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Abstract
This paper posits a new method to analyze r-sequences without limitation as to
type of number or the value of the seeds. That method is then used to derive
identities applicable to all r-sequences, including a counterpart to Cassini’s Formula.
The paper also shows that any element in an r-sequence can be expressed as a
linear function of r randomly chosen consecutive elements of the r-sequence using
coe�cients which are identical for all sequences of the same order.

1. Introduction

There have been many articles concerning sequences which satisfy the recurrence
equation

G(r)
i+1 =

r�1X
j=0

G(r)
i�j (1)

where r is an integer greater than 1, the term (r) is a superscript and not an
exponent, and i and j are any integers (including negative integers in the case of
i). If a subscript i is negative, the value of G(r)

i is determined by

G(r)
i = G(r)

i+r � (
r�1X
j=1

G(r)
i+j). (2)

The seeds (the values of G(r)
i for 0  i < r) are often set at G(r)

0 = 0, G(r)
1 = 1

and G(r)
i =

Pi�1
j=0 G(r)

j for 1 < i < r. For instance, if r = 4, then G(4)
i+1 = G(4)

i +
G(4)

i�1 + G(4)
i�2 + G(4)

i�3 for i > 3 and frequently G(4)
0 = 0, G(4)

1 = 1, G(4)
2 = 1 and

G(4)
3 = 2, yielding the sequence 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, ... However,

much of the analysis which follows is independent of the value of the seeds. For
example, the analysis applies equally to the 4-sequence 2, 5, 7, 14, 28, 54, 103, 199, ...
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and to the 4-sequence with seeds
p

13,�2.9,⇡ and tan�1(2). The analysis also
applies regardless of whether the numbers in the sequence are positive or negative,
rational or irrational, real or imaginary. As suggested in [6], it may be worthwhile
to be spreading our nets more widely. The present article is the outgrowth of several
prior articles covering broad results for uniform power identities [2, 3].

For r = 3 and 4, these sequences have been referred to as tribonacci and
tetranacci sequences. Instead, we use the language of [5] and refer to sequences
which fulfill the condition in (1) as r-sequences or sequences of order r, notwith-
standing that our definition of the term is significantly broader than that used in
[5].

2. A Preliminary Model: r = 5

Solely for the purpose of introducing certain concepts and terminology, we let r = 5,
pick n randomly and look for certain patterns in sequences of order 5. For greater
ease in discovering patterns, we set v = G(5)

n+4, w = G(5)
n+3, x = G(5)

n+2, y = G(5)
n+1 and

z = G(5)
n and then expand for nearby values of G(5)

n+s. As s increases, we calculate
G(5)

n+s by repeated use of equation (1). For values of G(5)
j where j < n, we calculate

G(5)
j = G(5)

j+5�G(5)
j+4�G(5)

j+3�G(5)
j+2�G(5)

j+1. Putting the results in tabular form, we
obtain Table 1. We also tentatively define a related r-sequence L(5)

m = G(5)
m +G(5)

m�1

s G(5)
n+s G(5)

n�s

0 z �
1 y v � w � x� y � z
2 x �v + 2w
3 w � w + 2x
4 v �x + 2y
5 v + w + x + y + z �y + 2z
6 2v + 2w + 2x + 2y + z 2v � 2w � 2x� 2y � 3z
7 4v + 4w + 4x + 3y + 2z �3v + 5w + x + y + z
8 8v + 8w + 7x + 6y + 4z v � 4w + 4x
9 16v + 15w + 14x + 12y + 8z w � 4x + 4y
10 31v + 30w + 28x + 24y + 16z x� 4y + 4z
11 61v + 59w + 55x + 47y + 31z 4v � 4w � 4x� 3y � 8z
12 120v + 116w + 108x + 92y + 61z �8v + 12w + 4x + 4y + 5z

Table 1: r = 5

as the Lucasian counterpart to G(5)
m . A similar table can be easily prepared for L(5)

m .
But for now we will be focusing on identities in which only L(5)

n+1 appears from the
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sequence L. In the case of a 5-sequence, L(5)
n+1 = y + z.

Looking at Table 1, one can see certain identities without the need to solve a set
of simultaneous linear equations. We note that G(5)

n�5 = 2z � y. Hence we have the
shift formula catalogued as Theorem 1 in [1]:

G(5)
n+1 = 2G(5)

n �G(5)
n�5. (3)

One also notes that 3y2 + 6z2 � (2z � y)2 = 2y2 + 4yz + 2z2 = 2(y + z)2 or

3(G(5)
n+1)

2 + 6(G(5)
n )2 � (G(5)

n�5)
2 = 2(L(5)

n+1)
2. (4)

Likewise taking G(5)
n+5 and G(5)

n�1 and setting A = w + x + y + z, one sees that

G(5)
n+5

2
�G(5)

n�1

2
= (v + A)2 � (v �A)2

= 4Av

= 4Av + 4v2 � 4v2

= 4[v2 + vw + vx + vy + vz]� 4v2

= 4v[(v + w + x + y + z)� v]

= 4G(5)
n+4(G

(5)
n+5 �G(5)

n+4). (5)

Similarly, taking G(5)
n+6 and G(5)

n�6, one obtains the identity

G(5)
n+6

2
�G(5)

n�6

2
= 8(G(5)

n+5 �G(5)
n+4)(2G

(5)
n+4 �G(5)

n ). (6)

Not only does the above method dispense with solving simultaneous equations in
deriving identities, but it also provides a more transparent view of the relationship
among numbers in a sequence.

3. All r > 1

We now generalize for all integers r > 1. For any integer r > 1, we set r variables
to equal G(r)

n and the numbers in the sequence immediately after G(r)
n . We label

the variables v0 to vr�1. We then let vi = G(r)
n+i and construct Table 2 by letting

A = G(r)
i+1 =

Pr�1
j=0 G(r)

i�j . Then G(r)
i+2 = G(r)

i+1 + A � G(r)
i�r = 2A � G(r)

i�r, etc. For
negative i, we apply equation (2) by iteration.

Table 2 can be extended indefinitely. Using the same techniques used in the
prior section, one can readily derive the following identities which hold true for any
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s G(r)
n+s G(r)

n�s

0 v0 �
1 v1 vr�1 �

Pr�2
j=0 vj

2 v2 2vr�2 � vr�1

3 v3 2vr�3 � vr�2

4 v4 2vr�4 � vr�3

. . . . .... .....
r-1 vr�1 2v1 � v2

r
Pr�1

j=0 vj 2v0 � v1

r+1 2(
Pr�1

j=1 vj) + v0 2vr�1 �
Pr�2

j=1 vj � 3v0

r+2 4(
Pk

j=2) vj) + 3v1 + 2v0 �3vr�1 + 5vr�2 +
Pr�3

j=0vj

r+3 8(
Pk

j=3) vj) + 7v2 + 6v1 + 4v0 vr�1 � 4vr�2 + 4vr�3

r+4 16(
Pk

j=4) vj) + 15v2 + 14v2 + 12v1 + 8v0 vr�2 � 4vr�3 + 4vr�4

r+4 add prior r entries above vr�3 � 4vr�4 + 4vr�5

r+5 add prior r entries above vr�4 � 4vr�5 + 4vr�6

r+6 add prior r entries above vr�5 � 4vr�6 + 4vr�7

Table 2: A neighborhood for general r

r-sequence where r � 2.

3G(r)
n+1

2
+ 6G(r)

n

2 �G(r)
n�r

2
= 2L(r)

n+1

2
, (7)

G(r)
n+r

2
�G(r)

n�1

2
= 4G(r)

n+r�1(G
(r)
n+r �G(r)

n+r�1), (8)

G(r)
n+(r+1)

2
�G(r)

n�(r+1)

2
= 8(G(r)

n+r �G(r)
n+r�1)(2G

(r)
n+r�1 �G(r)

n ). (9)

One can readily derive other identities which hold true for all r-sequences.

4. Cassini’s Formula

A review of Table 2 suggests a general counterpart to Cassini’s formula.
Theorem 1. For any r-sequence G(r) where r,m and n are integers and n =
m� (r + 1),

G(r)
m

2 �G(r)
m+1G

(r)
m�1 = G(r)

n

2 �G(r)
n+rG

(r)
n�r. (10)

Proof. If we let A =
Pr�1

j=2 vj , then



INTEGERS: 15 (2015) 5

G(r)
m

2 �G(r)
m+1G

(r)
m�1 = [2A + (2v1 + v0)]2 � [A + (v1 + v0)][4A + (3v1 + 2v0)]

= 4A2 + 4A(2v1 + v0) + (2v1 + v0)2

� [4A2 + A(7v1 + 6v0) + (v1 + v0)(3v1 + 2v0)]
= A(v1 � 2v0) + [(v1)2 � (v1)(v0)� (v0)2]
= A(v1 � 2v0) + [(v1 + v0)(v1 � 2v0)] + (v0)2

= (A + v1 + v0)(v1 � 2v0) + (v0)2

= (v0
2)� [(2v0 � v1)(

r�1X
j=0

vj)]

= (G(r)
n )2 �G(r)

n�rG
(r)
n+r. (11)

This generalized version of Cassini’s formula holds for all values of r > 1 without
regard to the values of the seeds. For r = 2 and the traditional Fibonacci sequence,
Theorem 1 gives the traditional Cassini Formulae Fm

2 � Fm+1Fm�1 = (�1)m+1

and Fn
2�Fn+2Fn�2 = (�1)n. In addition, if r = 2 and the seeds of the traditional

Fibonacci sequence are varied so that F0 = A and F1. = B, then Theorem 1 yields
G(2)

n
2
�G(2)

n+1G
(2)
n�1 = (B2 �A2 �AB)(�1)n+1.

It is stated in [7] that the identity Ln
2 � 5Fn

2 = 4(�1)n is a fundamental ingre-
dient in many 2-sequence identities. But that identity is a mere reformulation of
Cassini’s formula.

4(�1)n = Ln
2 � 5Fn

2

= (Fn+1 + Fn�1)2 � 4Fn+1Fn�1 + 4Fn+1Fn�1 � 5Fn
2

= [Fn+1
2 + 2Fn+1Fn�1 + Fn�1

2 � 4Fn+1Fn�1] + 4Fn+1Fn�1 � 5Fn
2

= (Fn+1 � Fn�1)2 + 4Fn+1Fn�1 � 5Fn
2

= Fn
2 + 4Fn+1Fn�1 � 5Fn

2

= 4Fn+1Fn�1 � 4Fn
2. (12)

It may be that (10) plays a similar role when r > 2. See [4] for the author’s use of
Cassini’s formula in non-uniform power identities.

5. Primary r-Sequences

Returning to Table 1, one notes that the coe�cients of v form a 5-sequence. The
same holds for each of w, x, y and z. In tabular form, they are set forth in Table
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3. For ease of reference, we will temporarily call these sequences (V ), (W ), (X), (Y )
and (Z) with subscripts to coincide with the value of s at the top of Table 3. For
example, x8 = 7.

s �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 8 9 10

V 2 0 0 0 �1 1 0 0 0 0 1 1 2 4 8 16 31
W �2 0 0 �1 2 �1 0 0 0 1 0 1 2 4 8 15 30
X �2 0 �1 2 0 �1 0 0 1 0 0 1 2 4 7 14 28
Y �2 �1 2 0 0 �1 0 1 0 0 0 1 2 3 6 12 24
Z �3 2 0 0 0 �1 1 0 0 0 0 1 1 2 4 8 16

Table 3: Primary Sequences for r = 5

Note that
(1) (V ) and (Z) are the basic 5-sequence (as presented in [5]) shifted respectively

one and two notches up;
(2) yn = zn + zn�1, xn = zn + yn�1, wn = zn + xn�1 and vn = zn + wn�1; and
(3) the relationships in (2) can be joined together to yield

yn = zn + zn�1

xn = zn + zn�1 + zn�2

wn = zn + zn�1 + zn�2 + zn�3

vn = zn + zn�1 + zn�2 + zn�3 + zn�4

= zn+1. (13)

We dub these sequences as the primary sequences of order 5 and then distinguish
them from one another (in the order Z, Y, X, W and V) as the first, second, etc
primary sequence of order 5. The sequences will be represented by P (5)

i for i = 1 to
r. The individual numbers in the sequences will be symbolized by p(5)

i,j for the j-th
number in sequence P (5)

i .

This table can be expanded to any r > 1. Instead of arranging the primary
sequences horizontally as in Table 3, we arrange them vertically on a new Table 4,
with the first primary sequence P (r)

1 on the right. To save space, we exclude the
easy cases of r < 5. For ease of reference, we break the table into three segments.
In the middle segment, we arbitrarially choose the seed p(r)

i,0 to be that row in which
p(r)
1,0 = 1 and p(r)

i,0 = 0 for 1 < i  r.
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P (r)
i,j i = r r � 1 r � 2 ... ... 6 5 4 3 2 1

j =
r + 4 16 16 16 16 16 16 16 15 14 12 8
r + 3 8 8 8 8 8 8 8 8 7 6 4
r + 2 4 4 4 4 4 4 4 4 4 3 2
r + 1 2 2 2 2 2 2 2 2 2 2 1
r 1 1 1 1 1 1 1 1 1 1 1

r � 1 1 0 0 0 0 0 0 0 0 0 0
r � 2 0 1 0 0 0 0 0 0 0 0 0
r � 3 0 0 1 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ...

4 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

�1 1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1
�2 �1 2 0 0 0 0 0 0 0 0 0
�3 0 0 0 �1 2 0 0 0 0 0 0
�4 0 0 �1 2 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ...
�r + 2 0 0 0 0 0 0 0 �1 2 0 0
�r + 1 0 0 0 0 0 0 0 0 �1 2 0
�r 0 0 0 0 0 0 0 0 0 �1 2
�r � 1 2 �2 �2 �2 �2 �2 �2 �2 �2 �2 �3
�r � 2 �3 5 1 1 1 1 1 1 1 1 1
�r � 3 1 �4 4 0 0 0 0 0 0 0 0
�r � 4 0 1 �4 4 0 0 0 0 0 0 0

Table 4: Primary Sequences for r > 4

In the first segment of the table, we set forth the coe�cents of the identity
G(r)

k =
Pr�1

j=0(p
(r)
j,kG(r)

j ) where k > r � 1, based on the following iterative process.
Let A =

Pr�1
j=0 G(r)

i�j . Then G(r)
r = A,G(r)

r+1 = G(r)
r + A � G(r)

0 = 2A � G(r)
0 ;

G(r)
r+2 = G(r)

r+1 + G(r)
r + A � G(r)

1 � G(r)
0 = 4A � G(r)

1 � 2G(r)
0 ; etc. The entries for

r + k where k < r are either 2k � 2k�i or 2k � 2k�i � 1. The third segment of the
Table A displays the values of the sequences as the subscripts move into negative
territory, using equation (2) by iteration.

One can now easily posit the following theorem:
Theorem 2. For any numbers G(r)

m and G(r)
n which are part of an r-sequence

G(r)
i+1 =

Pr�1
j=0 G(r)

i�j where r,m, n, q, j and i are integers and r > 1, there exists r
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primary r-sequences p(r)
q,k (being the k-th number in the q-th primary r-sequence)

such that G(r)
m =

Pr�1
j=0 [(p(r)

j+1,m)(G(r)
n+j)].

Proof. The proof follows from the definition of the primary sequences.

Other findings include:

(1) p(r)
2,j = [p(r)

1,j + p(r)
1,j�1] and, for 2 < i  r, p(r)

i,j = [p(r)
1,j + p(r)

i�1,j�1], and
(2) for 1 < i  r, p(r)

i,j =
Pi�1

j=0[p
(r)
1,i�j , and

(3) the values of p(r)
i,j for 1  i  r and j > r can be expressed as a linear function

of powers of 2.

All of these results can be proved using simple induction. I leave to the reader
the derivation of the function referred to in clause (3) of the immediately preceding
paragraph.

Most importantly, the primary sequences for any r-sequence are identical to that
of any other sequence of the same order, regardless of the seeds of the r-sequence
and regardless of whether the numbers of the r-sequence are positive or negative,
rational or irrational, real or imaginary. Hence, in many cases, analysis of an r-
sequence can be reduced to an analysis of the primary r-sequences. For instance,
if one extends Table 4 upward, by just looking at Table 4, the possibility of the
identity

G(r)
n+2 � 4G(r)

n+1 + 4G(r)
n = G(r)

n�2r (14)

pops out. As indicated in [7], the derivation of an identity is often more di�cult
than the proof of the identity. The structure set forth in this paper makes the
derivation considerably easier for a large number of identities.

6. Topics for Future Study

As indicated in [5], much further work needs to be done. Some issues are suggested
in [5]. Still additional issues are raised by this paper. For example, [5] expresses a
view as to the counterpart to the Lucas sequence for r-sequences. The author of
this article believes that there are better candidates, based in part on the results
set forth above. The author hopes to address that issue in a separate paper.

In addition, the author solicits the input of readers on the following conjectures:
1. In order that an r-sequence as defined solely by (1) be seed neutral (that is, the

sequence applies regardless of the seeds), the spread of the identity (the di↵erence
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between the highest and lowest subscripts in the identity) must be at least r, the
order of the sequence.

2. For any integers r and s where r > 2 and 0 < s < r

sX
j=0

2j(�1)(s�j)

✓
s

j

◆
G(r)

s�j = G(r)
n�sr. (15)
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