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Abstract
Using a recently introduced technique, we construct a new infinite sequence of Smith
numbers which are palindromic and divisible by their digital sum.

1. Introduction

We deal with natural numbers N as represented in the base-10 counting system.
For such a number N , we define the digital sum S(N) to be the sum of the digits in
N , e.g., S(1725) = 1 + 7 + 2 + 5 = 15. Similarly, the p-digit sum Sp(N) is the sum
of the digits of all the prime factors of N , e.g., having factored 1725 = 3⇥ 52 ⇥ 23,
we have that Sp(1725) = 3 + (2 · 5) + (2 + 3) = 18.

A number N is called a Smith number when N is a composite such that S(N) =
Sp(N). The name Smith was coined in a 1982 article by Wilansky [7]. A few years
later, McDaniel [2] proved that Smith numbers are infinitely many.

Being a Smith number, then, is a digital feature that is entirely dependent upon
the radix representation: a number N that is Smith in the decimal sense may lose
this very property when N is represented in another base b 6= 10. Nevertheless,
McDaniel [4, 6] also showed that there exist infinitely many base-b Smith numbers
for b � 8 and b = 2, and then Wilson [8] completed this proposition by extending
the results for all b � 3.

The abundance of Smith numbers is also reflected in the fact that it is not hard to
construct all kinds of sequences of Smith numbers, even ones that enjoy additional
digital features. McDaniel [5] gave an alternate construction of Smith numbers N
which are divisible by the digital sum S(N). A number N that is divisible by S(N)
is called a Niven number, as introduced in an article by Kennedy et al. [1] in 1980.

In a separate article, McDaniel [3] also constructed an infinite sequence of palin-
dromic Smith numbers. McDaniel’s definition of a palindromic number includes
numbers of the form N ⇥ 10e, where N is itself a palindrome, since we argue that
e leading zeros may be prefixed in order to see the number N ⇥ 10e as a genuine
palindrome. We shall go with this definition:

Definition 1. A natural number N is called a palindrome when the digits in N
read the same left to right as they do right to left, e.g., N = 84148. Moreover, we
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say that a number M is palindromic if M is either a palindrome or M = N ⇥ 10e

for some palindrome N .

In this article, we aim to demonstrate the existence of an infinite sequence of
Smith numbers with the extra property that each one is also a palindromic Niven
number. This sequence is a special case of a known construction of Smith numbers
that we have given recently [9]. In this construction, the Smith numbers are of the
form 9Pk,ntn⇥10fk , where Pk,n =

Pn�1
i=0 10ki and tn is to be chosen from a set Mk

of seven numbers with distinct p-digit sums modulo 7. We will achieve our goal by
considering the case k = 3 with a new set M3 consisting of seven palindromes.

2. Known Facts

We will employ the notation D(N) and ⌦(N) to denote the number of digits in N
and the number of prime factors of N , respectively.

Definition 2. For every pair of integers k, n � 1, we define the number Pk,n

according to the formula

Pk,n =
n�1X
i=0

10ki.

It is an easy observation that S(Pk,n) = n and that D(Pk,n) = kn � k + 1 for
every pair k, n. Furthermore, we have the identity

Pk,n =
Rkn

Rk
,

where Rk = (10k � 1)/9 and which is also known as the k-th repunit.
In the following theorem we restate previous results [9, Theorems 7, 9] upon

which our new construction will be based.

Theorem 1. Let k � 2, and let Mk be a set of seven numbers of the formPk
j=1 10ej , such that {ej | 1  j  k} is a complete residue system modulo k.

Then S(9Pk,nt) = 9kn for all t 2 Mk. Moreover, if {Sp(t) | t 2 Mk} is a com-
plete residue system modulo 7, then there are infinitely many values of n for which
S(9Pk,ntn)� Sp(9Pk,ntn) = 7f for some integer f � 0 and some tn 2 Mk.

The number f in Theorem 1 varies with n and determines the Smith number
Nn,k = 9Pk,ntn ⇥ 10f , for in this case Sp(10f ) = 7f and so

Sp(Nn,k) = Sp(9Pk,ntn) + Sp(10f ) = S(9Pk,ntn) = S(Nn,k).

We will also rely on the following fact [2, Theorem 1] concerning the upperbound
for the p-digit sum Sp(N) of an arbitrary number N .

Theorem 2 (McDaniel). For any number N , Sp(N) < 9D(N)� 0.54⌦(N).
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3. The New Sequence

We begin by introducing the set M3, given below, which will play the role of Mk in
Theorem 1 for the specific value of k = 3.

Definition 3. Let M3 be the set of seven numbers of distinct p-digit sums modulo
7 given by

M3 = {102e + 10e + 1 | e = 1, 2, 4, 5, 7, 10, 11}.

The fact that {Sp(t) | t 2 M3} is a complete residue system modulo 7 is verified
in Table 1, where we provide the prime factorizations of the elements t 2 M3 in
order to compute Sp(t).

e t = 102e + 10e + 1 Sp(t) (mod 7)
1 3⇥ 37 13 6
2 3⇥ 7⇥ 13⇥ 37 24 3
4 3⇥ 7⇥ 13⇥ 37⇥ 9901 43 1
5 3⇥ 31⇥ 37⇥ 2906161 42 0
7 3⇥ 37⇥ 43⇥ 1933⇥ 10838689 79 2

10 3⇥ 7⇥ 13⇥ 31⇥ 37⇥ 211⇥ 241⇥ 74 4
2161⇥ 2906161

11 3⇥ 37⇥ 67⇥ 1344628210313298373 96 5

Table 1: The prime factorization of t 2 M3 and the resulting Sp(t) mod 7.

Moreover, this set M3 satisfies the hypothesis of Theorem 1 when k = 3. To see
this fact, for every t 2 M3 we have the form t = 102e +10e +100, where {2e, e, 0} is
a complete residue system modulo 3 for the seven choices of e 2 {1, 2, 4, 5, 7, 10, 11}.

Hence, we have S(9P3,nt) = 27n whenever t 2 M3, which allows us to set the
following definition.

Definition 4. For every n � 1, we let Nn = 9⇥P3,n⇥ tn, with the unique element
tn 2 M3 such that S(Nn) ⌘ Sp(Nn) (mod 7).

We conclude that there exist infinitely many values of n � 1 for which S(Nn)�
Sp(Nn) = 7fn with fn � 0, giving the Smith number Nn ⇥ 10fn . Furthermore, we
claim that for each such n, the resulting Smith number is palindromic:

Theorem 3. For all n � 1, the number Nn is a palindrome.

Proof. Let t = 102e + 10e + 1 2 M3 with any one of the seven values of e. Then,

P3,nt =
n�1X
i=0

�
103i+2e + 103i+e + 103i

�
. (1)
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By the fact that 2e, e, and 0 are all distinct modulo 3, we see that P3,nt is the sum
of 3n distinct powers of ten. The largest among these powers is 103n�3+2e.

Now let D = D(P3,nt) = 3n�2+2e. We will claim that P3,nt is a palindrome by
showing that the power 10j appears among the summands if and only if 10(D�1)�j

does too. This equivalence statement is clear once we substitute i = n � 1 � j in
(1):

P3,nt =
n�1X
j=0

⇣
10(D�1)�3j + 10(D�1)�(3j+e) + 10(D�1)�(3j+2e)

⌘
.

Lastly, since the digits in P3,nt are all zeros and ones, the number 9P3,nt is as well
a palindrome, which is the desired result.

We next show the existence of an infinite subsequence of Nn in which each number
Nn is divisible by S(Nn).

Theorem 4. For every k � 1, the number N3k is divisible by S(N3k).

Proof. Note that S(N3k) = 3k+3 according to Theorem 1.
Let �m(x) denote the m-th cyclotomic polynomial, and recall the familiar iden-

tity
xn � 1 =

Y
d|n

�d(x).

We use the fact that �3i(x) = x2·3i�1
+ x3i�1

+ 1 for all i � 1 and we obtain

x3k+1 � 1 = �1(x)�3(x)�32(x) · · ·�3k+1(x)

= (x� 1)(x2 + x + 1)(x2·3 + x3 + 1) · · · (x2·3k

+ x3k

+ 1).

Equivalently, we may write

x3k+1 � 1
x3 � 1

=
kY

i=1

(x2·3i

+ x3i

+ 1).

Meanwhile, we also have

P3,3k =
R3k+1

R3
=

103k+1 � 1
103 � 1

.

Hence,

P3,3k =
kY

i=1

(102·3i

+ 103i

+ 1). (2)

Since the sum 102·3i
+ 103i

+ 1 in (2) is a multiple of 3, it follows that 3k divides
P3,3k . And with the fact that every t 2 M3 is also a multiple of 3, we then conclude
that 3k+3 divides N3k as claimed.
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Finally, we now arrive at our main result.

Theorem 5. For all su�ciently large k, we can find fk > 0 such that the number
N3k ⇥ 10fk is a palindromic Smith number that is divisible by its digital sum, i.e.,
S(N3k ⇥ 10fk) = 3k+3.

Proof. We simply let

fk =
S(N3k)� Sp(N3k)

7
.

Hence, it su�ces to show that S(N3k) > Sp(N3k) for all k su�ciently large. Re-
calling that D(9P3,3k) = 3k+1 � 2 and, by Equation (2), ⌦(P3,3k) � 2k, we apply
Theorem 2:

Sp(N3k) = Sp(t3k) + Sp(9P3,3k) < 96 + 9(3k+1 � 2)� 0.54(2k + 2)
= 3k+3 + 76.92� 1.08k.

Since 3k+3 = S(N3k), we see that Sp(N3k) < S(N3k) for all su�ciently large values
of k.

4. Computational Notes

The proof of Theorem 5 implicitly implies that Sp(N3k) < S(N3k) for all k � 72.
However, computational results suggested that the quantity Sp(N3k) is significantly
smaller than 3k+3 even for small values of k, and more so as k increases. For k  5,
we recorded in Table 2 the corresponding values of fk that yield the Smith numbers
N3k ⇥ 10fk . In this range, only k = 1 fails to generate a Smith number due to the
fact that f1 < 0.

k S(N3k) Sp(P3,3k) ek Sp(N3k) fk

1 81 31 7 116 n/a
2 243 117 4 166 11
3 729 359 5 407 46
4 2187 1093 2 1123 152
5 6561 3296 10 3376 455

Table 2: Smith numbers N3k ⇥ 10fk , where N3k = 9P3,3k(102ek + 10ek + 1)

These numerical observations led us to a stronger version of Theorem 5, as fol-
lows.

Theorem 6. For every k � 2, the number N3k ⇥ 10fk is a palindromic Smith
number that is also a Niven number, where fk is positive and determined by

fk =
S(N3k)� Sp(N3k)

7
.
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Proof. We will assume that k � 3, since the claim has been verified for k = 2 by
direct computation, and show that 3k+3 > Sp(N3k). Now let

P 0 =
kY

i=3

(102·3i

+ 103i

+ 1),

so that we have P3,3k = P3,32 ⇥ P 0. This identity allows us to closely estimate the
number of digits in P 0. In particular,

D(P 0)  D(P3,3k)�D(P3,9) + 1 = (3k+1 � 2)� 25 + 1 = 3k+1 � 26.

Moreover, since P 0 is the product of k � 2 composites, we note that ⌦(P 0) �
(k� 2)2 = 2k� 4. Then with Sp(P3,9) = 117, we employ Theorem 2 again to arrive
at the desired result:

Sp(N3k) = Sp(9) + Sp(P3,9) + Sp(P 0) + Sp(t3k)
 6 + 117 + 9(3k+1 � 26)� 0.54(2k � 4) + 96
= 3k+3 � 12.84� 1.08k
< 3k+3.
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