The first 8 rows of the 1-totienomial coe�cients.

and the “raditorial” is A048803 in [1]. In a similar fashion, we define the related
sequence R by R(n) =

Q
p|n(p�1) where again the product is only over primes (see

A173557 in [1]). For each of these sequences, we construct the associated binomial
coe�cients, and call them the radinomial and R-nomial coe�cients, denoted

�m
n

�
rad

and
�m

n

�
R respectively.

Proposition 2. For any two natural numbers n and m with n  m, the radinomial
coe�cient

�m
n

�
rad

is an integer.

Proof. Notice that a prime p divides both n and m if and only if p divides gcd(n,m).
Thus, gcd(rad(n), rad(m)) = rad(gcd(n,m)); the result follows by Lemma 1.

This seems to be previously known since the sequence of radinomial coe�cients
can be found at A048804 in [1].

Corollary 3. For any two natural numbers n and m with n  m, the R-nomial
coe�cient

�m
n

�
R is an integer.

Proof. For natural numbers n and m with n  m, Proposition 2 implies that
�m

n

�
rad

is an integer. Suppose that {p1, ..., ps} is the set of primes less than or equal to m.
Then, let (m!)rad =

Qs
i=1 pri

i where each ri > 0, and (n!)rad ·((m�n)!)rad =
Qs

i=1 pti
i

where each ti � 0. It follows that
✓

m

n

◆
rad

=
Qs

i=1 pri
iQs

i=1 pti
i

=
sY

i=1

pri�ti
i .

The integrality of
�m

n

�
rad

implies that ri � ti for all i. Furthermore,
✓

m

n

◆
R

=
Qs

i=1(pi � 1)riQs
i=1(pi � 1)ti

=
sY

i=1

(pi � 1)ri�ti .

Since ri � ti for all i, we see that
�m

n

�
R is an integer.
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These sequences will allow us to prove that each totienomial coe�cient
�m

n

�
J1

is an
integer. To be more general, we need extended versions of the radical andR. For any
natural number k � 1, we define the sequence radk by radk(n) = rad(n)k =

Q
p|n pk

and the sequence Rk by Rk(n) =
Q

p|n(pk � 1) (once again the products are both
over all primes dividing n). For instance, see A078615 in [1] for rad2. We call these
the k-radinomials and Rk-nomials respectively.

Proposition 4. For all k � 1, the k-radinomials and Rk-nomials are all integers.

Proof. The fact that
�m

n

�
radk

is integral follows from an argument analogous to the
warm-up exercise given in Equation (1). In particular,

✓
m

n

◆
radk

=
✓✓

m

n

◆
rad

◆k

,

and the latter is an integer by Proposition 2. In turn, a proof similar to that of
Corollary 3 demonstrates that the integrality of

�m
n

�
Rk

follows directly from the
integrality of

�m
n

�
radk

.

We finish this section with one final family of sequences. For k 2 N, we let
d-radk(n) = nk

radk(n) (see for instance A003557 in [1]). Once again, the associated
binomial coe�cients are integers.

Proposition 5. Let k � 1. Then

1. For all m,n 2 N with n  m,
�m

n

�
d-radk

is an integer.

2. For all m,n 2 N with n  m,
�m

n

�
d-radk

=
⇣�m

n

�
d-rad1

⌘k
.

3. For all m,n 2 N with n  m

✓
m

n

◆
d-radk

=
�m

n

�
Nk�m

n

�
radk

and so
�m

n

�
radk

evenly divides
�m

n

�
Nk .

Proof. In a similar fashion to the radical, we see that d-rad1 satisfies the condi-
tions of Lemma 1, giving one case for part (1). Next, a computation analogous to
Equation (1) shows that

�m
n

�
d-radk

=
�m

n

�k

d-rad1
, which gives part (2) and completes

part (1). Finally, part (3) follows directly from the definitions of the generalized
binomial coe�cients and factorials.
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3. Totienomials

Armed with the technical results from the previous section, the fact that the to-
tienomials are integral now follows from a basic fact found in [8, pg. 219].

Theorem 6. Let k 2 N and let Jk be the k-th Jordan totient function. Then for
n 2 N,

Jk(n) = nk ·
Y
p|n

✓
1� 1

pk

◆
=

nk ·
Q

p|n(pk � 1)Q
p|n pk

=
Nk(n) · Rk(n)

radk(n)
.

This theorem leads us to the following.

Theorem 7. Let k 2 N and let Jk be the k-th Jordan totient function. The following
all hold.

1. For all m,n 2 N with n  m,
✓

m

n

◆
Jk

=

�m
n

�
Nk ·

�m
n

�
Rk�m

n

�
radk

.

2. For all m,n 2 N with n  m,
�m

n

�
Jk

=
�m

n

�
d-radk

·
�m

n

�
Rk

.

3. Each k-totienomial coe�cient is an integer.

Proof. The first result is a consequence of the definitions of generalized factorials
and generalized binomial coe�cients coupled with Theorem 6. Part (2) follows
from part (1) along with Proposition 5. Finally, the third result follows from part
(2) along with Propositions 4 and 5, which show that

�m
n

�
d-radk

and
�m

n

�
Rk

are
integral.

This appears to be a new result as we could not find it in the literature or the
triangular array of any of the totienomials in the OEIS. Consequently, we have added
a few examples to the database: see A238453 for 1-totienomials, A238688 for 2-
totienomials, A238743 for 3-totienomials, A238754 for 4-totienomials and A239633
for 5-totienomials.

Remark. Unlike the usual binomial coe�cients, the rows in the triangular array of
the totienomial coe�cients may not be unimodal, and the middle term(s) may not
be the largest number in the row. For instance, if we consider ' = J1, then the
following table shows

�10
n

�
'

for di↵erent values of n (i.e. row 10 in the triangular
array).

n 0 1 2 3 4 5 6 7 8 9 10�10
n

�
'

1 4 24 48 144 72 144 48 24 4 1
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In the final section, we will briefly discuss the 1-totienomial coe�cients. Before
we do, we use the previous results to demonstrate the integrality of generalized
binomial coe�cients for one more sequence: the Dedekind psi function (see A001615
in [1]). For a nonzero natural number n, let  (n) = n ·

Q
p|n

⇣
1 + 1

p

⌘
where again

the product is over all primes dividing n.

Corollary 8. Let m and n be natural numbers with n  m. The following hold.

1. The  -nomial coe�cient
�m

n

�
 

is an integer.

2. The  -nomial coe�cient is given by
✓

m

n

◆
 

=

�m
n

�
J2�m

n

�
J1

.

Proof. To see this, we note that
Q

p|n

⇣
1 + 1

p

⌘
=

Q
p|n

⇣
p+1

p

⌘
, and the sequence

given by
Q

p|n (p + 1) has integral binomial coe�cients by a modification of the
argument from Corollary 3. Part (1) is then analogous to Theorem 7, and part (2)
follows from the well known fact that  (n) = J2(n)

J1(n) .

We have added the  -nomial coe�cients to [1] as A238498.

4. Combinatorial Interpretation

In this final section, we limit our focus to the 1-totientorial and the 1-totienomial
coe�cients, i.e. the coe�cients associated with Euler’s totient function J1 = '.
Nonetheless, the questions described here are interesting for all sequences with
integral binomial coe�cients (see [5] or [3]).

Since
�m

n

�
'

is a positive integer, we would like to find a class of objects counted
by

�m
n

�
'
. For m 2 N, the 1-totientorial m!' is the determinant of the m⇥m matrix,

M , given by Mi,j = gcd(i, j) (see [9]). There is possibly some interpretation of
�m

n

�
'

in terms of this matrix.
Moreover, m!' gives the order of the abelian group G = U1⇥U2⇥· · ·⇥Um�1⇥Um,

where Ui is multiplicative group of units in Zi. It would be interesting to find a
set that G acts on in order to interpret

�m
n

�
'

as the size of an orbit (using the
orbit-stabilizer theorem). In relation to this, the integrality of

�m
n

�
'

guarantees the
existence of a

�m
n

�
'
-to-one function

f : Un+1 ⇥ Un+2 ⇥ · · ·⇥ Um ! U1 ⇥ U2 ⇥ · · ·⇥ Um�n.

It would be interesting to describe and understand functions of this type (to deter-
mine, for example, if such an f could be a homomorphism).
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For our last point, we define the '-Catalan numbers as the sequence given by

C'
n =

1
'(n + 1)

✓
2n
n

◆
'

.

Upon inspection of the first 5000 terms of this sequence, this sequence appears
to be an integer sequence. A proof of integrality, especially via a combinatorial
interpretation, is desirable.
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