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Abstract
We present a novel generalization of the Prouhet-Thue-Morse sequence to binary
±1-weight sequences. Derived from Rademacher functions, these weight sequences
are shown to satisfy interesting orthogonality and recurrence relations. In addition,
we establish a result useful in radar by describing these weight sequences as sidelobes
of Doppler tolerant waveforms.

1. Introduction

Let u(n) denote the binary sum-of-digits residue function, i.e., the sum of the digits
in the binary expansion of n modulo 2. For example, u(7) = u(1112) = 3 mod 2 = 1.
The sequence u(n) is known as the Prouhet-Thue-Morse (PTM) integer sequence.
It can easily be shown to satisfy the recurrence

u(0) = 0
u(2n) = u(n)

u(2n + 1) = 1� u(n).

The first few terms of u(n) are 0, 1, 1, 0, 1, 0, 0, 1. Observe that the PTM sequence
can also be generated by starting with the value 0 and recursively appending a
negated copy of itself (bitwise):

0! 01! 0110! 01101001! · · ·

Another approach to defining the PTM sequence is to iterate the morphism µ
defined on the alphabet {0, 1} using the substitution rules µ(0) = 01 and µ(1) = 10
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(see [1]). Beginning with x0 = 0, we obtain

x1 = µ(x0) = 01
x2 = µ2(x0) = µ(x1) = 0110
x3 = µ3(x0) = µ(x2) = 01101001
. . .

This ubiquitous sequence, coined as such by Allouche and Shallit [1], first arose
in the works of three mathematicians: Prouhet [22] involving equal sums of like
powers in 1851, Thue [28] on combinatorics of words in 1906, and Morse [18] in
di↵erential geometry in 1921. It has found interesting applications in many areas
of mathematics, physics, and engineering: combinatorial game theory (see, e.g.,
[20] on fair division and [9] on infinite play in chess, and [1], p. 3), fractals (see,
e.g., [3, 15]), quasicrystals (see, e.g., [17, 25]) and more recently Dopper tolerant
waveforms in radar (see, e.g., [6, 19, 21]).

Suppose we now replace the 0’s and 1’s in the PTM sequence with 1’s and �1’s,
respectively. This yields the ±1-sequence w(n), a sequence that clearly satisfies the
recurrence

w(0) = 1
w(2n) = w(n)

w(2n + 1) = �w(n).

Here, w(n) and u(n) are related by

w(n) = 1� 2u(n). (1)

It is easy to verify that (1) is equivalent to

w(n) = (�1)u(n). (2)

Of course, u(n) can be generalized to any modulus p � 2. Towards this end,
we define up(n) to be the sum of the digits in the base-p expansion of n modulo
p. We shall call up(n) the mod-p PTM integer sequence. Then up(n) satisfies the
recurrence

up(0) = 0
up(pn + r) = (u(n) + r)p,

where (m)p ⌘ m mod p and (m)p 2 [0, p� 1]. More interestingly, it is well known
that up(n) provides a solution to the famous Prouhet-Tarry-Escott (PTS) problem
([14, 22, 30]): given a positive integer M , find p mutually disjoint sets of non-
negative integers S0, S1,. . . ,Sp�1 so thatX

n2S0

nm =
X

n2S1

nm = · · · =
X

n2Sp�1

nm
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for m = 1, . . . ,M . The solution, first given by Prouhet [22] and later proven by
Lehmer [14] (see also Wright [30]), is to partition the integers {0, 1, . . . , pM+1 � 1}
so that n 2 Sup(n). For example, if M = 3 and p = 2, then the two sets S0 =
{0, 3, 5, 6, 9, 10, 12, 15} and S1 = {1, 2, 4, 7, 8, 11, 13, 14} given by Prouhet’s result
solve the PTS problem, namely,

60 = 0 + 3 + 5 + 6 + 9 + 10 + 12 + 15
= 1 + 2 + 4 + 7 + 8 + 11 + 13 + 14

620 = 02 + 32 + 52 + 62 + 92 + 102 + 122 + 152

= 12 + 22 + 42 + 72 + 82 + 112 + 132 + 142

7200 = 03 + 33 + 53 + 63 + 93 + 103 + 123 + 153

= 13 + 23 + 43 + 73 + 83 + 113 + 133 + 143.

In this paper, we address the following question: what is the natural general-
ization of w(n) to modulus p � 2? Which formula should we look to extend, (1)
or (2)? Is there any intuition behind our generalization? One answer is to define
wp(n) by merely replacing u(n) with up(n) in say (2). However, to discover a more
satisfying answer, we consider a modified form of (2):

w(n) = (�1)d1�u(n) . (3)

Here, d1�u(n) takes on one of two possible values, d0 = 1 or d1 = 0, which we
view as the first two digits in the binary expansion (base 2) of the number 1, i.e.,
1 = d121 + d020. Thus, formula (3) involves the digit opposite in position to u(n).

To explain how this formula naturally generalizes to any positive modulus p � 2,
we begin our story with two arbitrary elements a0 and a1. Define A = (an) =
(a0, a1, . . .) to be what we call a mod-2 PTM sequence generated from a0 and a1,
where the elements of A satisfy the aperiodic condition

an = au(n).

Thus, A = (a0, a1, a1, a0, a1, a0, a0, a1, . . .). Since formula (3) holds, it follows that
an can be decomposed as

an =
1
2
(a0 + a1) +

1
2
w(n)(a0 � a1). (4)

In some sense, w(n) plays the same role as u(n) in defining the sequence A, but
through the decomposition (4). We argue that formula (4) leads to a natural general-
ization of w(n). For example, suppose p = 3 and consider the mod-3 PTM sequence
A = (a0, a1, a2, . . .) generated by three elements a0, a1, a2 so that an = au3(n). The
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following decomposition generalizes (4):

an =
1
4
w0(n)(a0 + a1 + a2) +

1
4
w1(n)(a0 + a1 � a2)

+
1
4
w2(n)(a0 � a1 + a2) +

1
4
w3(n)(a0 � a1 � a2).

Here, w0(n), w1(n), w2(n), w3(n) are ±1-sequences that we shall call the weights
of an. Since an = au3(n), these weights are fully specified once their values are
known for n = 0, 1, 2. It is straightforward to verify in this case that W (n) =
(w0(n), . . . , w3(n)) takes on the values

W (0) = (1, 1, 1, 1)
W (1) = (1, 1,�1,�1)
W (2) = (1,�1, 1,�1).

Thus, the weights wi(n) are a natural generalization of w(n).
More generally, if p � 2 is a positive integer and A = (an) is a mod-p PTM

sequence generated from a0, a1, . . . , ap�1, i.e., an = aup(n), then the following de-
composition holds:

an =
1

2p�1

2p�1�1X
i=0

w(p)
i (n)Bi. (5)

Here, the weights w(p)
i are given by

wi(n) := w(p)
i (n) = (�1)d(i)

p�1�up(n) , (6)

where 0  i  2p�1 � 1 and i = d(i)
p�22p�2 + · · · + d(i)

1 21 + d(i)
0 20 denotes its binary

expansion. Moreover, Bi is calculated by the formula

Bi =
p�1X
n=0

wi(n)an. (7)

Observe that we can extend the range for i to 2p � 1 (and will do so), e↵ectively
doubling the number of weights wi. In that case we find that

wi(n) = �w2p�1�i(n).

With this extension, we demonstrate in Theorem 16 that each wi(n) satisfies the
recurrence

wi(pn + r) = wxr(i)(n)wi(n),

where xr(i) denotes a quantity that we define in Section 4 as the xor-shift of i by
r, where 0  xr(i)  2p � 1. For example, if p = 2, we find that

w1(2n) = w0(n)w1(n)
w1(2n + 1) = w3(n)w1(n).
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Since w0(n) = 1 and w3(n) = �1 for all n, this yields the same recurrence satisfied
by w(n) = w1(n) as described in the beginning of this section.

Next, we note that the set of values R(n) = (w0(n), . . . , w2p�1(n)) represent
those given by the Rademacher functions �n(x), n = 0, 1, 2, . . ., defined by (see
[11, 23])

�0(x) = 1 (0  x < 1/2), �0(x + 1, = �0(x);
�0(x) = �1 (1/2  x < 1), �n(x) = �0(2nx).

In particular,
wi(n) = �n(i/2p)

so that the right-hand side of (5) can be thought of as a discrete Rademacher
transform of (B0, B1, . . . , B2p�1�1). Moreover, formula (7) can be viewed as the
inverse transform, which follows from the fact that the Rademacher functions form
an orthogonal set. Thus, weight sequences can be viewed as a mixing of Prouhet-
Thue-Morse sequences and Rademacher functions.

It is known that the Rademacher functions generate the Walsh functions, which
have important applications in communications and coding theory (see [4, 27]).
Walsh functions are those of the form (see, e.g., [11, 29])

 m(x) = �nk(x)�nk�1(x) · · · �n1(x),

where m = 2nk + 2nk�1 + · · · + 2n1 with ni < ni+1 for all i = 1, . . . , k � 1. This
allows us to generalize our weights wi(n) to sequences

w̃i(m) = wi(nk) · · · wi(n1),

which we view as a discrete version of the Walsh functions in the variable i. In
that case, we prove in Section 3 that if 0  m  2p � 1 for some fixed non-negative
integer p, then

2p�1X
i=0

w̃i(m)Bi =

(
an, if m = 2n, 0  n  p� 1;
0, otherwise.

We also prove in the same section a result that was used in [19] to characterize these
weight sequences as sidelobes of Doppler tolerant radar waveforms (motivated by
[6] and [21]).

Lastly, we note that that the literature contains many generalizations of the PTM
sequence (see, e.g., [2, 13, 26] and more recently, [5, 8, 16]). However, a search of
the literature did not reveal any work similar to this article.
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2. The Prouhet-Thue-Morse Sequence

Let S(L) denote the set consisting of the first L non-negative integers 0, 1, . . . , L�1.

Definition 1. Let n = n1n2 · · ·nk be the base-p representation of a non-negative
integer n. We define the mod-p sum-of-digits function up(n) 2 Zp to be the sum of
the digits ni modulo p, i.e.,

up(n) ⌘
kX

i=1

ni mod p.

Observe that up(n) = n if 0  n < p.

Definition 2. We define a sequence A = (a0, a1, . . .) to be a mod-p Prouhet-Thue-
Morse (PTM) sequence if it satisfies the aperiodic condition

an = aup(n).

Definition 3. Let p and M be positive integers and set L = pM+1. We define
{S0, S1, . . . , Sp�1} to be a Prouhet-Thue-Morse (PTM) p-block partition of S(L) =
{0, 1, . . . , L� 1} as follows: if up(n) = i, then

n 2 Si.

The next theorem solves the famous Prouhet-Tarry-Escott problem.

Theorem 4 ([22], [14], [30]). Let p and M be positive integers and set L = pM+1.
Suppose {S0, S1, . . . , Sp�1} is a PTM p-block partition of S(L) = {0, 1, . . . , L� 1}.
Then

Pm :=
X

n2S0

nm =
X

n2S1

nm = · · · =
X

n2Sp�1

nm

for m = 1, . . . ,M . We shall refer to Pm as the m-th Prouhet sum corresponding to
p and M .

Corollary 1. Let A = (a0, a1, . . . , aL�1) be a mod-p PTM sequence of length L =
pM+1, where M is a non-negative integer. Then

L�1X
n=0

nman = Pm(a0 + a1 + · · · + ap�1) (8)

for m = 0, . . . ,M .
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Proof. We have

L�1X
n=0

nman =
X

n2S0

nmaup(n) +
X

n2S1

nmaup(n) + · · · +
X

n2Sp�1

nmaup(n)

= a0

X
n2S0

nm + a1

X
n2S1

nm + · · · + ap�1

X
n2Sp�1

nm

= Pm(a0 + a1 + · · · + ap�1).

3. Weight Sequences

In this section we develop a generalization of the PTM ±1-sequence w(n) and derive
orthogonality and recurrence relations for these generalized sequences that we refer
to as weight sequences.

Definition 5. Let i = d(i)
p�12p�1 + d(i)

p�22p�2 + · · · + d(i)
1 21 + d(i)

0 20 be the binary
expansion of i, where i is a non-negative integer with 0  i  2p � 1. Define
w(p)

0 (n), w(p)
1 (n), . . . w(p)

2p�1(n) be binary ±1-sequences defined by

w(p)
i (n) := wi(n) = (�1)d(i)

p�1�up(n) .

Example 6. Let p = 3. Then

w0(n) = (1,1,1, 1, 1, 1, 1, 1, 1, . . .)
w1(n) = (1,1,�1, 1,�1, 1,�1, 1, 1, . . .)
w2(n) = (1,�1,1,�1, 1, 1, 1, 1,�1, . . .)
w3(n) = (1,�1,�1,�1,�1, 1,�1, 1,�1, . . .)
w4(n) = (�1,1,1, 1, 1,�1, 1,�1, 1, . . .)
w5(n) = (�1,1,�1, 1,�1,�1,�1,�1, 1, . . .)
w6(n) = (�1,�1,1,�1, 1,�1, 1,�1,�1, . . .)
w7(n) = (�1,�1,�1,�1,�1,�1,�1,�1,�1, . . .).

Observe that the first three values of each weight wi(n) (displayed in bold) represent
the binary value of i if we replace 1 and �1 with 0 and 1, respectively. Morever, we
have the following symmetry:

Lemma 1. For i = 0, 1, . . . , 2p � 1, we have

wi(n) = �w2p�1�i(n).
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Proof. If i = d(i)
p�12p�1 + d(i)

p�22p�2 + · · ·+ d(i)
0 20, then j = 2p � 1� i has expansion

j = d̄(j)
p�12

p�1 + d̄(j)
p�22

p�2 + · · · + d̄(j)
0 20,

where d̄(j)
k = 1� d(i)

k . It follows that

wi(n) = (�1)d(i)
p�1�up(n) = (�1)1�d(j)

p�1�up(n) = �w2p�1�i(n).

Theorem 7. Let p � 2 be a positive integer. Then the vectors Wp(0),Wp(1), ..,Wp(p�
1) defined by

Wp(n) = (w(p)
0 (n), w(p)

1 (n), . . . , w(p)
2p�1�1(n))

form an orthogonal set, i.e., for 0  n,m  p� 1, we have

Wp(n) · Wp(m) =
2p�1�1X

i=0

wi(n)wi(m) = 2p�1�n�m =

(
2p�1, n = m;
0, n 6= m.

Here, �n is the Kronecker delta function.

Proof. It is straightforward to check that the lemma is true for p = 2. Thus, we
assume p � 3 and define k(n) = p� 1� n so that

Wp(n) · Wp(m) =
2p�1�1X

i=0

(�1)d(i)
k(n)+d(i)

k(m) .

Assume n 6= m and without loss of generality, take n < m so that k(n) > k(m).
Assume 0  i  2p�1 � 1 and expand i in binary so that

i = d(i)
p�12

p�1 + · · · + d(i)
k(n)2

k(n) + · · · + d(i)
k(m)2

k(m) + · · · + d(i)
0 20,

where d(i)
p�1 = 0. Suppose in specifying i we fix the choice of values for all binary

digits except for d(i)
k(n) and d(i)

k(m). Then the set S = {(0, 0), (0, 1), (1, 0), (1, 1)}
consists of the four possibilities for choosing these two remaining digits, which we
express as the ordered pair d = (d(i)

k(n), d
(i)
k(m)). But then the contribution from this

set of four such values for i sums to zero in the dot product Wp(n) ·Wp(m), namelyX
d2S

(�1)d(i)
k(n)+d(i)

k(m) = 0.

Since this holds for all cases in specifying i, it follows that Wp(n) · Wp(m) = 0 as
desired. On the other hand, if n = m, then k(n) = k(m) and so d(i)

k(n) = d(i)
k(m) for

all i. It follows that

Wp(n) · Wp(m) =
2p�1�1X

i=0

(�1)2d(i)
k(n) =

2p�1�1X
i=0

1 = 2p�1.
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In fact, we have the more general result, which states a discrete version of the
fact that the Walsh functions form an orthogonal set.

Theorem 8. Let m be an integer and expand m = 2nk +2nk�1 + · · ·+2n1 in binary
with ni < ni+1 and 0  m  2p � 1. Define

w̃i(m) = wi(nk) · · · wi(n1)

for i = 0, 1, . . . , 2p � 1. Then

2p�1�1X
i=0

w̃i(m) = 0 (9)

for all m = 0, 1, . . . ., 2p � 1.

Proof. Let m = 2nk + 2nk�1 + · · · + 2n1 . We argue by induction on k, i.e., the
number of distinct powers of 2 in the binary expansion of m. Suppose k = 1 and
define q = p�1�up(n1). Then given any value of i where the binary digit d(i)

q = 0,
there exists a corresponding value j whose binary digit d(j)

q = 1. It follows that

2p�1�1X
i=0

w̃i(m) =
2p�1�1X

i=0
d(i)

q =0

(�1)d(i)
q +

2p�1�1X
i=0

d(i)
q =1

(�1)d(i)
q

= 2p�2 � 2p�2 = 0.

Next, assume that (9) holds for all m consisting of k�1 distinct powers of 2. Define
qk = p� 1� up(nk). Then for m consisting of k distinct powers of 2, we have

2p�1�1X
i=0

w̃i(m) =
2p�1�1X

i=0

(�1)d(i)
qk

+d(i)
qk�1

+···+d(i)
q1

= (�1)0
2p�1�1X

i=0
d(i)

qk
=0

(�1)d(i)
qk�1

+···+d(i)
q1 + (�1)1

2p�1�1X
i=0

d(i)
qk

=1

(�1)d(i)
qk

+d(i)
qk�1

+···+d(i)
q1

=
1
2

2p�1�1X
i=0

(�1)d(i)
qk�1

+···+d(i)
q1 � 1

2

2p�1�1X
i=0

(�1)d(i)
qk

+d(i)
qk�1

+···+d(i)
q1

=
1
2
· 0� 1

2
· 0 = 0.

In [24], Richman observed that the classical PTM sequence u(i) (although he did
not recognize it by name in his paper) can be constructed from the product of all
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Radamacher functions up to order p � 1, where 0  i  2p � 1. This result easily
follows from our formulation of weight sequences since

w̃(p)
i (2p � 1) = w(p)

i (0)w(p)
i (1) · · · w(p)

i (p� 1)

= (�1)d(i)
p�1+d(i)

p�2+···+d(i)
0

= (�1)u(i)

= w(i).

Moreover, in the same paper Richman defines a set of di↵erence (DIF) functions
given by

DIF(n, j) = (�1)s(j),

where 0  j < 2n, j =
Pn

i=0 ji2i is the binary expansion of j and s(j) =
Pn�1

i=0 ji is
the sum-of-digits function. Since (�1)s(j) = (�1)u(j), this shows that DIF(n, j) =
w(j).

Next, we relate weight sequences with PTM sequences. Since wi(n) = �wp�1�i(n)
from Lemma 1, the following lemma is immediate.

Lemma 2. Let A = (a0, a1, . . .) be a mod-p PTM sequence. Define

Bi =
p�1X
n=0

wi(n)an

for i = 0, 1, . . . , 2p � 1. Then

Bi(n) = �B2p�1�i(n).

Theorem 9. The following equation holds for all n 2 N:

an =
1

2p�1

2p�1�1X
i=0

wi(n)Bi. (10)

Proof. Since an = aup(n) for a PTM sequence and wi(n) = wi(up(n)), it su�ces to
prove (10) for n = 0, 1, . . . , p� 1. It follows from Theorem 7 that

1
2p�1

2p�1�1X
i=0

wi(n)Bi =
1

2p�1

2p�1�1X
i=0

wi(n)

 
p�1X
m=0

wi(m)am

!

=
1

2p�1

p�1X
m=0

0
@2p�1�1X

i=0

wi(n)wi(m)

1
A am

=
1

2p�1

p�1X
m=0

2p�1�n�mam

= an.
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Remark. Because of the lemma above, we will refer to w0(n), w1(n), . . . , w2p�1�1(n)
as the PTM weights of an with respect to the basis of sums (B0, B1, . . . , B2p�1�1).

Example 10.
1. p = 2:

B0 = a0 + a1

B1 = a0 � a1.

2. p = 3:

B0 = a0 + a1 + a2, B2 = a0 � a1 + a2,

B1 = a0 + a1 � a2, B3 = a0 � a1 � a2.

Theorem 11. For 0  m  2p � 1, we have
2p�1X
i=0

w̃i(m)Bi =

(
an, if m = 2n, 0  n  p� 1;
0, otherwise.

(11)

Proof. If m = 2n, then w̃i(n) = wi(n) and thus formula (11) reduces to (10).
Therefore, assume m = 2nk + · · · + 2n1 where k > 1. Define Sm = {0, 1, . . . , p �
1}� {n1, n2, . . . , nk}. Then

2p�1�1X
i=0

w̃i(m)Bi =
2p�1�1X

i=0

wi(nk) · · · wi(n1)

0
@p�1X

j=0

wi(j)aj

1
A

=
p�1X
j=0

0
@2p�1�1X

i=0

wi(nk) · · · wi(n1)wi(j)

1
A aj .

Next, isolate the terms in the outer summation above corresponding to Sm:

2p�1�1X
i=0

w̃i(m)Bi = an1

2p�1�1X
i=0

wi(nk) · · · wi(n2)wi(n1)2 + · · ·

+ ank

2p�1�1X
i=0

wi(nk)2wi(nk�1) · · · wi(n1)

+
X

j2Sm

0
@2p�1�1X

i=0

wi(nk) · · · wi(n1)wi(j)

1
A ak

= an1

2p�1�1X
i=0

w̃i(m�
1 ) + · · · + ank

2p�1�1X
i=0

w̃i(m�
k )

+
X

j2Sm

0
@2p�1�1X

i=0

w̃i(m+
j )

1
A ak,
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where m�
j = m � 2j and m+

j = m + 2j . Now observe that all three summations
above with index i must vanish because of Theorem 8. Hence,

2p�1�1X
i=0

w̃i(m)Bi = 0

as desired.

We end this section by presenting a result that is useful in characterizing sidelobes
of Doppler tolerant waveforms in radar ([21],[6],[19]).

Theorem 12. Let A = (a0, a1, . . . , aL�1) be a mod-p PTM sequence of length
L = pM+1, where M is a non-negative integer. Write

an =
1

2p�1
w0(n)B0 +

1
2p�1

Sp(n), (12)

where

Sp(n) =
2p�1�1X

i=1

wi(n)Bi.

Then
L�1X
n=0

nmSp(n) = Nm(L)B0 (13)

for m = 1, . . . ,M , where

Nm(L) = 2p�1Pm �
L�1X
n=0

nm.

Proof. We apply (8):

L�1X
n=0

nmSp(n) = 2p�1
L�1X
n=0

nman �B0

L�1X
n=0

nmw0(n)

= 2p�1Pm(a0 + a1 + · · · + ap�1)�B0

L�1X
n=0

nm

= (2p�1Pm �
L�1X
n=0

nm)B0

= Nm(L)B0.
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4. XOR-Shift Recurrence

In this section we develop a recurrence formula for our weight sequences. Towards
this end, we introduce the notion of an xor-shift of a binary integer.

Definition 13. Let a, b 2 Z/2Z, where Z/2Z denotes the integers modulo 2. We
define a�b to be the exclusive OR (XOR) operation given by the following Boolean
truth table:

0� 0 = 0
0� 1 = 1
1� 0 = 1
1� 1 = 0.

More generally, let x = ak · · · a0 and y = bk · · · b0 be two non-negative integers
expressed in binary. We define z = x� y = ck..c0 to be the xor bit-sum of x and y,
where

ck = ak � bk.

In what follows we shall write a ⌘ b to mean a ⌘ b mod 2. Observe then that if
a, b 2 Z/2Z, then a ± b ⌘ a� b.

Definition 14. Let p be a positive integer and i a non-negative integer with 0 
i  2p � 1. Expand i in binary so that

i = dp�12p�1 + · · · + d020.

We define the degree-p xor-shift of i by r � 0 to be the value (in decimal) given by
the xor bit-sum

xr(i) := x(p)
r (i) = dp�1 · · · drdr�1 · · · d0 � dp�1�r · · · d0dp�1 · · · dp�r,

i.e.,
xr(i) = ep�12p�1 + · · · + e020,

where for k = 0, 1, . . . , p� 1, we have

ek =

(
dk � dk�r, k � r;
dk � dd+(p�r), k < r.

Example 15. Here are some values of x(p)
i (n) for p = 3:

x(3)
1 (0) = 0002 � 0002 = 0002 = 0, x(3)

2 (0) = 0002 � 0002 = 0002 = 0,

x(3)
1 (1) = 0012 � 0102 = 0112 = 3, x(3)

2 (1) = 0012 � 1002 = 1012 = 5,

x(3)
1 (2) = 0102 � 1002 = 1102 = 6, x(3)

2 (2) = 0102 � 0012 = 0112 = 3,

x(3)
1 (3) = 0112 � 1102 = 1012 = 5, x(3)

2 (3) = 0112 � 1012 = 1102 = 6.
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In fact, when n = p� 1, the sequence

x(n+1)
1 (n) = (0, 3, 6, 5, 12, 15, 10, 9, 24, 27, . . .)

generates the xor bit-sum of n and 2n (sequence A048724 in the Online Encyclopedia
of Integer Sequences (OEIS) database: http://oeis.org).

Lemma 3. Define

Ep(i, n) := d(i)
p�1�up(n)

so that wi(n) = (�1)Ep(i,n). Then for 0  r < p, we have

Ep(i, pn + r) =

(
dp�1�up(n)�r, if up(n) + r < p;
dp�1�s, if up(n) + r � p,

where s = up(n) + r � p. Moreover,

Ep(i, pn + r)�Ep(i, n) ⌘ Ep(xr(i), n). (14)

Proof. Since up(pn + r) = (up(n) + r)p, we have

Ep(i, pn + r) = dp�1�(up(n)+r)p
.

Now consider two cases: either u(n) + r < p or u(n) + p � p. If u(n) + r < p, then

Ep(i, pn + r) = dp�1�up(n)�r.

On the other hand, if u(n)+r � p, then set s = up(n)+r�p so that (up(n)+r)p = s.
It follows that

Ep(i, pn + r) = dp�1�s

To prove (14), we again consider two cases. First, assume up(n) + r < p so that
p� 1� up(n) � r. Then

Ep(i, pn + r)�Ep(i, n) = dp�1�up(n)�r � dp�1�up(n)

⌘ dp�1�up(n) � dp�1�up(n)�r

⌘ Ep(xr(i), n).

On the other hand, if up(n)+r � p, then set s = up(n)+r�p so that (up(n)+r)p = s.
Since p� 1� up(n) < r, we have

Ep(i, pn + r)�Ep(i, n) = dp�1�s � dp�1�up(n)

⌘ dp�1�up(n) � dp�1�s

⌘ dp�1�up(n) � dp�1�up(n)+(p�r)

⌘ Ep(xr(i), n).



INTEGERS: 15 (2015) 15

Theorem 16. Let p be a positive integer. The weight sequences wi(n), 0  i 
2p � 1, satisfy the recurrence

wi(pn + r) = wxr(i)(n)wi(n), (15)

where n 2 N and r 2 Z/pZ.

Proof. The recurrence follows easily from formula (14):

wi(pn + r)
wi(n)

= (�1)Ep(i,pn+r)�Ep(i,n)

= (�1)Ep(xr(i),n)

= wxr(i)(n).

Example 17. Let p = 3. Then w0(n) = 1 for all n 2 N and the other weight
sequences, w1(n), w2(n), w3(n), satisfy the following recurrences:

w1(3n) = w0(n)w1(n), w1(3n + 1) = w3(n)w1(n), w1(3n + 2) = w5(n)w1(n);
w2(3n) = w0(n)w2(n), w2(3n + 1) = w6(n)w2(n), w2(3n + 2) = w3(n)w2(n);
w3(3n) = w0(n)w3(n), w3(3n + 1) = w5(n)w3(n), w3(3n + 2) = w6(n)w3(n).
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