

POWERS IN PRIME BASES AND A PROBLEM ON CENTRAL **BINOMIAL COEFFICIENTS**

Sebastian Tim Holdum

Niels Bohr Institute, University of Copenhagen, Denmark sebastian.holdum@nbi.dk

Frederik Ravn Klausen

Department of Mathematics, University of Copenhagen, Denmark tlk870@alumni.ku.dk

Peter Michael Reichstein Rasmussen Department of Mathematics, University of Copenhagen, Denmark nmq584@alumni.ku.dk

Received: 7/18/14, Revised: 8/30/15, Accepted: 10/4/15, Published: 10/13/15

Abstract It is an open problem whether $\binom{2n}{n}$ is divisible by 4 or 9 for all n > 256. In connection with this, we prove that for a fixed uneven m the asymptotic density of k's such that $m \nmid \binom{2^{k+1}}{2^k}$ is 0. To do so we examine numbers of the form α^k in base p, where p is a prime and $(\alpha, p) = 1$. For every n and a we find an upper bound on the number of k's less than a such that $(\alpha^k)_p$ contains less than n digits greater than $\frac{p}{2}$. This is done by showing that every sequence of the form $\langle \sigma_t, \ldots, \sigma_1, \sigma_0 \rangle$, where $0 \leq \sigma_i < p$ for $i \geq 1$ and σ_0 is in the residue class generated by α modulo p, occurs at specific places in the representation $(\alpha^k)_p$ as k varies.

1. Introduction

A well known conjecture by Erdős states that the central binomial coefficient $\binom{2n}{n}$ is never squarefree for n > 4. The problem was finally solved in 1996 by Granville and Ramar [5], but is still inspiring further investigation of the central binomial coefficients. One question left unanswered can be found in *Concrete Mathematics* [4] and is the following conjecture, which is the starting point of this paper.

Conjecture 1.1. The central binomial coefficient $\binom{2n}{n}$ is divisible by 4 or 9 for every n > 4 except n = 64 and n = 256.

Since 4 divides $\binom{2n}{n}$ when n is not a power of 2, we consider only binomial coefficients of the form $\binom{2^{k+1}}{2^k}$ in our study of the conjecture. By Kummer's theorem,

#A43

the greatest exponent of a prime p dividing the central binomial coefficient $\binom{2n}{n}$ is equal to the number of carries as n is added to itself in base p. Thus, to prove the conjecture it is sufficient to show that there are at least 2 carries when 2^k is added to itself in base 3 and k > 8.

In relation to this, Erdős conjectured in 1979 [2] that the base 3 representation of 2^k only omits the digit 2 for k = 0, 2, 8, noting that no methods for attacking it seemed to exist.

Methods for analysing the digits of powers of a number α in prime bases are scarce, and further developing such methods is what most of this paper will be concerned with.

Considering the periodicity of the base p representation of α^k , for a prime p and $(p, \alpha) = 1$, we find new patterns that allow us to bound the function

$$S_p^n(a) = \# \left\{ 0 \le s < a \mid (\alpha^s)_p \text{ contains less than } n \text{ digits greater than } \frac{p}{2} \right\}.$$

Specifically, we show that every sequence of the form $\langle \sigma_t, \ldots, \sigma_1, \sigma_0 \rangle$, where $0 \leq \sigma_i < p$ for $i \geq 1$ and σ_0 is in the residue class generated by α modulo p, occurs at given places in the representation $(\alpha^k)_p$ as k varies.

Interestingly, if p is not a Wieferich prime base α , it turns out that this system occurs on every digit of $(\alpha^k)_p$.

We use the above observations to show that

$$\mathcal{S}_p^n(a) \le 8 \left(\log_p(a) \right)^{n-1} a^{\log_p\left(\frac{p+1}{2}\right)},\tag{1}$$

and in special cases we improve results due to Narkiewicz [8], and Kennedy and Cooper [1]. The bound (1) is used to prove that for any odd $m \in \mathbb{N}$, the set of numbers k such that $m \nmid \binom{2^{k+1}}{2^k}$ has asymptotic density 0, which in the case m = 9 specifically addresses conjecture 1.1.

Lastly, we have used computer experiments to improve a result due to Goetgheluck [3] which confirmed Conjecture 1.1 for all $n \leq 2^{4.2 \cdot 10^7}$.

Theorem 1.2. The central binomial coefficient $\binom{2n}{n}$ is divisible by 4 or 9 for every n such that $4 < n \le 2^{10^{13}}$ except for n = 64 and n = 256.

See the Appendix for source code.

2. Large Digits in Prime Bases

In this section we explore the base p representation of powers of an integer α , where p is a prime not dividing α . We say that a digit n is "small" if $n < \frac{p}{2}$ and "large" otherwise. Further, p will always denote an odd prime, and $\alpha > 1$ an integer with $(\alpha, p) = 1$.

The main goal of the section is to bound the following function in various ways.

INTEGERS: 15 (2015)

Definition 2.1. Let p be an odd prime and $a, n \in \mathbb{N}$. Fix α such that $p \nmid \alpha$. Then set

 $\mathcal{S}_p^n(a) = \# \{ 0 \le s < a \mid (\alpha^s)_p \text{ contains } < n \text{ large digits} \}.$

Bounding the S_p^n is done by considering periodic properties of α^k in base p as k varies.

2.1. Notation and Definitions

Definition 2.2. Let p be a prime and $n, k \in \mathbb{N}$. We write $p^k \mid |n|$ if $p^k \mid n$ and $p^{k+1} \nmid n$, i.e., if k is the greatest exponent of p dividing n.

Definition 2.3. We define the following:

- $\delta = \{\alpha^k \mod p \mid k \in \mathbb{Z}\}$, i.e. δ is the set of residues generated by α modulo p.
- $\theta = \#\{a \in \delta \mid 0 \le a < \frac{p}{2}\}$, i.e. θ is the number of small residues in δ .
- $\gamma = \operatorname{ord}_p(\alpha) = |\delta|.$

Definition 2.4. Let $n \in \mathbb{N}_0$. We let Λ_n denote the set of sequences of the form

$$\langle \sigma_n, \sigma_{n-1}, \ldots, \sigma_1, \sigma_0 \rangle,$$

where $\sigma_0 \in \delta$ and $0 \leq \sigma_i < p$ for $1 \leq i \leq n$.

Definition 2.5. Let $m \in \mathbb{N}$ be represented in base p as $m = \sum_{i \geq 0} a_i p^i$, where $0 \leq a_j < p$. To pinpoint specific digits we make the following definitions: $a_k = (m)_p[k]$ and $\langle a_k, \dots, a_l \rangle = (m)_p[k:l], k \geq l$.

2.2. Sequences

We will now consider the representations $(\alpha^s)_p$ when s varies to show how members of Λ_k occur as subsequences of these representations.

First, we need a couple of lemmas.

Lemma 2.6. Let p be an odd prime and $\alpha > 1$ be given such that $(p, \alpha) = 1$. Let further $p^t \mid\mid \alpha^{\gamma p^k} - 1$ for some t > 0 and $k \ge 0$. Then $p^{t+1} \mid\mid \alpha^{\gamma p^{k+1}} - 1$.

Proof. Let $\alpha^{\gamma p^k} = up^t + 1$ with (u, p) = 1. Then

$$\alpha^{\gamma p^{k+1}} = \left(up^t + 1\right)^p = 1 + up^{t+1} + u^2 p^{2t} \binom{p}{2} + R,$$

where R is divisible by p^{3t} and thus divisible by p^{t+2} since t > 0. Further, $p \mid \binom{p}{2}$, so $p^{t+2} \mid u^2 p^{2t} \binom{p}{2}$ and we get

$$\alpha^{\gamma p^{k+1}} \equiv 1 + up^{t+1} \pmod{p^{t+2}},$$

showing that $p^{t+1} \mid\mid \alpha^{\gamma p^{k+1}} - 1$.

INTEGERS: 15 (2015)

Lemma 2.7. Let p be an odd prime and $\alpha > 1$ be given such that $(p, \alpha) = 1$. Assume that $p^{\tau} \parallel \alpha^{\gamma} - 1$. Then

$$p^{\tau+k} \parallel \alpha^{\gamma p^k} - 1 \text{ and } \operatorname{ord}_{p^{\tau+k}}(\alpha) = \gamma p^k$$

for every $k \geq 0$.

Proof. The first part follows easily by induction on k using Lemma 2.6. For the second part, note that

$$\gamma = \operatorname{ord}_p(\alpha) \mid \operatorname{ord}_{p^{\tau+k}}(\alpha) \text{ and } \operatorname{ord}_{p^{\tau+k}}(\alpha) \mid \gamma p^k.$$

Thus, $\operatorname{ord}_{p^{\tau+k}}(\alpha) = \gamma p^r$ for some $r \leq k$. By the first part, we have $p^{\tau+k-1} \parallel \alpha^{\gamma p^{k-1}} - 1$, so $p^{\tau+k} \nmid \alpha^{\gamma p^{k-1}} - 1$ and we must have $\operatorname{ord}_{p^{\tau+k}}(\alpha) = \gamma p^k$.

With these lemmas at hand we are ready to analyse the base p representation $(\alpha^s)_p$. To do so, we use the following definition.

Definition 2.8. Let $a = \ldots a_2 a_1 a_0$ be any integer represented by an infinite sequence $(a_i)_{i \in \mathbb{N}_0}$ in some base. Then we define

$$c_{\tau,k}(a) = \langle a_{\tau+k-1}, \dots, a_{\tau+1}, a_{\tau}, a_0 \rangle.$$

We make this definition since our interest lies in the digits underlined here:

$$\ldots \underline{a_{\tau+k-1} \ldots a_{\tau}} \ldots \underline{a_1} \underline{a_0},$$

because all the elements of Λ_n will appear periodically as subsequences of $(\alpha^s)_p$ on these positions, when s changes. This is captured in the main theorem of the section.

Theorem 2.9. Let p be an odd prime and $\alpha > 1$ be given such that $(p, \alpha) = 1$. Further, let $\tau > 0$ be the integer satisfying $p^{\tau} \parallel \alpha^{\gamma} - 1$. Then for any $k \ge 0$

$$\left\{c_{\tau,k}((\alpha^b)_p) \mid 0 \le b < \gamma p^k\right\} = \Lambda_k$$

Proof. Let $T := \{c_{\tau,k}((\alpha^b)_p) \mid 0 \le b < \gamma p^k\}$. Clearly, $T \subseteq \Lambda_k$ since every member of T is of the form $\langle \sigma_k, \sigma_{k-1}, \ldots, \sigma_1, \sigma_0 \rangle$, where $0 \le \sigma_i < p$ for $1 \le i \le k$ and $\sigma_0 \in \delta$, because $(\alpha^b)_p[0] \in \delta$ for any $b \ge 0$.

We now prove $T = \Lambda_k$, by showing $|T| = \gamma p^k = |\Lambda_k|$, where the last equality already follows from the definition of Λ_k .

Since $p^{\tau} \mid \mid \alpha^{\gamma} - 1$ both $(\alpha^{b})_{p}[\tau - 1:0]$ and $(\alpha^{b})_{p}[0]$ are periodic with respect to b with least period γ and no repetitions in the period. This means that for $b, c \geq 0$ we have $(\alpha^{b})_{p}[\tau - 1:0] = (\alpha^{c})_{p}[\tau - 1:0]$ if and only if $(\alpha^{b})_{p}[0] = (\alpha^{c})_{p}[0]$.

Now, assume for contradiction that $c_{\tau,k}((\alpha^b)_p) = c_{\tau,k}((\alpha^c)_p)$ for some $0 \le b < c < \gamma p^k$. Since $(\alpha^b)_p[0] = (\alpha^c)_p[0]$ we have $(\alpha^b)_p[\tau - 1:0] = (\alpha^c)_p[\tau - 1:0]$, so

 $(\alpha^b)_p[\tau+k-1:0] = (\alpha^c)_p[\tau+k-1:0]$, i.e. $\alpha^b \equiv \alpha^c \pmod{p^{\tau+k}}$. Therefore, $p^{\tau+k} \mid \alpha^b(\alpha^{c-b}-1)$, but this means that $p^{\tau+k} \mid \alpha^{c-b}-1$ contradicting Lemma 2.7 since $0 < c-b < \gamma p^k$.

Thus, all the elements in the definition of T are different, and $|T| = \gamma p^k$.

2.2.1. Wieferich Primes

The main result of the section has a curious corollary related to the Wieferich primes.

Definition 2.10. Let p be a prime and $\alpha > 1$ be given such that $(\alpha, p) = 1$. Then p is a Wieferich prime base α if $p^2 \mid \alpha^{\gamma} - 1$.

Since numerics [6] indicate that for any $\alpha > 1$ the Wieferich primes base α are somewhat scarce, it is interesting that the following elegant property holds for any (p, α) such that p is not a Wieferich prime base α .

Corollary 2.11. Let p be a prime which is not a Wieferich prime base α . Then

$$\left\{ (\alpha^b)_p[k:0] \mid 0 \le b < \gamma p^k \right\} = \Lambda_k.$$

Proof. Since p is not a Wieferich prime base α , we have $p^1 \parallel \alpha^{\gamma}$. Noticing that $c_{1,k}(a) = a[k:0]$ the corollary follows directly from Theorem 2.9.

Thus, p not being a Wieferich prime base α implies that the first k + 1 digits of $(\alpha^s)_p$ will form all sequences of Λ_k periodically as s varies.

2.3. Bounds on \mathcal{S}_p^n

The findings of the previous section allow us to obtain various bounds on the function S_p^n . First we introduce a lemma, which is a step on the way to bounding S_p^n for n = 1.

Lemma 2.12. Let $s, t \ge 0$, p be a prime, and $\gamma = \operatorname{ord}_p(\alpha)$. Then we have

$$\mathcal{S}_p^1(s\gamma p^t) \le s\theta\left(\frac{p+1}{2}\right)^t.$$

Proof. The number of sequences of Λ_t containing only small digits is $\theta\left(\frac{p+1}{2}\right)^t$. Thus, by Theorem 2.9 there are at most $\theta\left(\frac{p+1}{2}\right)^t$ integers $0 \le h < \gamma p^t$, such that $(\alpha^h)_p$ does not contain any large digits. Now, letting $p^{\tau} \parallel \alpha^{\gamma} - 1$ we have, by Lemma 2.7, that the last $\tau + t - 1$ digits of $(\alpha^h)_p$ are periodic with respect to h with least period γp^t and no repetition in the period. Thus,

$$\Lambda_t = \left\{ c_{\tau,t}((\alpha^b)_p) \mid 0 \le b < \gamma p^t \right\} = \left\{ c_{\tau,t}((\alpha^b)_p) \mid r\gamma p^t \le b < (r+1)\gamma p^t \right\}$$

for every $r \in \mathbb{N}_0$, and we can see that there are at most $\theta\left(\frac{p+1}{2}\right)^t$ integers $r\gamma p^t \leq h < (r+1)\gamma p^t$ such that $(\alpha^h)_p$ does not contain any large digits.

This yields

$$\mathcal{S}_p^1(s\gamma p^t) \le s\theta\left(\frac{p+1}{2}\right)^t.$$

Now, the following theorem improves a result by Narkiewicz [8] by a constant factor.

Theorem 2.13. Let $\alpha \equiv 2 \pmod{3}$ in the definition of S. For every $a \in \mathbb{N}$ we have $S_3^1(a) \leq 1.3a^{\log_3(2)}$.

Proof. The theorem obviously holds for a = 1. Now consider an $a \ge 2$, and let s, t be given such that $s \in \{1, 2\}$ and $s \cdot 2 \cdot 3^t \le a \le (s+1) \cdot 2 \cdot 3^t$. We now have

$$t \le \log_3(a) - \log_3(2s),$$

and since S_3^1 clearly is weakly increasing and by Lemma 2.12, we get

$$\mathcal{S}_{3}^{1}(a) \leq \mathcal{S}_{3}^{1}\left((s+1) \cdot 2 \cdot 3^{t}\right) \leq (s+1) \cdot 2^{t} \leq (s+1) \cdot 2^{-\log_{3}(2s)} \cdot 2^{\log_{3}(a)}.$$

For $s \in \{1, 2\}$ the constant $(s+1) \cdot 2^{-\log_3(2s)}$ is maximised by s = 1, and so

$$S_3^1(a) \le 2 \cdot 2^{-\log_3(2)} \cdot 2^{\log_3(a)} \le 1.3a^{\log_3(2)}.$$

The function S_m^1 for m > 2 is studied by R. E. Kennedy and C. Cooper [1], and if we consider only the cases when m is a prime, we get the following improvement of their results, which replaces a factor increasing with m with a constant.

Theorem 2.14. Let p be a prime and α arbitrary in the definition of S. Then for all $a \in \mathbb{N}$, we have $S_p^1(a) \leq 4a^{\log_p(\frac{p+1}{2})}$.

Proof. The theorem holds for $a < \gamma$ since $a < 4a^{\log_p\left(\frac{p+1}{2}\right)}$ for a < p. Now let $a \ge \gamma$ and s, t be integers with 0 < s < p such that $s\gamma p^t \le a < (s+1)\gamma p^t$. Now, $t \le \log_p(a) - \log_p(s\gamma)$, and letting $\mu = \log_p\left(\frac{p+1}{2}\right)$ we get, by Lemma 2.12,

$$\mathcal{S}_p^1(a) \le \mathcal{S}_p^1((s+1)\gamma p^t) \le (s+1)\theta\left(\frac{p+1}{2}\right)^t \le (s+1)\theta\left(\frac{p+1}{2}\right)^{\log_p(a) - \log_p(s\gamma)} = (s+1)\theta\left(s\gamma\right)^{-\mu}a^{\mu}.$$

Since $\theta \leq \gamma < p$ we get

$$\mathcal{S}_p^1(a) \le \frac{s+1}{s^{\mu}} \gamma^{1-\mu} a^{\mu} \le \frac{s+1}{s^{\mu}} p^{1-\mu} a^{\mu} = \frac{s+1}{s^{\mu}} \frac{2p}{p+1} a^{\mu}.$$

INTEGERS: 15 (2015)

Considering $\frac{s+1}{s^{\mu}}$ we see that $\frac{d}{ds}\left(\frac{s+1}{s^{\mu}}\right) = s^{-\mu-1}(s(1-\mu)-\mu)$, and thus $\frac{s+1}{s^{\mu}}$ is strictly decreasing for $s \in \left[1, \frac{\mu}{1-\mu}\right)$ and strictly increasing for $s \in \left(\frac{\mu}{1-\mu}, p\right]$ and consequently attains its maximum on [1, p] either at 1 or p. Since s = 1, s = p both yield $\frac{1+1}{1^{\mu}} = \frac{p+1}{p^{\mu}} = 2$, we get $\mathcal{S}_p^1(a) \leq 4a^{\mu}$.

Finally, we generalize our observations regarding \mathcal{S}_p^n .

Lemma 2.15. Let $s \ge 0$, $t \ge 1$, p be a prime, and $\gamma = \operatorname{ord}_p(\alpha)$. Then we have

$$\mathcal{S}_p^n(s\gamma p^t) \le 2s\gamma t^{n-1}\left(\frac{p+1}{2}\right)^t.$$

Proof. For t = 1 the result is clear. Now, assume t > 1.

First, we count the number of sequences $\eta \in \Lambda_t$ such that η contains less than n large elements. This is done by counting for each i < n how many sequences $\eta \in \Lambda_t$ that contain exactly i large elements.

For each i we split up into two cases:

Case 1: The last element of η is large (which means i > 0). This element can then be chosen in $\gamma - \theta$ ways, and there are $\binom{t}{i-1} \left(\frac{p-1}{2}\right)^{i-1} \left(\frac{p+1}{2}\right)^{t+1-i}$ ways to choose the remaining t elements such that exactly i-1 of them are large.

Case 2: The last element of η is small. This element can then be chosen in θ ways, and there are $\binom{t}{i} \left(\frac{p-1}{2}\right)^i \left(\frac{p+1}{2}\right)^{t-i}$ ways to choose the remaining t elements such that exactly i of them are large.

Thus, we can express the number of elements in Λ_t containing less than n large elements by

$$\begin{split} \sum_{i=1}^{n-1} (\gamma - \theta) \binom{t}{i-1} \left(\frac{p-1}{2}\right)^{i-1} \left(\frac{p+1}{2}\right)^{t+1-i} + \sum_{i=0}^{n-1} \theta \binom{t}{i} \left(\frac{p-1}{2}\right)^i \left(\frac{p+1}{2}\right)^{t-i} \\ &\leq \gamma \left(\frac{p+1}{2}\right)^t \sum_{i=0}^{n-1} \binom{t}{i} \\ &\leq \gamma \left(\frac{p+1}{2}\right)^t \sum_{i=0}^{n-1} t^i \\ &\leq 2\gamma t^{n-1} \left(\frac{p+1}{2}\right)^t, \end{split}$$

since t > 1.

Now, as in the proof of Lemma 2.12, we can conclude by Theorem 2.9 and Lemma 2.7 that for every $r \in \mathbb{N}_0$ there are at most $2\gamma t^{n-1} \left(\frac{p+1}{2}\right)^t$ integers $r\gamma p^t \leq k < (r+1)\gamma p^t$ such that $(\alpha^k)_p$ contains less than n large digits. Thus, we have

$$\mathcal{S}_p^n(s\gamma p^t) \le 2s\gamma t^{n-1}\left(\frac{p+1}{2}\right)^t.$$

Theorem 2.16. Let p be a prime and α arbitrary in the definition of S. Then for all $a, n \in \mathbb{N}$, where $a \geq \gamma p$, we have $S_p^n(a) \leq 8 \log_p(a)^{n-1} a^{\log_p\left(\frac{p+1}{2}\right)}$.

Proof. Let $a \ge \gamma p$ be given, and s, t be integers with 0 < s < p and $t \ge 1$ such that $s\gamma p^t \le a < (s+1)\gamma p^t$. Now, $t \le \log_p(a) - \log_p(s\gamma)$, and letting $\mu = \log_p\left(\frac{p+1}{2}\right)$ we use Lemma 2.15 and the fact that $\frac{s+1}{s^{\mu}}\gamma^{1-\mu} \le 4$ from the proof of Theorem 2.14 to get

$$\begin{split} \mathcal{S}_p^n(a) &\leq \mathcal{S}_p^n\left((s+1)\gamma p^t\right) \\ &\leq 2(s+1)\gamma t^{n-1}\left(\frac{p+1}{2}\right)^t \\ &\leq 2(s+1)\gamma\left(\log_p(a) - \log_p(s\gamma)\right)^{n-1}\left(\frac{p+1}{2}\right)^{\log_p(a) - \log_p(s\gamma)} \\ &\leq 2(s+1)\gamma(s\gamma)^{-\mu}\log_p(a)^{n-1}a^\mu \\ &= 2\frac{s+1}{s^\mu}\gamma^{1-\mu}\log_p(a)^{n-1}a^\mu \\ &\leq 8\log_p(a)^{n-1}a^{\log_p\left(\frac{p+1}{2}\right)}. \end{split}$$

3. Application to Central Binomial Coefficients

This section will apply the bounds on S to a generalisation of Conjecture 1.1 in order to show that the set of numbers not satisfying the conjecture restricted to the case $n = 2^s$ has asymptotic density 0.

For this we need the following theorem by Kummer.

Theorem 3.1 (Kummer [7]). Let $n, m \ge 0$ and p be a prime. Then the greatest exponent of p dividing $\binom{n+m}{m}$ is equal to the number of carries, when n is added to m in base p.

Further we define the following function:

Definition 3.2. Let $m \in \mathbb{N}$ be odd. Then we define

$$\mathcal{T}_m(a) = \# \left\{ 0 \le s < a \mid m \nmid \binom{2^{s+1}}{2^s} \right\}.$$

It is clear that to show Conjecture 1.1 we would have to bound \mathcal{T}_9 by $\mathcal{T}_9(a) \leq 5$ for all a. Instead we can get a partial result by connecting \mathcal{T} and \mathcal{S} in the following way:

Lemma 3.3. Let $a, n \in \mathbb{N}$, $\alpha = 2$ in the definition of S, and p be an odd prime. Then $\mathcal{T}_{p^n}(a) \leq \mathcal{S}_p^n(a)$.

Proof. Adding 2^s to itself in base p will yield at least one carry for every large digit in $(2^s)_p$. Thus, by Kummer's theorem, we must have $\mathcal{T}_{p^n}(a) \leq \mathcal{S}_p^n(a)$.

With this at hand, it is possible to give an asymptotic upper bound on \mathcal{T}_m for every odd m.

Theorem 3.4. Let m > 1 be odd and let p be the greatest prime dividing m. Then

$$\mathcal{T}_m(a) = o\left(a^{\log_p\left(\frac{p+1}{2}\right) + \epsilon}\right)$$

for any $\epsilon > 0$.

Proof. Assume m has prime factorisation $m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$ with $p_1 < p_2 < \cdots < p_k$ $p_k. \text{ Then } \mathcal{S}_{p_i}^{\beta_i}(a) = O\left(\log_{p_k}(a)^{\beta_k - 1} a^{\log_{p_k}\left(\frac{p_k + 1}{2}\right)}\right) \text{ for all } 1 \le i \le k, \text{ since } p_i \le p_k,$ and thus.

$$\mathcal{T}_m(a) \le \sum_{i=1}^k \mathcal{S}_{p_i}^{\beta_i}(a) = O\left(\log_{p_k}(a)^{\beta_k - 1} a^{\log_{p_k}\left(\frac{p_k + 1}{2}\right)}\right) = o\left(a^{\log_{p_k}\left(\frac{p_k + 1}{2}\right) + \epsilon}\right)$$

any $\epsilon > 0.$

for any $\epsilon > 0$.

Although we still cannot give a definite answer to Conjecture 1.1, we do get the following corollary.

Corollary 3.5. For every odd m the set of integers s such that $m \nmid \binom{2^{s+1}}{2^s}$ has asymptotic density 0.

Proof. By Theorem 3.4 we have $\mathcal{T}_m(a) = o(a)$.

Since the case m = 9 is not special in this corollary, it seems natural to pose the following conjecture, which strengthens Conjecture 1.1.

Conjecture 3.6. For every odd *m* there is an $N \in \mathbb{N}$ such that $m \mid \binom{2^{k+1}}{2^k}$ for every $k \geq N$.

It seems by Theorem 2.9 and by computer heuristics that the digits of $(2^s)_p$ are uniformly distributed for large s in the sense that for any $0 \le a < p$ most digits in the representation have probability roughly 1/p of being a.

Assuming such a random distribution of the digits in the representation and considering computer experiments on a selection of primes p < 200 has lead to the following conjecture.

Conjecture 3.7. For an odd prime, p, let $\epsilon_p(a)$ be the function satisfying $p^{\epsilon_p(a)} \parallel a$ for every a. Then

$$\epsilon_p\left(\binom{2^{k+1}}{2^k}\right) = \frac{\log(2)}{2\log(p)} \cdot k + O(\sqrt{k}).$$

Acknowledgement The authors wish to thank prof. Søren Eilers for his helpful guidance and suggestions in the writing process; prof. Carl Pomerance for his encouragement and support; and the anonymous referee for his/her suggestions that significantly improved some of the proofs of this paper.

References

- Cooper, C., Kennedy, R. E., A Generalization of a Result by Narkiewicz Concerning Large Digits of Powers, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 11 (2000), 36–40.
- [2] Erdős, P., Some Unconventional Problems in Number Theory, Math. Mag. 52 (1979), 67–70.
- [3] Goetgheluck, P., On prime divisors of binomial coefficients, Math. Comp. 51 (1988), 325–329.
- [4] Graham, R. L., Knuth, D., Patashnik, O., Concrete Mathematics, Second Edition, Addison-Wesley 2nd ed. 1998.
- [5] Granville, A., Ramar, O., Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, *Mathematika* 43 (1996), 73–107.
- [6] Keller, W., Richstein, J., Solutions of the Congruence $a^{p-1} \equiv 1 \pmod{p^r}$, Math. Comp. 74 (2004), 927–936.
- [7] Kummer, E. E., Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93–146.
- [8] Narkiewicz, W., A note on a paper of H. Gupta concerning powers of two and three, Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. 678–715 (1980), 173–174.

Appendix

The following code checks that the central binomial coefficient $\binom{2n}{n}$ is divisible by 4 or 9 for every n such that $4 < n \leq 2^{10^{13}}$ except for n = 64 and n = 256. The Java-code checks the first 35 digits of the base 3 representation of 2^k for every k such that $0 < k < 10^{13}$. Every k such that the first 35 digits of 2^k do not contain two 2's is written to a file containing special cases. These cases are then checked individually by the Python-code.

JAVA source

```
import java.io.FileWriter;
import java.io.IOException;
import java.io.File;
class NewSearcher {
   private static int[] number = new int[35];
   private static int size = 0;
   private static final int MAX_SIZE = 35;
   private static final String ERROR_FILE = "Check_needed.txt";
   public static void main(String[] args) {
       deleteFile(ERROR_FILE);
       addNum(1);
       for (int a=0; a<10000000; a++) {</pre>
           for (int b=0; b<1000000; b++) {</pre>
              if (doubleIt()) {
                  String output = String.format("%d%06d", a, b);
                  System.out.println(output);
                  writeNumberToFile(ERROR_FILE, output);
              }
           }
       }
   }
   private static void addNum(int num) {
       if (size < MAX_SIZE) {</pre>
          number[size] = num;
           size ++;
       }
   }
   public static boolean doubleIt() {
       int totalCarry = 0;
       int carry = 0;
       int i=0;
       while (totalCarry < 2 && i<size) {</pre>
           int res = (number[i]*2 + carry);
           carry = (res >= 3) ? 1 : 0;
           number[i] = (res \% 3);
           if (carry==1) totalCarry ++;
           i++;
       }
```

```
INTEGERS: 15 (2015)
        while (i<size) {</pre>
            int res = (number[i]*2 + carry);
            carry = (res>=3) ? 1 : 0;
            number[i] = (res \% 3);
            i++;
        }
        if (carry == 1) {
            addNum(1);
        }
        return (totalCarry<2);</pre>
    }
    public static void writeNumberToFile(String filename, String number)
         {
        try
        {
            FileWriter fw = new FileWriter(filename, true);
            fw.write(number + "\r\n");
            fw.close();
        }
        catch(IOException e)
        ſ
            System.out.println("IOException: " + e.getMessage());
        }
    }
    public static void deleteFile(String filename) {
        try {
            File toDelete = new File(filename);
            toDelete.delete();
        } catch (Exception e) {
        }
    }
 }
```

12

Python source

```
def mod(n, md):
   if n < 10:
       return 2**n%md
   return 2**(n%2)*mod(n/2, md)**2%md
def checkCarry(n):
   tmp = n
   count = 0
   while tmp and count<2:</pre>
      if tmp%3 == 2:
          count += 1
       tmp /= 3
   return count<2</pre>
fil = file("Check_needed.txt", "r")
nls = []
while True:
   try:
       next = int(fil.readline())
       if checkCarry(mod(next, 3**50)):
          nls.append(next)
   except ValueError:
       break
for i in nls:
   if checkCarry(mod(i, 3**80)):
       print i
```