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Abstract
Recently, Chen, Hou and Jin used both Abel’s lemma on summation by parts
and Zeilberger’s algorithm to generate recurrence relations for definite summations.
They also proposed the Abel-Gosper method to evaluate some indefinite sums in-
volving harmonic numbers. In this paper, we use the Abel-Gosper method to prove
an identity involving the generalized harmonic numbers. Special cases of this result
reduce to many famous identities. In addition, we use both Abel’s lemma and the
WZ method to verify and to discover identities involving harmonic numbers. Many
interesting examples are also presented.

1. Introduction

The objective of this paper is to employ Abel’s lemma on summation by parts and
hypergeometric summation algorithms to verify and to discover identities on the
harmonic as well as generalized harmonic numbers.

Recall that for a positive integer n and an integer r, the generalized harmonic
numbers of power r are given by

H(r)
n =

nX
k=1

1
kr

.

For convenience, we set H(r)
n = 0 for n  0. As usual, Hn = H(1)

n are the classical
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harmonic numbers. We also define (see [6])

Hn(x) =
nX

k=1

1
k + x

, x 6= �1,�2, . . .

for n � 1 and Hn(x) = 0 when n  0. Identities involving these numbers have been
extensively studied and applied in the literature, see, for example, [5, 6, 12, 16, 20].
Also recall that Abel’s lemma [1] on summation by parts is stated as follows.

Lemma 1 (Abel’s lemma). For two arbitrary sequences {ak} and {bk}, we have

n�1X
k=m

(ak+1 � ak)bk =
n�1X
k=m

ak+1(bk � bk+1) + anbn � ambm.

For a sequence {⌧k}, define the forward di↵erence operator � by �⌧k = ⌧k+1�⌧k.
Then Abel’s lemma can be written as

n�1X
k=m

bk�ak = �
n�1X
k=m

ak+1�bk + anbn � ambm. (1)

Graham, Knuth and Patashnik [12] reformulated Abel’s lemma in terms of finite
calculus to evaluate several sums on harmonic numbers. Recently, Chen, Hou and
Jin [4] proposed the Abel-Gosper method and derived some identities on harmonic
numbers. The idea can be explained as follows. Let fk be a hypergeometric term,
i.e., fk+1/fk is a rational function of k. First, we use Gosper’s algorithm [17] to
find a hypergeometric term ak (if it exists) satisfying �ak = fk. Then, by Abel’s
lemma, we have

n�1X
k=m

fkHk =
n�1X
k=m

Hk�ak = �
n�1X
k=m

ak+1

k + 1
+ anHn � amHm. (2)

Hence we can transform a summation involving harmonic numbers into a hyperge-
ometric summation. For example, let S(n) =

Pn
k=1 Hk, we have

S(n) =
nX

k=1

Hk�k = �
nX

k=1

(k + 1)�Hk + (n + 1)Hn+1 �H1 = (n + 1)Hn � n.

In this framework, they combine both Abel’s lemma and Zeilberger’s algorithm
to find recurrence relations for definite summations involving non-hypergeometric
terms. For example, they can prove the Paule-Schneider identity [16]

nX
k=0

(1 + 3(n� 2k)Hk)
✓

n

k

◆3

= (�1)n,
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and Calkin’s identity [3]

nX
k=0

0
@ kX

j=0

✓
n

j

◆1A
3

= n23n�1 + 23n � 3n2n�2

✓
2n
n

◆
.

In this paper, we use the Abel-Gosper method to generalize the following well-
known inversion formula (see, for example [11, (1.46)])

X
k

(�1)k�1

✓
n

k

◆
Hk =

1
n

. (3)

To be specific, we have

Theorem 1. Let m, s, p, n 2 N and n � p,m � 1. Then

nX
k=p

(�1)k�1

✓
n

k

◆✓
k

p

◆
Hmk+s(x) =

8<
:

(�1)pmn�p�1n!
(n�p)p!

mP
i=1

1Qn�1
u=p(mu+s+x+i)

, n > p,

(�1)p�1Hmp+s(x), n = p.
(4)

It is readily seen that identity (4) reduces to inversion formula (3) by setting
p = 0,m = 1, s = 0 and x = 0. More interesting special cases of (4) can be found
in Section 2.

In addition, by combining Abel’s lemma with the WZ method, we establish the
Abel-WZ method to construct identities on harmonic numbers from known hyper-
geometric identities. For example, we shall reestablish the following identity due to
Prodinger [15].

nX
k=0

(�1)n�k

✓
n

k

◆✓
n + k

k

◆
H(2)

k = 2
nX

k=1

(�1)k�1

k2
.

The paper is organized as follows. In Section 2, we shall give a proof of Theorem
1 by the Abel-Gosper method. Special cases of Theorem 1 and more examples are
also displayed. In Section 3, we introduce the Abel-WZ method and then construct
many interesting identities on harmonic numbers from hypergeometric identities.

2. The Abel-Gosper Method

We first make use of the Abel-Gosper method to prove Theorem 1.
Proof of Theorem 1. Denote the left hand side of (4) by Sm,s,p(n, x) and let

F (n, k) = (�1)k�1

✓
n

k

◆✓
k

p

◆
.
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By Gosper’s algorithm, we have

F (n, k) = �kG(n, k),

where

G(n, k) =
(�1)k(k � p)

n� p

✓
n

k

◆✓
k

p

◆
.

Thus it follows that

Sm,s,p(n, x) =
X

k

�kG(n, k)Hmk+s(x).

Employing Abel’s lemma and noticing the boundary values, we find

Sm,s,p(n, x) = � 1
n� p

X
k

(�1)k�1(k + 1� p)
✓

n

k + 1

◆✓
k + 1

p

◆ mX
i=1

1
mk + s + i + x

.

For 1  i  m, set

Si(n) =
X

k

(�1)k�1(k + 1� p)
✓

n

k + 1

◆✓
k + 1

p

◆
1

mk + s + i + x
.

Then Zeilberger’s algorithm (see [17]) returns the recurrence equation

(mn + s + i + x)Si(n + 1)�m(n + 1)Si(n) = 0.

By the initial value

Si(p + 1) =
(�1)p+1(p + 1)
mp + s + i + x

,

we obtain
Si(n) = (�1)p+1 mn�p�1n!

p!
Qn�1

u=p(mu + s + i + x)
.

Equation (1) is then established by noticing that

Sm,s,p(n, x) = � 1
n� p

mX
i=1

Si(n), n > p,

and Sm,s,p(p) = (�1)p�1Hmp+s(x). 2

Now let us show some special cases of Theorem 1. By setting m = 1 and x = 0,
(4) reduces to the following identity.

Corollary 1. For n, p, s 2 N and n > p, we have
nX

k=p

(�1)k�1

✓
n

k

◆✓
k

p

◆
Hk+s =

(�1)p
�p+s

s

�
(n� p)

�n+s
s

� . (5)
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The special cases p = 0 and s = 0 of (5) are given in [20, 21].
By setting m = 2, s = 0 and x = 0 in (4), we are led to the following identity .

Corollary 2. For n, p 2 N and n > p, we have

nX
k=p

(�1)k�1

✓
n

k

◆✓
k

p

◆
H2k =

(�1)p

(n� p)

 
1
2

+
22n�2p�2

�2p
p

�
�2n�1

n�1

�
!

. (6)

Using the relation k2 = 2
�k
2

�
+
�k
1

�
and the cases p = 1, 2 of (6), we arrive at an

identity due to Sofo [19]:

X
k

(�1)k�1

✓
n

k

◆
k2H2k =

n

2(n� 1)(n� 2)
+

22n�4

(n + 2)
�2n�1

n�3

� , n > 2. (7)

Note that we can also derive identities involving the generalized harmonic num-
bers H(r)

n from Theorem 1. To this end, we need the operators L and D which are
defined by L f(x) = f(0) and D f(x) = f 0(x). It is easy to see that

LDmHn(x) = (�1)mm!H(m+1)
n .

By setting m = 1 and p = 0 in (4), we get the following result (see [13]).

Corollary 3. We have

nX
k=0

(�1)k�1

✓
n

k

◆
Hk+s(x) =

n!
n(s + x + 1)n

. (8)

Then applying the operator LD to both sides of (8), we obtain a formula given
in [21]

nX
k=0

(�1)k�1

✓
n

k

◆
H(2)

k+s = � 1
n

(Hs �Hn+s)
✓

n + s

s

◆�1

. (9)

Furthermore, applying the operator LD2 to both its sides of (8) gives

nX
k=0

(�1)k�1

✓
n

k

◆
H(3)

k+s =
1
2n

⇣
(Hn+s �Hs)2 + H(2)

n+s �H(2)
s

⌘✓n + s

s

◆�1

.

More generally, (8) leads to the following inversion formula by applying the op-
erator LDm to both its sides.

Proposition 1. For positive integers n and m, we have

nX
k=1

(�1)k�1

✓
n

k

◆
H(m+1)

k =
1
n

X
1j1j2···jmn

1
j1j2 · · · jm

. (10)
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Proof. Setting s = 0 in (8) and applying the operator LDm to its both sides, we
have

(�1)mm!
X

k

(�1)k�1

✓
n

k

◆
H(m+1)

k =
n!
n

LDm 1
(x + 1)n

.

By the partial fraction decomposition

1
(x + 1)n

=
nX

k=1

1
(x + k)

Q
1j 6=kn

(j � k)
,

we find
n!
n

LDm 1
(x + 1)n

= (�1)mm!
1
n

nX
k=1

✓
n

k

◆
(�1)k�1

km
.

Finally, using Dilcher’s formula [10]

nX
k=1

✓
n

k

◆
(�1)k�1

km
=

X
1j1j2···jmn

1
j1j2 · · · jm

,

we arrive at (10). 2

Similarly, we can use the Abel-Gosper method to find many other identities.
Here are some examples.

Example 1. For n 2 N and x 2 C \ {�1,�2, . . .}, we have

nX
k=0

(x + 1)k

k!
Hk =

1
x + 1

✓
1 +

(x + 1)n+1

n!

✓
Hn �

1
x + 1

◆◆
,

nX
k=0

k!
(x + 1)k

Hk =

8<
:

1
(x�1)2

⇣
x� n!

(x+1)n
((x� 1)(n + 1)Hn + n + x)

⌘
, if x 6= 1,

H2
n+1�H(2)

n+1
2 , if x = 1.

We remark that the second identity also holds when x is a negative integer. In
this case, it is equivalent to the following formula (see [12, Exercise 6.53]).

nX
k=0

(�1)k�m
k

� Hk =
(�1)n�m

n

�


n + 1
m + 2

Hn +
m + 1� n

(m + 2)2

�
� m + 1

(m + 2)2
,

where m,n 2 N and n  m.
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Example 2. For n,m, p 2 N, we have the following three identities.
nX

k=0

(�1)k�1

�n
k

�
�k+p

p

�Hk+p =
n� p(n + p)Hp

(n + p)2
,

nX
k=0

(�1)k�1 k
�n

k

�
�k+p

p

�Hk =
pn(1 + Hp�1 �Hn+p�2)

(n + p)(n + p� 1)
, p � 2,

nX
k=0

(�1)k�1 k2
�n

k

�
�k+p

p

�Hk =
pn((n� p)(Hn+p�3 �Hp�1)� (2n� p))

(n + p)(n + p� 1)(n + p� 2)
, p � 3.

We remark that the first formula is due to Sofo [18] and the remaining two were
obtained by Chu [7].

Using the Abel-Gosper method iteratively, we can prove the following identity.

Example 3. For n, p 2 N and n > p, we have
X

k

(�1)k�1

✓
n

k

◆✓
k

p

◆
H2

k =
(�1)p

n� p
(Hn � 2Hn�p�1 + Hp).

3. The Abel-WZ Method

In this section, we shall illustrate how to combine Abel’s lemma with the WZ
method to derive identities on harmonic numbers.

Recall that a pair of hypergeometric functions (F (n, k), G(n, k)) is called a WZ
pair if the following WZ equation holds

F (n + 1, k)� F (n, k) = G(n, k + 1)�G(n, k).

For a given F (n, k), the WZ method will give such G(n, k) if it exists: see for
example [17]. Now we are ready to describe the Abel-WZ method. In most cases,
for a hypergeometric identity X

k

F (n, k) = f(n),

we can obtain a corresponding WZ pair✓
F (n, k)
f(n)

, G(n, k)
◆

.

Let S(n) =
P

k�0 F (n, k)bk, where bk is a harmonic number. Then we have

S(n + 1)
f(n + 1)

� S(n)
f(n)

=
X

k

(G(n, k + 1)�G(n, k))bk.
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Denote by U(n) =
P

k(G(n, k + 1) � G(n, k))bk. Then by Abel’s lemma, we have
(here we omit the boundary values)

U(n) = �
X

k

G(n, k + 1)�kbk.

Again, if �kbk is hypergeometric, U(n) can be treated by Zeilberger’s algorithm.
Moreover, if U(n) can be expressed in closed form, we then establish an identity of
the form

S(n) = f(n)
X

kn�1

U(k).

We begin by an identity due to Prodinger [15].

Example 4. For n 2 N, we have

nX
k=0

(�1)n�k

✓
n

k

◆✓
n + k

k

◆
H(2)

k = 2
nX

k=1

(�1)k�1

k2
. (11)

Proof. Denote the left side of (11) by S(n). For F (n, k) = (�1)n�k
�n

k

��n+k
k

�
, the

WZ method gives

F (n + 1, k)� F (n, k) = G(n, k + 1)�G(n, k),

where

G(n, k) =
2(�1)n�kk2

�n
k

��n+k
k

�
(n� k + 1)(n + 1)

.

Multiplying both sides of the WZ equation by H(2)
k and summing over k gives

S(n + 1)� S(n) =
X

k

(G(n, k + 1)�G(n, k))H(2)
k .

Then applying Abel’s lemma to the right hand side of the above identity and noting
the boundary values, we have

S(n + 1)� S(n) =
X

k

�G(n, k + 1)
(k + 1)2

=
X
k�0

�
T (k + 1)� T (k)

�

= 2
(�1)n

(n + 1)2
,

where

T (k) =
2(�1)n�k�1(k + 1)2

� n
k+1

��n+k+1
k+1

�
(n� k)(n + 1)3

.
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Thus we have

S(n) = S(0) + 2
nX

k=1

(�1)k�1

k2
.

By the initial value S(0) = 0, we complete the proof. 2

The underlying hypergeometric identity of the above theorem is the special case
p = 0 of

nX
k=0

(�1)k

✓
n

k

◆✓
n + k

k

◆✓
k

p

◆
= (�1)n

✓
n + p

p

◆✓
n

p

◆
,

which enables us to establish the following identities.

Example 5. For n, p 2 N and n � p, we have

nX
k=0

(�1)n�k

✓
n

k

◆✓
n + k

k

◆
H2k = 3Hn �Hbn

2 c,

nX
k=0

(�1)k

✓
n

k

◆✓
n + k

k

◆✓
k

p

◆
Hk = (�1)n

✓
n + p

p

◆✓
n

p

◆
(2Hn �Hp),

nX
k=0

(�1)k

✓
n

k

◆✓
n + k

k

◆✓
k

p

◆
Hn+k = (�1)n

✓
n + p

p

◆✓
n

p

◆
(Hn+p + Hn �Hp).

The cases p = 0, 1 of the last two formulas can be found in [15] and [14] respectively.

We conclude this paper by giving the following examples.

Example 6. From the binomial theorem
P

k

�n
k

�
�n�kµk = (�+µ)n, we can derive

the following formula due to Boyadzhiev [2].

nX
k=1

✓
n

k

◆
Hk�n�kµk = (� + µ)nHn �

✓
�(� + µ)n�1 +

�2

2
(� + µ)n�2 + · · · + �n

n

◆
.

Example 7. From identity

nX
k=p

✓
n

k

◆2✓k

p

◆
=
✓

2n� p

n

◆✓
n

p

◆
,

we can derive
nX

k=p

✓
n

k

◆2✓k

p

◆
Hk =

✓
2n� p

n

◆✓
n

p

◆
(2Hn �H2n�p).

The special cases p = 0 and p = 1 are due to Paule and Schneider [16].
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Example 8. From the identities

2nX
k=0

(�1)k

✓
2n
k

◆2

= (�1)n

✓
2n
n

◆

and
2nX

k=0

(�1)k

✓
2n
k

◆3

= (�1)n (3n)!
n!3

,

we have

2nX
k=0

(�1)k

✓
2n
k

◆2

Hk = (�1)n

✓
2n
n

◆
Hn + H2n

2
,

2nX
k=0

(�1)k

✓
2n
k

◆3

Hk = (�1)n (3n)!
n!3

Hn + 2H2n �H3n

2
,

2nX
k=0

(�1)k

✓
2n
k

◆3

H(2)
k = (�1)n (3n)!

n!3
H(2)

n + H(2)
2n

2
.

The last two formulas can be found in [9] and [8] respectively.

Acknowledgments. We wish to thank the referee for helpful suggestions. We are
grateful to Professor Qing-Hu Hou for helpful suggestions and discussions.
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