
#A67 INTEGERS 14 (2014)

PACKING POLYNOMIALS ON SECTORS OF R2

Caitlin Stanton
Department of Mathematics, Stanford University, California

ckstanton@stanford.edu

Received: 10/7/13, Revised: 6/25/14, Accepted: 11/16/14, Published: 12/8/14

Abstract
If S is a region in the plane and I its set of lattice points, we say that a polynomial
P (x, y) is a packing polynomial on S if when we restrict P (x, y) to I, the resulting
map is a bijection to N. In this paper we give a necessary condition for the existence
of quadratic packing polynomials on rational sectors, and determine all quadratic
packing polynomials on integral sectors.

1. Introduction

Let S be any region in R2, and I the set of lattice points contained in S. We call
a polynomial f : R2 ! R a packing polynomial if its restriction to I gives a
bijection to N. Fueter and Pólya [1] showed the following result when S is the first
quadrant of R2.

Theorem 1 (Fueter and Pólya). Let S = {(x, y) 2 R2 | x, y � 0}. Then the
only quadratic packing polynomials on S are:

f(x, y) =
(x + y)2

2
+

x + 3y
2

g(x, y) =
(x + y)2

2
+

3x + y

2
.

Vsemirnov gave two elementary proofs of this result [4]. Though Lew and Rosen-
berg [2] showed that there are no cubic or quartic packing polynomials on S, it is
still an open problem whether or not higher degree packing polynomials exist.

In this paper we will be concerned with the existence of quadratic packing poly-
nomials on a certain family of regions in R2. In particular, for each ↵ 2 R�0 we
define S(↵) to be the convex hull of the rays spanned by (1, 0) and (1,↵), and I(↵)
the set of lattice points contained in S(↵). Note that for S as defined in Fueter and
Pólya’s theorem, S = S(1).
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It is already known [3] that quadratic packing polynomials exist when ↵ = n 2 N.
They can be constructed by defining Jm = {(m, y) | y 2 N, y  mn}, and then
counting the lattice points for each successive Jm upwards from (m, 0) to (m,mn).
This ordering gives us the following quadratic polynomial:

fn(x, y) =
x�1X
m=0

|Jm| + y =
x�1X
m=0

(mn + 1) + y = (n/2)x2 + (1� n/2)x + y.

The second quadratic packing polynomial is obtained by instead counting each
Jm from top to bottom, which gives:

gn(x, y) =
x�1X
m=0

|Jm| + nx� y =
x�1X
m=0

(mn + 1) + nx� y = (n/2)x2 + (1 + n/2)x� y.

We call S(↵) a rational sector if ↵ 2 Q. In this paper we will give a necessary
condition for the existence of quadratic packing polynomials on rational sectors,
and find all quadratic packing polynomials on S(n) when n 2 N.

2. A Necessary Condition

Using a similar method as in Lew and Rosenberg’s proof [2] of Fueter and Pólya’s
theorem, we can determine the necessary form of the homogeneous quadratic part
of any quadratic packing polynomial on S(↵), for ↵ 2 Q. It turns out that for some
values of ↵, this homogeneous quadratic part, denoted P2(x, y), causes P (x, y) to
necessarily take non-integer values at some lattice points, thus implying that no
packing polynomials exist for such ↵.

The following theorem gives the necessary homogeneous quadratic part of any
packing polynomial P (x, y) on S(↵), and provides a necessary condition on ↵ such
that the P2(x, y) allows P (x, y) to take only integer values on I(↵).

Theorem 2. Let n
m � 1, with (n,m) = 1. Then if S(n/m) has a quadratic pack-

ing polynomial, n | (m � 1)2. Furthermore, such a polynomial has homogeneous
quadratic part:

P2(x, y) =
n

2

✓
x� (m� 1)y

n

◆2

.

Note that we may always assume that n
m � 1, since if not we bijectively map

I(n/m) to I
⇣

n
m�nbm/nc

⌘
by means of the map:

W =
✓

1 �bm/nc
0 1

◆
.
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Precomposing with W gives a bijection between quadratic packing polynomials
on S(n/m) and S

⇣
n

m�nbm/nc

⌘
.

Now we prove the theorem. We start by mapping S(n/m) to S(1) by means of
the linear transformation:

Un/m =
✓

1 �m/n
0 1

◆
.

Note that this map does not necessarily send lattice points to lattice points.
Letting Î(n/m) denote Un/m(I(n/m)), we can see that quadratic packing poly-

nomials on Î(n/m) are in bijection with quadratic packing polynomials on I(n/m).
Clearly � : P 7! P �U�1

n/m maps packing polynomials on I(n/m) to those on Î(n/m),
and the inverse map ��1 : P̂ 7! P̂ � Un/m maps packing polynomials on Î(n/m)
to those on I(n/m). We need only check that these maps never send quadratic
packing polynomials to linear packing polynomials.

By Lew and Rosenberg’s Corollary 3.5 [2, pg. 204], there are no packing polynomi-
als on I(n/m) of degree less than 2, and therefore ��1 always sends quadratic pack-
ing polynomials to quadratic packing polynomials. Thus we must only make sure
that if P is a quadratic packing polynomial on I(n/m), then P �U�1

n/m is quadratic.
But this is clearly true, since if this polynomial were linear, then P = P �U�1

n/m�Un/m

would also be linear, which is a contradiction.
In light of this bijection, we may find quadratic packing polynomials on I(n/m)

by instead looking for quadratic packing polynomials on Î(n/m).
Let P̂ (x, y) = (a/2)x2 + bxy + (c/2)y2 + dx + ey + f be a quadratic packing

polynomial on Î(n/m) with homogeneous quadratic part denoted by P̂2(x, y).

Proposition 1. The coe�cients of P̂ (x, y) are rational.

Proof. We see that a, c, d, and f are rational by simple calculation:

a = P̂ (2, 0)� 2P̂ (1, 0) + P̂ (0, 0) 2 Z

c = (1/n2)(P̂ (0, 2n)� 2P̂ (0, n) + P̂ (0, 0)) 2 1
n2

Z

d = (�1/2)P̂ (2, 0) + 2P̂ (1, 0)� (3/2)P̂ (0, 0) 2 1
2

Z

f = P̂ (0, 0) 2 Z.

Since e = (1/n)(P̂ (0, n)� f � c/2), we also have that e 2 Q. Finally, we see that
b 2 Q, since P̂ (1, n) = a/2 + bn + (c/2)n2 + d + en + f .

Knowing that these coe�cients are rational, we may adapt some of the notation
and methods that Lew and Rosenberg use in their proof of Fueter and Pólya’s
theorem [2], and prove the following analogous result.
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Lemma 1. Let P̂2(x, y) = (a/2)x2 + bxy + (c/2)y2 be the homogeneous quadratic
part of a quadratic packing polynomial on Î(n/m). Then the coe�cients of P̂2(x, y)
satisfy b = 1 = ac.

Proof of Lemma. Lew and Rosenberg’s Lemma 4.1 [2, pg. 205] tells us that

a > 0
c > 0
b > �

p
ac

holds when P gives an injection from I(1) to N, a function known as a storing
polynomial.

Using their result, we can show that these inequalities must also hold for any
quadratic packing polynomial on Î(n/m). Suppose P̂ (x, y) = (a/2)x2 + bxy +
(c/2)y2 + dx + ey + f were such a polynomial. Let W denote the linear transfor-
mation:

W =
✓

1 0
0 n

◆
.

Clearly if (x, y) 2 N2, W (x, y) = (x + my � mny/n, ny) 2 Î(n/m). Then P̂ �
W (x, y) = (a/2)x2 + nbxy + (cn2/2)y2 + dx + ey + f gives a storing function on
I(1), and thus by Lew and Rosenberg’s result, we have:

a > 0
n2c > 0

bn > �
p

n2ac.

Since n > 0, we obtain the desired result.
Following their method, we let � = bp

ac
, D(P̂ , k) = {(x, y) 2 S(1) | P̂2(x, y) 

k}, and A(P̂ , k) denote the area of D(P̂ , k). We define the density of P̂ to be:

Î(n/m) ÷ P̂ = lim
l!1

(1/l)[#(Î(n/m) \ P̂�1([0, l]))]

In order for P̂ to be a packing polynomial we must have that Î(n/m) ÷ P̂ = 1,
in which case we say that P̂ has unit density. By Lew and Rosenberg’s argument
[2, pg. 207], A(P̂ ,k)

k is independent of choice of k. Furthermore this ratio equals
Î(n/m) ÷ P̂ , a result that they derive by showing that the number of points in
Î(n/m) \ P̂ ([0, l]) has asymptotic behavior similar to A(P̂ , l). Thus we have that
1 = Î(n/m) ÷ P̂ = A(P̂ , 1).

Because the coe�cients of P̂2(x, y) are rational, we have that � = 1 (otherwise
A(P̂ , 1) is transcendental [2, pg. 208]), and therefore we have that ac = b2.

We may thus write:

P̂2(x, y) =
(
p

ax +
p

cy)2

2
.
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The region D(P̂ , 1) is the triangle with endpoints (0, 0), (
p

2/a, 0), and (0,
p

2/c),
which has area 1/

p
ac = 1/b. So in order for P̂ (x, y) to be a packing polynomial,

we need b = 1.

Our polynomial is therefore of the form:

P̂ (x, y) =
(
p

ax +
p

cy)2

2
+ dx + ey + f

for some a, c, d, e, f 2 Q, with ac = 1.
To pin down the precise values of a and c, the following proposition will be useful.

Proposition 2. We have

a 2 Z (1)

c 2 1
n2

Z (2)

am2 � amn� 2mn + cn2 ⌘ 0 (mod n2). (3)

Proof. We recall that (1) and (2) were shown in the proof of Proposition 1. To
prove (3), define points:

A = Un/m(2, 2)
B = Un/m(1, 1)
C = Un/m(2, 1)
D = Un/m(1, 0).

Note that since we assumed n/m � 1, we know that all of these points are in
I(n/m). We see that am2�amn�2mn+cn2 = n2(P (A)�P (B)�P (C)+P (D)�1) 2
n2Z, which completes the proof.

We may now determine the values of a and c.

Proposition 3. The homogeneous quadratic part of P̂ (x, y) is P̂2(x, y) = (n/2)(x+
y/n)2.

Proof. We need to show that a = n and c = 1/n. Suppose we have prime p dividing
n. Let ↵ and � denote the highest powers of p dividing n and a, respectively. By
Lemma 1, c = 1/a. Then by Proposition 2, a|n2 and the following congruence holds:

am2 � amn� 2mn +
n2

a
⌘ 0 (mod p2↵).

Evaluating modulo p↵ and multiplying through by a, we get:

a2m2 ⌘ 0 (mod p↵)
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and thus, since n and m are relatively prime, we have that p↵|a2.
Multiplying the original congruence through by a, we obtain:

0 ⌘ a2m2 � a2mn� 2amn + n2 (mod p2↵)
⌘ a2m2 � 2amn (mod p2↵)
⌘ am(am� 2n) (mod p2↵).

Therefore we have that p2↵�� |(am�2n). Suppose � < ↵. Then we have p↵|(am�
2n), and thus p↵|am, which is a contradiction. Therefore we have that � � ↵ and
thus p↵|a.

Now write a = p↵l, where l|n2

p↵ . The necessary congruence modulo p↵ is now:

0 ⌘ p↵lm2 � p↵lmn� 2mn +
n2

p↵l
(mod p↵)

⌘ n2

p↵l
(mod p↵)

and thus p - l. Therefore � = ↵, and (a, c) = (n, 1/n).

We are now ready to complete the proof of Theorem 2. Precomposing with Un/m,
we get that the homogeneous quadratic part of P (x, y) is:

P2(x, y) =
n

2

✓
x� (m� 1)y

n

◆2

.

In order to derive the necessary condition, we evaluate Equation 3 at a = n, c =
1/n to get:

0 ⌘ nm2 �mn2 � 2mn + n (mod n2)
⌘ n(m� 1)2 (mod n2)

and thus n|(m� 1)2. This completes the proof.

3. Quadratic Packing Polynomials on I(↵) With ↵ an Integer

If n 2 N and P (x, y) is a quadratic packing polynomial on S(n), then by Theorem
2, it must be of the form:

P (x, y) = (n/2)x2 + (d + n/2)x + ey + f.

Furthermore, we have:

d = P (1, 0)� P (0, 0)� n 2 Z
e = P (1, 1)� P (1, 0) 2 Z
f = P (0, 0) 2 N.
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We see that e 6= 0, since otherwise P (1, 0) = P (1, 1). Furthermore, we have a
correspondence between quadratic packing polynomials with positive e and those
with negative e, given by precomposition with the linear transformation:

Tn =
✓

1 0
n �1

◆
.

Besides the class of packing polynomials derived in the introduction for integral
↵, we have the following additional packing polynomials on S(3) and S(4).

Proposition 4. The following is a packing polynomial on S(3):

P (x, y) = (3/2)x2 � (7/2)x + 3y + 2.

Proof. It is easy to check the following residue properties:

x (mod 3) P (x, y) (mod 3)
0 2
1 0
2 1 .

We can also check that:

P (0, 0) = 2
P (1, 0) = 0
P (2, 0) = 1.

Therefore, in order to prove that P (x, y) is a packing polynomial, we only need
that P (m, 3m)+3 = P (m+3, 0) for all m 2 N. This holds by easy calculation.

Corollary 1. The following is a packing polynomial on S(3):

Q(x, y) = (3/2)x2 + (11/2)x� 3y + 2.

Proof. This holds by precomposition with T3.

Proposition 5. The following is a packing polynomial on S(4):

P (x, y) = 2x2 � 3x + 2y + 1.

Proof. We have the following residue properties:

x (mod 2) P (x, y) (mod 2)
0 1
1 0 .
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We also see that:

P (0, 0) = 1
P (1, 0) = 0.

Therefore, in order to show that P (x, y) is a packing polynomial, we need only
show that P (m, 4m)+2 = P (m+2, 0) for all m 2 N. This holds by straightforward
calculation.

Corollary 2. The following is a packing polynomial on S(4):

Q(x, y) = 2x2 + x� 2y + 1.

Proof. This holds by precomposition by T4.

The next theorem shows that the above polynomials, along with those described
in the introduction, are the only quadratic packing polynomials on integral sectors.

Theorem 3. Let n be a positive integer. If n 62 {3, 4}, then there are exactly two
quadratic packing polynomials on S(n). When n 2 {3, 4}, there are four.

Proof. We may assume that n > 1, since when n = 1, quadratic packing polynomials
are in bijection with those on S(1) by precomposition with U1, see [3]. We may
also assume that e > 0, by the correspondence mentioned earlier.

We now prove the following useful property regarding the possible primes dividing
e.

Proposition 6. If prime p|e, then p|n.

Proof. Write e = me0 such that (m,n) = 1, and any prime dividing e0 also divides
n.

Clearly (d, e0) = 1, otherwise we have some prime p which divides n, e, and d,
and thus for any (x, y) 2 I(n):

P (x, y) ⌘ n(x2 + x)
2

+ dx + ey + f (mod p)

⌘ f (mod p)

implying that P |I(n) cannot be surjective.
By a straightforward calculation, we can see that for any k 2 N:

P (x, k) = P (x + e0, 0)

when x = �2d+2mk�n�e0n
2n . It is easy to check that x 2 Z for the appropriate choice

of k modulo n. In particular, we let:

k ⌘ dm�1 (mod n)
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if n odd, or

k ⌘ m�1

✓
d +

n + ne0

2

◆
(mod n)

if n is even.
For large enough k, x > 0 and hence the second point is in I(n). We therefore

contradict injectivity unless the first point is not in I(n), in which case we must
have k > nx and thus 2(m� 1)k < 2d + n + e0n. This can only hold for arbitrarily
large k if m = 1, and thus e = e0.

Corollary 3. (d,e) = 1.

Proof. We showed in the proof of Proposition 6 that (d, e0) = 1 and e = e0.

We now limit the possible values of e.

Proposition 7. If e > 0, then e = 1, 2, or 3.

Proof. Suppose e � 4. Then the values 0, 1, 2, and 3 must occur along the x-axis,
otherwise choosing a point with one smaller y-coordinate gives a point in I(n) on
which P (x, y) is negative.

Let P (x) denote P (x, 0) = (n/2)x2 + (d + n/2)x + f , and let � = �n�2d
2n be the

point in R on which P (x) achieves its minimum. We see that � > 0, otherwise we
must have:

P (0) = f = 0
P (1) = n + d + f = 1
P (2) = 3n + 2d + f = 2,

since P (x) is strictly increasing on N. This can only be satisfied when n = 0, which
is a contradiction.

Since � > 0, we have that b�c � 0, and thus for all x 2 Z,

P (x) � min{P (b�c), P (d�e)} � 0.

We see that � 62 Z, since otherwise we have that � � 1 and P (� + 1) = P (� � 1),
contradicting the injectivity of P : N ! N.

Expanding the domain, we have that P : Z ! N achieves values 0, 1, 2, and 3.

Proposition 8. P : Z ! N is injective.

Proof. Suppose x, y 2 Z are distinct elements such that P (x) = P (y). Then y =
2��x, and thus 2� 2 Z. Since � 62 Z, this must be an odd integer. But 2� = �1� 2d

n ,
and thus we have that 2d

n is an even integer, and therefore n|d.
Since e � 4, there is some prime p|e. By Proposition 6, p|n and thus p|d. But

(e, d) = 1, so we have a contradiction.
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We may assume without loss of generality that:

P (0) = f = 0
P (1) = n + d + f = 1

by possibly precomposing with a translation or reflection. Therefore we have:

P (x) = (n/2)x2 + (1� n/2)x.

Clearly the next smallest values of P (x) must occur when x = �1, 2, and thus
we have:

P (�1) = n� 1 = 2
P (2) = 2 + n = 3.

These cannot both hold, and thus we have arrived at a contradiction.

Now we evaluate the quadratic packing polynomials that arise for each possible
value of e.

Case 1: e = 1.

We have that P (x, y) is of the form:

P (x, y) = (n/2)x2 + (d + n/2)x + y + f.

When we evaluate P (x, y) along each Jm, we obtain a sequence of consecutive
numbers. Therefore if we have distinct m0,m1 2 N and (x0, y0) 2 Jm0 , (x1, y1) 2
Jm1 such that P (x0, y0) < P (x1, y1), then by injectivity of P , we have that P (x, y) <
P (x0, y0) for all (x, y) 2 Jn0 and (x0, y0) 2 Jn1 . We denote this condition by Jn0 <
Jn1 .

A simple calculation shows that for large enough m, P (m+1, n(m+1)) > P (m, 0),
and therefore Jm < Jm+1. In order for P (x, y) to be surjective, we need that
P (m,nm) + 1 = P (m + 1, 0) for large m. This can only happen when d = 1 � n,
and thus we have:

P (x, y) =
n

2
x2 + (1� n/2)x + y + f.

The minimum of P (x, 0) on R occurs at � = n�2
2n . Since 0  �  1, we have that

either P (0, 0) = 0 or P (1, 0) = 0. But P (0, 0) = f and P (1, 0) = 1 + f , and thus
the minimum on I(n) occurs at (0, 0). Therefore f = 0, and our final polynomial
is:

P (x, y) =
n

2
x2 + (1� n/2) + y.

Case 2: e = 2.
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P (x, y) is of the form:

P (x, y) =
n

2
x2 + (d + n/2)x + 2y + f.

By Proposition 6 we have that n is even, and by Corollary 3 d is odd.
We see that:

P (x, y)� f ⌘ (n/2)x2 + (d + n/2)x (mod 2)
⌘ (n/2)(x2 + x) + dx (mod 2)
⌘ x (mod 2)

and thus P (x, y) ⌘ f (mod 2) if and only if 2|x.
Evaluating P (x, y) along each Jm, we see that the values form a sequence of

consecutive numbers equivalent modulo 2. Therefore we have that Jm < Jm0 or
Jm > Jm0 if m ⌘ m0 (mod 2).

As before, we have that for large enough m, P (m, 0) < P (m + 2, n(m + 2)) and
thus Jm < Jm+2. In order for P (x, y) to be surjective, we need that P (m,nm)+2 =
P (m + 2, 0) for large enough m. This can only happen when d = 1� 3n

2 , and thus
we have:

P (x, y) = (n/2)x2 + (1� n)x + 2y + f.

The minimum of P (x, 0) occurs when x = � = n�1
n , and thus P (x, 0) = 0 for

either x = 0 or 1. P (0, 0) = f and P (1, 0) = 1 � n
2 + f . Since 2|n, we have that

n
2 � 1, and thus P (1, 0)  f . Therefore we have that P (1, 0) = 0, f = n

2 � 1, and:

P (x, y) = (n/2)x2 + (1� n)x + 2y +
n

2
� 1.

The next smallest value of P (x, y) occurs at (0, 0), and thus we have that n
2�1 = 1

and n = 4. Our final polynomial on I(4) is therefore:

P (x, y) = 2x2 � 3x + 2y + 1.

Case 3: e = 3.

P (x, y) is of the form:

P (x, y) =
n

2
x2 + (d + n/2)x + 3y + f,

with 3|n and 3 - d, by Proposition 6 and Corollary 3.
We see that P (x, y) ⌘ f (mod 3) if and only if 3|x:

P (x, y)� f ⌘ (n/2)x2 + (d + n/2)x + 3y (mod 3)
⌘ (n/2)(x2 + x) + dx (mod 3)
⌘ dx (mod 3).
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Since evaluating P (x, y) along each column gives a sequence of consecutive inte-
gers module 3, for distinct m,m0 2 N we have J3m < J3m0 or J3m > J3m0 . A short
calculation shows that for large enough m, P (3m, 0) < P (3(m+1), 3(m+1)n), and
thus J3m < J3(m+1).

In order for P (x, y) to cover all positive integers congruent to f modulo 3, we
need that for large m, P (3m, 3mn) + 3 = P (3(m + 1), 0). This can only happen
when d = 1� 2n, and thus we have:

P (x, y) = (n/2)x2 + (1� (3/2)n)x + 3y + f.

The minimum value of P (x, 0) on R occurs at � = 3/2� 1/n. Since 3|n, we have
that 1/n < 1/2, and thus 1 < � < 2. Therefore the minimum of P (x, y) on I(n)
must occur at (1, 0) or (2, 0). We see that:

P (1, 0) = 1� n + f

P (2, 0) = 2� n + f

and thus P (1, 0) = 0 and P (2, 0) = 1. We have f = n� 1, and our polynomial is:

P (x, y) = (n/2)x2 + (1� (3/2)n)x + 3y + n� 1.

We know that P (x, y) must take the value 2 along the x-axis. The next smallest
value of P (x, 0) with x 2 N clearly occurs when x = 0, and thus we have P (0, 0) =
n� 1 = 2, and n = 3. Therefore our final packing polynomial is:

P (x, y) = (3/2)x2 � (7/2)x + 3y + 2

on S(3).
This completes the proof.

4. Future Directions

So far I have only found sectors for which there are an even number of quadratic
packing polynomials. It seems that there may be an odd number for ↵ = 9/4 or
9/7, but so far I do not have a quick method for determining the linear part of a
quadratic packing polynomials for non-integral ↵, and thus the necessary casework
is tedious.

It is also unclear whether the necessary condition described in this paper is also
su�cient. There are quadratic packing polynomials for ↵ = 4/3, 9/4 and 9/7, and
I have yet to find n,m 2 N relatively prime with n|(m� 1)2 such that there are no
quadratic packing polynomials on S(n/m).
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