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Abstract
It is an open problem whether

�2n
n

�
is divisible by 4 or 9 for all n > 256. In

connection with this, we prove that for a fixed uneven m the asymptotic density of
k’s such that m -

�2k+1

2k

�
is 0. To do so we examine numbers of the form ↵k in base

p, where p is a prime and (↵, p) = 1. For every n and a we find an upper bound
on the number of k’s less than a such that (↵k)p contains less than n digits greater
than p

2 . This is done by showing that every sequence of the form h�t, . . . ,�1,�0i,
where 0  �i < p for i � 1 and �0 is in the residue class generated by ↵ modulo p,
occurs at specific places in the representation (↵k)p as k varies.

1. Introduction

A well known conjecture by Erdős states that the central binomial coe�cient
�2n

n

�
is never squarefree for n > 4. The problem was finally solved in 1996 by Granville
and Ramar [5], but is still inspiring further investigation of the central binomial
coe�cients. One question left unanswered can be found in Concrete Mathematics
[4] and is the following conjecture, which is the starting point of this paper.

Conjecture 1.1. The central binomial coe�cient
�2n

n

�
is divisible by 4 or 9 for

every n > 4 except n = 64 and n = 256.

Since 4 divides
�2n

n

�
when n is not a power of 2, we consider only binomial

coe�cients of the form
�2k+1

2k

�
in our study of the conjecture. By Kummer’s theorem,
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the greatest exponent of a prime p dividing the central binomial coe�cient
�2n

n

�
is

equal to the number of carries as n is added to itself in base p. Thus, to prove the
conjecture it is su�cient to show that there are at least 2 carries when 2k is added
to itself in base 3 and k > 8.

In relation to this, Erdős conjectured in 1979 [2] that the base 3 representation
of 2k only omits the digit 2 for k = 0, 2, 8, noting that no methods for attacking it
seemed to exist.

Methods for analysing the digits of powers of a number ↵ in prime bases are
scarce, and further developing such methods is what most of this paper will be
concerned with.

Considering the periodicity of the base p representation of ↵k, for a prime p and
(p,↵) = 1, we find new patterns that allow us to bound the function

Sn
p (a) = #

n
0  s < a | (↵s)p contains less than n digits greater than

p

2

o
.

Specifically, we show that every sequence of the form h�t, . . . ,�1,�0i, where 0 
�i < p for i � 1 and �0 is in the residue class generated by ↵ modulo p, occurs at
given places in the representation (↵k)p as k varies.

Interestingly, if p is not a Wieferich prime base ↵, it turns out that this system
occurs on every digit of (↵k)p.

We use the above observations to show that

Sn
p (a)  8

�
logp(a)

�n�1
alogp( p+1

2 ), (1)

and in special cases we improve results due to Narkiewicz [8], and Kennedy and
Cooper [1]. The bound (1) is used to prove that for any odd m 2 N, the set of
numbers k such that m -

�2k+1

2k

�
has asymptotic density 0, which in the case m = 9

specifically addresses conjecture 1.1.
Lastly, we have used computer experiments to improve a result due to Goet-

gheluck [3] which confirmed Conjecture 1.1 for all n  24.2·107
.

Theorem 1.2. The central binomial coe�cient
�2n

n

�
is divisible by 4 or 9 for every

n such that 4 < n  21013
except for n = 64 and n = 256.

See the Appendix for source code.

2. Large Digits in Prime Bases

In this section we explore the base p representation of powers of an integer ↵, where
p is a prime not dividing ↵. We say that a digit n is “small” if n < p

2 and “large”
otherwise. Further, p will always denote an odd prime, and ↵ > 1 an integer with
(↵, p) = 1.

The main goal of the section is to bound the following function in various ways.
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Definition 2.1. Let p be an odd prime and a, n 2 N. Fix ↵ such that p - ↵. Then
set

Sn
p (a) = # {0  s < a | (↵s)p contains < n large digits} .

Bounding the Sn
p is done by considering periodic properties of ↵k in base p as k

varies.

2.1. Notation and Definitions

Definition 2.2. Let p be a prime and n, k 2 N. We write pk || n if pk | n and
pk+1 - n, i.e., if k is the greatest exponent of p dividing n.

Definition 2.3. We define the following:

• � = {↵k mod p | k 2 Z}, i.e. � is the set of residues generated by ↵ modulo
p.

• ✓ = #{a 2 � | 0  a < p
2}, i.e. ✓ is the number of small residues in �.

• � = ordp(↵) = |�|.
Definition 2.4. Let n 2 N0. We let ⇤n denote the set of sequences of the form

h�n,�n�1, . . . ,�1,�0i,

where �0 2 � and 0  �i < p for 1  i  n.

Definition 2.5. Let m 2 N be represented in base p as m =
P

i�0 aipi, where 0 
aj < p. To pinpoint specific digits we make the following definitions: ak = (m)p[k]
and hak, · · · , ali = (m)p[k : l], k � l.

2.2. Sequences

We will now consider the representations (↵s)p when s varies to show how members
of ⇤k occur as subsequences of these representations.

First, we need a couple of lemmas.

Lemma 2.6. Let p be an odd prime and ↵ > 1 be given such that (p,↵) = 1. Let
further pt || ↵�pk � 1 for some t > 0 and k � 0. Then pt+1 || ↵�pk+1 � 1.

Proof. Let ↵�pk
= upt + 1 with (u, p) = 1. Then

↵�pk+1
=
�
upt + 1

�p = 1 + upt+1 + u2p2t

✓
p

2

◆
+ R,

where R is divisible by p3t and thus divisible by pt+2 since t > 0. Further, p |
�p
2

�
,

so pt+2 | u2p2t
�p
2

�
and we get

↵�pk+1 ⌘ 1 + upt+1 (mod pt+2),

showing that pt+1 || ↵�pk+1 � 1.
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Lemma 2.7. Let p be an odd prime and ↵ > 1 be given such that (p,↵) = 1.
Assume that p⌧ || ↵� � 1. Then

p⌧+k || ↵�pk � 1 and ordp⌧+k(↵) = �pk

for every k � 0.

Proof. The first part follows easily by induction on k using Lemma 2.6. For the
second part, note that

� = ordp(↵) | ordp⌧+k(↵) and ordp⌧+k(↵) | �pk.

Thus, ordp⌧+k(↵) = �pr for some r  k. By the first part, we have p⌧+k�1 ||
↵�pk�1 � 1, so p⌧+k - ↵�pk�1 � 1 and we must have ordp⌧+k(↵) = �pk.

With these lemmas at hand we are ready to analyse the base p representation
(↵s)p. To do so, we use the following definition.

Definition 2.8. Let a = . . . a2a1a0 be any integer represented by an infinite se-
quence (ai)i2N0 in some base. Then we define

c⌧,k(a) = ha⌧+k�1, . . . , a⌧+1, a⌧ , a0i.

We make this definition since our interest lies in the digits underlined here:

. . . a⌧+k�1 . . . a⌧ . . . a1a0,

because all the elements of ⇤n will appear periodically as subsequences of (↵s)p

on these positions, when s changes. This is captured in the main theorem of the
section.

Theorem 2.9. Let p be an odd prime and ↵ > 1 be given such that (p,↵) = 1.
Further, let ⌧ > 0 be the integer satisfying p⌧ || ↵� � 1. Then for any k � 0

�
c⌧,k((↵b)p) | 0  b < �pk

 
= ⇤k.

Proof. Let T :=
�
c⌧,k((↵b)p) | 0  b < �pk

 
. Clearly, T ✓ ⇤k since every member

of T is of the form h�k,�k�1, . . . ,�1,�0i, where 0  �i < p for 1  i  k and �0 2 �,
because (↵b)p[0] 2 � for any b � 0.

We now prove T = ⇤k, by showing |T | = �pk = |⇤k|, where the last equality
already follows from the definition of ⇤k.

Since p⌧ || ↵� � 1 both (↵b)p[⌧ � 1 : 0] and (↵b)p[0] are periodic with respect to
b with least period � and no repetitions in the period. This means that for b, c � 0
we have (↵b)p[⌧ � 1 : 0] = (↵c)p[⌧ � 1 : 0] if and only if (↵b)p[0] = (↵c)p[0].

Now, assume for contradiction that c⌧,k((↵b)p) = c⌧,k((↵c)p) for some 0  b <
c < �pk. Since (↵b)p[0] = (↵c)p[0] we have (↵b)p[⌧ � 1 : 0] = (↵c)p[⌧ � 1 : 0], so
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(↵b)p[⌧ + k � 1 : 0] = (↵c)p[⌧ + k � 1 : 0], i.e. ↵b ⌘ ↵c (mod p⌧+k). Therefore,
p⌧+k | ↵b(↵c�b � 1), but this means that p⌧+k | ↵c�b � 1 contradicting Lemma 2.7
since 0 < c� b < �pk.

Thus, all the elements in the definition of T are di↵erent, and |T | = �pk.

2.2.1. Wieferich Primes

The main result of the section has a curious corollary related to the Wieferich
primes.

Definition 2.10. Let p be a prime and ↵ > 1 be given such that (↵, p) = 1. Then
p is a Wieferich prime base ↵ if p2 | ↵� � 1.

Since numerics [6] indicate that for any ↵ > 1 the Wieferich primes base ↵ are
somewhat scarce, it is interesting that the following elegant property holds for any
(p,↵) such that p is not a Wieferich prime base ↵.

Corollary 2.11. Let p be a prime which is not a Wieferich prime base ↵. Then
�
(↵b)p[k : 0] | 0  b < �pk

 
= ⇤k.

Proof. Since p is not a Wieferich prime base ↵, we have p1 || ↵� . Noticing that
c1,k(a) = a[k : 0] the corollary follows directly from Theorem 2.9.

Thus, p not being a Wieferich prime base ↵ implies that the first k + 1 digits of
(↵s)p will form all sequences of ⇤k periodically as s varies.

2.3. Bounds on Sn
p

The findings of the previous section allow us to obtain various bounds on the func-
tion Sn

p . First we introduce a lemma, which is a step on the way to bounding Sn
p

for n = 1.

Lemma 2.12. Let s, t � 0, p be a prime, and � = ordp(↵). Then we have

S1
p(s�pt)  s✓

✓
p + 1

2

◆t

.

Proof. The number of sequences of ⇤t containing only small digits is ✓
�p+1

2

�t
. Thus,

by Theorem 2.9 there are at most ✓
�p+1

2

�t
integers 0  h < �pt, such that (↵h)p

does not contain any large digits. Now, letting p⌧ || ↵� � 1 we have, by Lemma
2.7, that the last ⌧ + t� 1 digits of (↵h)p are periodic with respect to h with least
period �pt and no repetition in the period. Thus,

⇤t =
�
c⌧,t((↵b)p) | 0  b < �pt

 
=
�
c⌧,t((↵b)p) | r�pt  b < (r + 1)�pt

 



INTEGERS: 15 (2015) 6

for every r 2 N0, and we can see that there are at most ✓
�p+1

2

�t
integers r�pt 

h < (r + 1)�pt such that (↵h)p does not contain any large digits.
This yields

S1
p(s�pt)  s✓

✓
p + 1

2

◆t

.

Now, the following theorem improves a result by Narkiewicz [8] by a constant
factor.

Theorem 2.13. Let ↵ ⌘ 2 (mod 3) in the definition of S. For every a 2 N we
have S1

3 (a)  1.3alog3(2).

Proof. The theorem obviously holds for a = 1. Now consider an a � 2, and let s, t
be given such that s 2 {1, 2} and s · 2 · 3t  a  (s + 1) · 2 · 3t. We now have

t  log3(a)� log3(2s),

and since S1
3 clearly is weakly increasing and by Lemma 2.12, we get

S1
3 (a)  S1

3

�
(s + 1) · 2 · 3t

�
 (s + 1) · 2t  (s + 1) · 2� log3(2s) · 2log3(a).

For s 2 {1, 2} the constant (s + 1) · 2� log3(2s) is maximised by s = 1, and so

S1
3 (a)  2 · 2� log3(2) · 2log3(a)  1.3alog3(2).

The function S1
m for m > 2 is studied by R. E. Kennedy and C. Cooper [1], and

if we consider only the cases when m is a prime, we get the following improvement
of their results, which replaces a factor increasing with m with a constant.

Theorem 2.14. Let p be a prime and ↵ arbitrary in the definition of S. Then for
all a 2 N, we have S1

p(a)  4alogp( p+1
2 ).

Proof. The theorem holds for a < � since a < 4alogp( p+1
2 ) for a < p.

Now let a � � and s, t be integers with 0 < s < p such that s�pt  a < (s + 1)�pt.
Now, t  logp(a)� logp(s�), and letting µ = logp

�p+1
2

�
we get, by Lemma 2.12,

S1
p(a)  S1

p((s + 1)�pt)  (s + 1)✓
✓

p + 1
2

◆t

 (s + 1)✓
✓

p + 1
2

◆logp(a)�logp(s�)

= (s + 1)✓ (s�)�µ aµ.

Since ✓  � < p we get

S1
p(a)  s + 1

sµ
�1�µaµ  s + 1

sµ
p1�µaµ =

s + 1
sµ

2p
p + 1

aµ.
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Considering s+1
sµ we see that d

ds

�
s+1
sµ

�
= s�µ�1(s(1 � µ) � µ), and thus s+1

sµ is
strictly decreasing for s 2

h
1, µ

1�µ

⌘
and strictly increasing for s 2

⇣
µ

1�µ , p
i

and
consequently attains its maximum on [1, p] either at 1 or p. Since s = 1, s = p both
yield 1+1

1µ = p+1
pµ = 2, we get S1

p(a)  4aµ.

Finally, we generalize our observations regarding Sn
p .

Lemma 2.15. Let s � 0, t � 1, p be a prime, and � = ordp(↵). Then we have

Sn
p (s�pt)  2s�tn�1

✓
p + 1

2

◆t

.

Proof. For t = 1 the result is clear. Now, assume t > 1.
First, we count the number of sequences ⌘ 2 ⇤t such that ⌘ contains less than n

large elements. This is done by counting for each i < n how many sequences ⌘ 2 ⇤t

that contain exactly i large elements.
For each i we split up into two cases:

Case 1: The last element of ⌘ is large (which means i > 0). This element can then
be chosen in � � ✓ ways, and there are

� t
i�1

� �p�1
2

�i�1 �p+1
2

�t+1�i
ways to choose

the remaining t elements such that exactly i� 1 of them are large.
Case 2: The last element of ⌘ is small. This element can then be chosen in ✓ ways,
and there are

�t
i

� �p�1
2

�i �p+1
2

�t�i
ways to choose the remaining t elements such that

exactly i of them are large.
Thus, we can express the number of elements in ⇤t containing less than n large

elements by

n�1X
i=1

(� � ✓)
✓

t

i� 1

◆✓
p� 1

2

◆i�1 ✓p + 1
2

◆t+1�i

+
n�1X
i=0

✓

✓
t

i

◆✓
p� 1

2

◆i ✓p + 1
2

◆t�i

 �

✓
p + 1

2

◆t n�1X
i=0

✓
t

i

◆

 �

✓
p + 1

2

◆t n�1X
i=0

ti

 2�tn�1

✓
p + 1

2

◆t

,

since t > 1.
Now, as in the proof of Lemma 2.12, we can conclude by Theorem 2.9 and

Lemma 2.7 that for every r 2 N0 there are at most 2�tn�1
�p+1

2

�t
integers r�pt 

k < (r + 1)�pt such that (↵k)p contains less than n large digits. Thus, we have

Sn
p (s�pt)  2s�tn�1

✓
p + 1

2

◆t

.
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Theorem 2.16. Let p be a prime and ↵ arbitrary in the definition of S. Then for
all a, n 2 N, where a � �p, we have Sn

p (a)  8 logp(a)n�1alogp( p+1
2 ).

Proof. Let a � �p be given, and s, t be integers with 0 < s < p and t � 1 such that
s�pt  a < (s + 1)�pt. Now, t  logp(a)� logp(s�), and letting µ = logp

�p+1
2

�
we

use Lemma 2.15 and the fact that s+1
sµ �1�µ  4 from the proof of Theorem 2.14 to

get

Sn
p (a)  Sn

p

�
(s + 1)�pt

�

 2(s + 1)�tn�1

✓
p + 1

2

◆t

 2(s + 1)�
�
logp(a)� logp(s�)

�n�1
✓

p + 1
2

◆logp(a)�logp(s�)

 2(s + 1)�(s�)�µ logp(a)n�1aµ

= 2
s + 1
sµ

�1�µ logp(a)n�1aµ

 8 logp(a)n�1alogp( p+1
2 ).

3. Application to Central Binomial Coe�cients

This section will apply the bounds on S to a generalisation of Conjecture 1.1 in
order to show that the set of numbers not satisfying the conjecture restricted to the
case n = 2s has asymptotic density 0.

For this we need the following theorem by Kummer.

Theorem 3.1 (Kummer [7]). Let n,m � 0 and p be a prime. Then the greatest
exponent of p dividing

�n+m
m

�
is equal to the number of carries, when n is added to

m in base p.

Further we define the following function:

Definition 3.2. Let m 2 N be odd. Then we define

Tm(a) = #
⇢

0  s < a

����m -
✓

2s+1

2s

◆�
.

It is clear that to show Conjecture 1.1 we would have to bound T9 by T9(a)  5 for
all a. Instead we can get a partial result by connecting T and S in the following
way:
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Lemma 3.3. Let a, n 2 N, ↵ = 2 in the definition of S, and p be an odd prime.
Then Tpn(a)  Sn

p (a).

Proof. Adding 2s to itself in base p will yield at least one carry for every large digit
in (2s)p. Thus, by Kummer’s theorem, we must have Tpn(a)  Sn

p (a).

With this at hand, it is possible to give an asymptotic upper bound on Tm for every
odd m.

Theorem 3.4. Let m > 1 be odd and let p be the greatest prime dividing m. Then

Tm(a) = o
⇣
alogp( p+1

2 )+✏
⌘

for any ✏ > 0.

Proof. Assume m has prime factorisation m = p�1
1 p�2

2 · · · p�k

k with p1 < p2 < · · · <

pk. Then S�i
pi

(a) = O

✓
logpk

(a)�k�1a
logpk

⇣
pk+1

2

⌘◆
for all 1  i  k, since pi  pk,

and thus,

Tm(a) 
kX

i=1

S�i
pi

(a) = O

✓
logpk

(a)�k�1a
logpk

⇣
pk+1

2

⌘◆
= o

✓
a
logpk

⇣
pk+1

2

⌘
+✏
◆

for any ✏ > 0.

Although we still cannot give a definite answer to Conjecture 1.1, we do get the
following corollary.

Corollary 3.5. For every odd m the set of integers s such that m -
�2s+1

2s

�
has

asymptotic density 0.

Proof. By Theorem 3.4 we have Tm(a) = o (a).

Since the case m = 9 is not special in this corollary, it seems natural to pose the
following conjecture, which strengthens Conjecture 1.1.

Conjecture 3.6. For every odd m there is an N 2 N such that m |
�2k+1

2k

�
for every

k � N .

It seems by Theorem 2.9 and by computer heuristics that the digits of (2s)p are
uniformly distributed for large s in the sense that for any 0  a < p most digits in
the representation have probability roughly 1/p of being a.

Assuming such a random distribution of the digits in the representation and
considering computer experiments on a selection of primes p < 200 has lead to the
following conjecture.
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Conjecture 3.7. For an odd prime, p, let ✏p(a) be the function satisfying p✏p(a) || a
for every a. Then

✏p

✓✓
2k+1

2k

◆◆
=

log(2)
2 log(p)

· k + O(
p

k).
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Appendix

The following code checks that the central binomial coe�cient
�2n

n

�
is divisible by

4 or 9 for every n such that 4 < n  21013
except for n = 64 and n = 256. The

Java-code checks the first 35 digits of the base 3 representation of 2k for every k
such that 0 < k < 1013. Every k such that the first 35 digits of 2k do not contain
two 2’s is written to a file containing special cases. These cases are then checked
individually by the Python-code.
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JAVA source

import java.io.FileWriter;

import java.io.IOException;

import java.io.File;

class NewSearcher {

private static int[] number = new int[35];

private static int size = 0;

private static final int MAX_SIZE = 35;

private static final String ERROR_FILE = "Check_needed.txt";

public static void main(String[] args) {

deleteFile(ERROR_FILE);

addNum(1);

for (int a=0; a<10000000; a++) {

for (int b=0; b<1000000; b++) {

if (doubleIt()) {

String output = String.format("%d%06d", a, b);

System.out.println(output);

writeNumberToFile(ERROR_FILE, output);

}

}

}

}

private static void addNum(int num) {

if (size < MAX_SIZE) {

number[size] = num;

size ++;

}

}

public static boolean doubleIt() {

int totalCarry = 0;

int carry = 0;

int i=0;

while (totalCarry < 2 && i<size) {

int res = (number[i]*2 + carry);

carry = (res>=3) ? 1 : 0;

number[i] = (res % 3);

if (carry==1) totalCarry ++;

i++;

}
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while (i<size) {

int res = (number[i]*2 + carry);

carry = (res>=3) ? 1 : 0;

number[i] = (res % 3);

i++;

}

if (carry == 1) {

addNum(1);

}

return (totalCarry<2);

}

public static void writeNumberToFile(String filename, String number)

{

try

{

FileWriter fw = new FileWriter(filename, true);

fw.write(number + "\r\n");

fw.close();

}

catch(IOException e)

{

System.out.println("IOException: " + e.getMessage());

}

}

public static void deleteFile(String filename) {

try {

File toDelete = new File(filename);

toDelete.delete();

} catch (Exception e) {

}

}

}

3
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Python source

def mod(n, md):

if n < 10:

return 2**n%md

return 2**(n%2)*mod(n/2, md)**2%md

def checkCarry(n):

tmp = n

count = 0

while tmp and count<2:

if tmp%3 == 2:

count += 1

tmp /= 3

return count<2

fil = file("Check_needed.txt", "r")

nls = []

while True:

try:

next = int(fil.readline())

if checkCarry(mod(next, 3**50)):

nls.append(next)

except ValueError:

break

for i in nls:

if checkCarry(mod(i, 3**80)):

print i


