ON ASYMPTOTIC FORMULA OF THE PARTITION FUNCTION $p_{A}(n)$

A. David Christopher

Department of Mathematics, The American College, Tamilnadu, India
davchrame@yahoo.co.in
M. Davamani Christober

Department of Mathematics, The American College, Tamilnadu, India
jothichristopher@yahoo.com

Received: 8/8/13, Revised: 11/11/14, Accepted: 12/18/14, Published: 1/19/15

Abstract

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a set of k relatively prime positive integers. Let $p_{A}(n)$ denote the number of partitions of n with parts belonging to A. The aim of this note is to provide a simple proof of the following well-known asymptotic relation of $p_{A}(n)$: $$
p_{A}(n) \sim \frac{n^{k-1}}{\left(a_{1} a_{2} \cdots a_{k}\right)(k-1)!}
$$

1. Introduction and Motivation

A partition of a positive integer n is a finite nonincreasing sequence of positive integers $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ such that $x_{1}+x_{2}+\cdots+x_{m}=n$. The x_{i} are called the parts of the partition. Let A be a set of positive integers. The partition function $p_{A}(n)$ is defined as the number of partitions of n with parts belonging to A .

The generating function of $p_{A}(n)$ is

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{A}(n) x^{n}=\prod_{a \in A} \frac{1}{1-x^{a}} \tag{1}
\end{equation*}
$$

with $p_{A}(0)=1$; this generating function is valid in the interval $|x|<1$.
For $\operatorname{gcd}(A) \neq 1$, we have

$$
p_{A}(n)=\left\{\begin{array}{l}
p_{\frac{A}{\operatorname{gcc}(A)}}\left(\frac{n}{\operatorname{gcd}(A)}\right) \\
0 \text { otherwise }
\end{array} \text { if } \operatorname{gcd}(A) \mid n\right.
$$

where the set $\frac{A}{\operatorname{gcd}(A)}=\left\{\frac{a}{\operatorname{gcd}(A)}: a \in A\right\}$. Thus, it is expedient to assume always that $\operatorname{gcd}(A)=1$.

The function $p_{A}(n)$ is more appealing when A is a finite set of relatively prime integers. Throughout this note, we assume A to be a finite set of relatively prime positive integers. T. C. Brown, Wun-Seng Chou and Peter J. S. Shiue [3] found exact formulas for $p_{A}(n)$ when $|A|=2$ or 3 . The exact formula for $p_{A}(n)$ can also be found by means of partial fraction decomposition of its generating function (see [6]). Gert Almkvist [1] provided the exact formula for $p_{A}(n)$, without the usage of partial fraction decomposition of its generating function. The following asymptotic relation of $p_{A}(n)$ is well-known.

Theorem 1. Let $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ be a set of k relatively prime positive integers. Then the following asymptotic relation holds true:

$$
\begin{equation*}
p_{A}(n) \sim \frac{n^{k-1}}{\left(a_{1} a_{2} \cdots a_{k}\right)(k-1)!} \tag{2}
\end{equation*}
$$

In 1927, E. Netto [8] pioneered in providing a proof of this theorem and subsequently, in 1972, G. Polya and G. Szegö [9] gave another proof; in both the proofs partial fraction decomposition of the generating function was utilized. In 1942, Paul Erdos [5] proved this result for the case: $A=\{1,2, \cdots, k\}$. In 1991, S. Sertoz and A. E. Ozlük [11] found another proof by wielding the following recurrence relation:

$$
1=\sum_{i=n-k+2}^{n} C_{n-i}\left[p_{A}(i)-p_{A}\left(i-\left(a_{1} \cdots a_{k}\right)\right)\right]
$$

for $n>\left(a_{1} \cdots a_{k}\right)-\left(a_{1}+\cdots+a_{k}\right)+k-2$, where

$$
C_{m}=\left\{\begin{array}{l}
(-1)^{m}\binom{k-2}{m} \text { for } 0 \leq m \leq k-2 \\
0 \text { otherwise } .
\end{array}\right.
$$

In 2000, Melvyn B. Nathanson [7] obtained an arithmetic proof.
The aim of this note is to provide a new proof of this historical result. The proof furnished in this note is based on the fact that: the function $p_{A}(n)$ is a quasi polynomial.

Definition 2. An arithmetical function f is said to be a Quasi polynomial if, $f(\alpha l+r)$ is a polynomial in l for each $r=0,1, \cdots, \alpha-1$, where α is a positive integer greater than 1. Each polynomial $f(\alpha l+r)$ is called a constituent polynomial of f and α is called a quasi period of f.

In 1943 , E. T. Bell [2] found that the function $p_{A}(n)$ is a quasi polynomial by means of partial fraction decomposition of its generating function. In 1961, E. M. Wright [12] reestablished this finding by extracting the term $\left(1-x^{t}\right)^{-k}$ from the generating function of $p_{A}(n)$, where $t=\operatorname{lcm}\left(a_{1}, \cdots, a_{k}\right)$. In 2006, using a similar method, O. J. Rødseth and J. A. Sellers [10] obtained the quasi polynomial representation of $p_{A}(n)$ in binomial coefficients form.

2. Proof of Theorem 1

2.1. A Recurrence Relation Satisfied by $p_{A}(n)$

Following recurrence relation is crucial to our proof.
Lemma 3. Let n be a positive integer and let $a \in A$. Then, we have

$$
\begin{equation*}
p_{A}(n)=p_{A}(n-a)+p_{A \backslash\{a\}}(n) \tag{3}
\end{equation*}
$$

provided $a \leq n$.
Proof. Let $\pi=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ be a partition of n with parts belonging to A and let $a \in A$.

Case (i) Assume that $x_{i}=a$ for some i. Then π is of the form: $\pi=\left(x_{1}, \cdots, x_{i-1}, a\right.$, $\left.x_{i+1}, \cdots, x_{m}\right)$. We enumerate this kind of partitions of n; to that end, we consider the mapping:

$$
\left(x_{1}, \cdots, x_{i-1}, a, x_{i+1}, \cdots, x_{m}\right) \rightarrow\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{m}\right),
$$

which clearly establishes a one to one correspondence between the following sets:

- The set of all partitions of n with parts belonging to A and having a as a part;
- The set of all partitions of $n-a$ with parts belonging to A.

By the definition, the cardinality of the latter set is $p_{A}(n-a)$. Thus, the number of partitions of n of this type is $p_{A}(n-a)$.

Case(ii) Assume that $x_{i} \neq a \forall i=1,2, \cdots, m$. Then, it is not hard to see that, the enumeration of such partitions is $p_{A \backslash\{a\}}(n)$. Thus, the result follows.

2.2. Main Part of the Proof

As the consequences of Lemma 3, we will show that:

1. The function $p_{A}(n)$ is a quasi polynomial with a quasi period $a_{1} a_{2} \cdots a_{k}$.
2. Each constituent polynomial of $p_{A}(n)$ is of degree $k-1$.
3. The leading coefficient of each constituent polynomial of $p_{A}(n)$ is $\frac{\left(a_{1} a_{2} \cdots a_{k}\right)^{k-2}}{(k-1)!}$.

At this juncture, we note that: establishing the above three statements completes the proof as one can get from these statements that

$$
\lim _{l \rightarrow \infty} \frac{p_{A}\left(a_{1} a_{2} \cdots a_{k} l+r\right)}{\left(a_{1} a_{2} \cdots a_{k} l+r\right)^{k-1}}=\frac{1}{\left(a_{1} a_{2} \cdots a_{k}\right)(k-1)!}
$$

for each $r=0,1, \cdots, a_{1} a_{2} \cdots a_{k}-1$; and the targeted estimate follows readily from this limit.

Now, we prove Statements 1,2 , and 3 simultaneously by using induction on k.
Suppose that $k=2$. Let $A=\left\{a_{1}, a_{2}\right\}$ with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. Then applying Lemma $3 a_{1}$ times, we get

$$
\begin{equation*}
p_{A}\left(a_{1} a_{2} l+r\right)-p_{A}\left(a_{1} a_{2}(l-1)+r\right)=\sum_{i=0}^{a_{1}-1} p_{\left\{a_{1}\right\}}\left(a_{1} a_{2} l+r-i a_{2}\right) \tag{4}
\end{equation*}
$$

for each $r=0,1, \cdots, a_{1} a_{2}-1$. Since the congruence equation

$$
a_{2} x \equiv r\left(\bmod a_{1}\right)
$$

has an unique solution modulo a_{1} (see [4] pp. 83-84), the right side of the equation (4) equals 1 . Then replacing l by $1, \cdots, l$ in equation (4) and adding, we get that

$$
p_{A}\left(a_{1} a_{2} l+r\right)=l+p_{A}(r)
$$

for each $r=0,1,2, \cdots, a_{1} a_{2}-1$. Thus, the function $p_{A}(n)$ is a quasi polynomial with each constituent polynomial having degree 1 and leading coefficient $1=\frac{\left(a_{1} a_{2}\right)^{2-2}}{(2-1)!}$.

Assume that the result is true when $|A|<k$ for a fixed $k \geq 3$. Consider a set of k positive integers say $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ with $\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{k}\right)=1$. Let $s=\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{k-1}\right)$. Then applying Lemma $3 a_{1} a_{2} \cdots a_{k-1}$ times again, we get

$$
\begin{align*}
p_{A}\left(a_{1}\right. & \left.\cdots a_{k} l+r\right)-p_{A}\left(a_{1} \cdots a_{k}(l-1)+r\right) \tag{5}\\
& =\sum_{0 \leq i \leq a_{1} \cdots a_{k-1}-1 ; s \mid\left(r-i a_{k}\right)} p_{\left\{a_{1}, \cdots, a_{k-1}\right\}}\left(a_{1} \cdots a_{k} l+r-i a_{k}\right) \\
& =\sum_{0 \leq i \leq a_{1} \cdots a_{k-1}-1 ; s \mid\left(r-i a_{k}\right)} p_{\left\{\frac{a_{1}}{s}, \cdots, \frac{a_{k-1}}{s}\right\}}\left(\frac{a_{1}}{s} \cdots \frac{a_{k-1}}{s}\left(a_{k} s^{k-2} l+q_{i}\right)+r_{i}\right)
\end{align*}
$$

for each $r=0,1, \cdots, a_{1} a_{2} \cdots a_{k}-1$, where r_{i} and q_{i} were determined from the equality $\frac{r-i a_{k}}{s}=\frac{a_{1} \cdots a_{k-1}}{s^{k-1}} q_{i}+r_{i}$; here, uniqueness of r_{i} and q_{i} and the bound $0 \leq r_{i} \leq \frac{a_{1} \cdots a_{k-1}}{s^{k-1}}-1$ follows from the division algorithm.

It is well-known that the congruence equation

$$
\begin{equation*}
a_{k} x \equiv r(\bmod s) \tag{6}
\end{equation*}
$$

has a solution if and only if $\operatorname{gcd}\left(a_{k}, s\right) \mid r$ (see [4] pp. 83-84). Furthermore, in such case eqn(6) will have $\operatorname{gcd}\left(a_{k}, s\right)$ number of mutually incongruent solution modulo s. Here $\operatorname{gcd}\left(a_{k}, s\right)=1$ and hence eqn(6) has an unique solution modulo s.

Since $\operatorname{gcd}\left(\frac{a_{1}}{s}, \cdots, \frac{a_{k-1}}{s}\right)=1$, by induction assumption, it follows that the right side of the equation (5) is a sum of $\frac{a_{1} \cdots a_{k-1}}{s}$ polynomials and each of which is of degree $k-2$ with leading coefficient $\left(\frac{a_{1} \cdots a_{k-1}}{s^{k-1}}\right)^{k-3} \frac{a_{k}^{k-2} s^{(k-2)^{2}}}{(k-2)!}$. Consequently, the
right side sum of the equation (5) is a polynomial of degree $k-2$. This implies that $p_{A}\left(a_{1} \cdots a_{k} l+r\right)$ is a polynomial in l of degree $k-1$ for each $r=0,1, \cdots, a_{1} \cdots a_{k}-1$.

Now, we calculate the leading coefficient of $p_{A}\left(a_{1} \cdots a_{k} l+r\right)$. If one denotes the leading coefficient of the polynomial $p_{A}\left(a_{1} \cdots a_{k} l+r\right)$ by c_{k-1}, then by the previous observations it follows that

$$
(k-1) c_{k-1}=\frac{\left(a_{1} \cdots a_{k}\right)^{k-2}}{(k-2)!}
$$

which simplifies to

$$
c_{k-1}=\frac{\left(a_{1} \cdots a_{k}\right)^{k-2}}{(k-1)!}
$$

The proof is now completed.

References

[1] Gert Almkvist, Partitions with parts in a finite set and with parts outside a finite set, Exp. Math, Vol. 11 (2002), No. 4, 449-456.
[2] E. T. Bell, Interpolated denumerants and Lambert series, Amer. J. Math. 65 (1943), 382-386.
[3] T. C. Brown, Wun- Seng Chou, Peter J.-S. Shiue, On the partition function of a finite set, Australas. J. Comb, 27 (2003), 193-204.
[4] David M. Burton, Elementary Number theory, Allyn and Bacon, Inc, 1980.
[5] P. Erdös, On an elementary proof of some asymptotic formulas in the theory of partitions, Ann. of Math. (2), 43(1942), 437-450.
[6] Melvyn B. Nathanson, Elementary methods in Number theory, Springer-Verlag, New York-Berlin- Heidelberg (2000), 466-467.
[7] Melvyn B. Nathanson, Partition with parts in a finite set, Proc. Amer. Math. Soc. 128 (2000), 1269-1273.
[8] E. Netto, Le hrbuch der Combinatorik, Teubner, Leipzig, 1927.
[9] G. Polya and G. Szegö, Aufgaben and Lehrsätze aus der analysis, Springer- Verlag, Berlin, 1925. English translation: Problems and Theorems in Analysis, Springer- verlag, New York, 1972.
[10] Ø. J. Rødseth and J. A. Sellers, Partition with parts in a finite set, Int. J. Number Theory 02, 455 (2006).
[11] S. Sertoz and A. E. Ozlük, On the number of representations of an integer by a linear form, İstanb. Üniv. Fen Fak. Mat. Fiz. Astron. Derg, 50 (1991).
[12] E. M. Wright, A simple proof of a known result in partitions, Amer. Math. Monthly 68 (1961), 144-145.

