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Abstract
Lerch’s formulae for Euler quotients in the rings Z and Fq[t] have already been studied.
In this paper, we extend the study of these quotients to number fields and the Carlitz
module. In the number fields case, we prove a version of Lerch’s formula for OKHil ,
the ring of integers of the Hilbert class field of a number field K. In the Fq[t] case, we
replace the usual multiplication in Fq[t] with the Carlitz module action ⇢ and prove
two new versions of this formula. In addition, we relate these congruences to Carlitz
Wieferich primes in Fq[t]. All our proofs use properties of Carlitz polynomials.

1. Introduction

Let p be an odd prime, a and n be integers with a 6= 0,±1, and n > 1. The Fermat-
Euler Theorem (also known as the Euler Totient Theorem) asserts that, if a and n
are coprime, then a'(n) ⌘ 1(mod n), where '(n) := #(Z/nZ)⇤. If n = p and a is
coprime to p, then '(p) = p � 1 and so ap�1 ⌘ 1(mod p). This is the well known
“little theorem” of Fermat. These two congruences motivate the following definitions.

• If a is coprime to p, then the Fermat quotient for a and p is defined to be

q(a, p) :=
ap�1 � 1

p
.

• If a is coprime to n, then the Euler quotient for a and n is defined to be

q(a, n) :=
a'(n) � 1

n
.

1The author was supported by the AIMS - DAAD In Country Scholarship Award (A/13/90157),
the Post Graduate Merit Bursary Scheme at the University of Stellenbosch, South Africa and the
government of Canada’s International Development Research Centre (IDRC) and within the frame-
work of the AIMS Research for Africa Project.
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There is a lot of literature that discusses the history and properties of these quotients,
e.g., [8] and [10]. The questions addressed in these studies can be summarized into
two categories: the first category deals with questions on the divisibility of the Fermat
quotients whereas in the second category, one fixes a prime p, interprets q(·, p) as a
function and then estimates #{q(a, p) : 0  a  p� 1} and the multiplicity of points
in the image of q(·, p), all considered modulo p. For an in-depth study of these two
categories, see [1] and [13]. For details on the multiplicative Fq[t]-analogues, see [6].

Amongst the many properties of the Fermat-Euler quotients, the one of interest to
us is the congruence due to M. Lerch, see [8] and [7]. This congruence (or formula)
relates the quotient q(a, n) to the sum over all representatives of elements of (Z/nZ)⇤.
The statement and proof of Lerch’s result in Theorem 1 are from [1, Theorem 9.3].

Theorem 1 ([1, Theorem 9.3]). If a and n are coprime, then

q(a, n) =
a'(n) � 1

n
⌘

nX
r=1

(r,n)=1

1
ar

har

n

i
(mod n),

where [x] is the greatest integer less than or equal to x.

Proof. Let r � 1 be an integer less than and coprime to n. We write ar ⌘ c(mod n),
where c is a generator of a residue class in (Z/nZ)⇤. Then ar = bn + c for some
b = [ar

n ] 2 Z. As c goes through all residue classes in (Z/nZ)⇤, so does r. Let S
denote the product of all such representatives of the residue classes of (Z/nZ)⇤. So

S =
nY

r=1
(r,n)=1

c =
nY

r=1
(r,n)=1

⇣
ar � n

har

n

i⌘
= a'(n)S

nY
r=1

(r,n)=1

⇣
1� n

ar

har

n

i⌘
. (1)

Divide both sides of equation (1) by S to get

1 = a'(n)
nY

r=1
(r,n)=1

⇣
1� n

ar

⌘
⌘ a'(n)

0
B@1� n

nX
r=1

(r,n)=1

1
ar

har

n

i1CA (mod n2).

Equivalently,

a'(n) � 1 ⌘ a'(n)n

0
B@

nX
r=1

(r,n)=1

1
ar

har

n

i1CA (mod n2). (2)

Divide both sides of congruence (2) by n and use a'(n) ⌘ 1(mod n) on the right.

Upon interpreting q(·, p) as an operator, we obtain Theorem 2.
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Theorem 2. Let a, b be integers coprime to p. The quotient q(·, p) satisfies

q(ab, p) ⌘ q(a, p) + q(b, p)(mod p), q(a + bp, p) ⌘ q(a, p)� b

a
(mod p) and

2q(2, p) ⌘
p�1
2X

i=1

1
i

(mod p).

Remark 3. The congruences in Theorem 2 were discovered by G. Eisenstein [10].

Remark 4. The last congruence relation in Theorem 2 was first proved by J.
Sylvester.

Since the Fermat-Euler quotients are somehow hard to compute, it is natural to
relate their sums over residue classes, and other quantities all defined modulo p.
It was Johnson [10] who gave a practical method for determining q(a, p) using this
philosophy. A sketch of the proof of his result follows. Let s 2 Z be the least positive
integer with as = ±1 + tp, for some t 2 Z+. Then p = 1 + su for some u 2 Z+ and

q(a, p) =
ap�1 � 1

p
=

asu � 1
p

=
(±1 + pt)u � 1

p
=

(1± pt)u � 1
p

⌘ (1± upt)� 1
p

⌘ ±ut ⌘ ⌥ t

s
(mod p).

There is also a link between Fermat quotients and Wieferich primes to base a. A
Wieferich prime to base a is a prime p (coprime to a) satisfying ap�1 ⌘ 1(mod p2).
This happens precisely when q(a, p) ⌘ 0(mod p). We shall briefly comment on the
Carlitzian analogue of this result in Section 4, but for details, see [2] and [14].

The remainder of the paper is structured as follows. In Section 2, we shall state,
and prove the OKHil-analogue of Lerch’s formula, state and prove properties of the
OKHil-analogue of Fermat quotient (interpreted as an operator) and Johnson’s result.
In Section 3, we shall state (without proof) Y. Meemark and S. Chinwarakorn’s Fq[t]-
analogue of Lerch’s formula together with the properties of the associated Fermat
quotient operator. In Section 4, we shall describe the Carlitz module and Carlitz cy-
clotomic polynomials. Lastly, we shall prove two Carlitz module analogues of Lerch’s
formula and some properties of the Carlitz-Fermat quotient operator.

2. Number Fields Analogue of Lerch’s Formula for Euler Quotients

Let K be a number field, OK be the ring of integers in K, n be a nonzero ideal, and p

be a nonzero prime ideal of OK . Since K is a number field, the ring OK is a finitely
generated Z-module. Since Z is a principal ideal domain (PID), the quotient OK/n
is finite. The norm of n is defined as |n| := #(OK/n) and '(n) := #(OK/n)⇤. This
' is the number field extension of the Euler totient function in Section 1.
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The property of Z utilized a lot in Section 1 without explicit mention is the fact
that Z is a PID. In general, OK is not a PID, and so the proof of Lerch’s formula
can not be adapted for general number fields. However, the Principal Ideal Theorem
guarantees that we can recover unique factorization by considering the ring of integers
in the Hilbert class field of K. Of course, if OK is a unique factorization domain then
K is its own Hilbert class field. In the ring OKHil , Fermat’s Theorem states that, if p is
a prime ideal of OKHil and a 2 OKHil with a /2 p, then a'(p) ⌘ 1(mod p). The Euler
Totient Theorem states that if a 2 OKHil is such that a /2 n, then a'(n) ⌘ 1(mod n).

Let ⇡,⇡⇤ 2 OKHil be the generators of p and n, respectively, as (nonzero) ideals of
OKHil . This naturally gives rise to the definition of Fermat and Euler quotients as

q(a, p) :=
a|p|�1 � 1

⇡
, and q(a, n) :=

a'(n) � 1
⇡⇤

,

respectively. Theorem 5 is the ring OKHil-analogue to Lerch’s formula.

Theorem 5. Let a 2 OKHil and n be a nonzero OKHil-ideal. If a /2 n, then

q(a, n) =
a'(n) � 1

⇡⇤
⌘

X
r2O

KHil , r /2n

|rOKHil |<|n|

1
ar

har

⇡⇤

i
(mod n),

where n = ⇡⇤OKHil and [ ar
⇡⇤ ] is the quotient when ar is divided by ⇡⇤.

Proof. Let r 2 OKHil � n and |rOKHil | < |n|. Since r /2 n, we write ar ⌘ c(mod n),
where c is a generator of a residue class in (OKHil/n)⇤. Then ar = �⇡⇤ + c for some
� 2 OKHil and so � = [ ar

⇡⇤ ]. As c goes through residue classes in (OKHil/n)⇤, so does
r. Let S denote the product of representatives of elements of (OKHil/n)⇤. Then

S =
Y

r2O
KHil�n

|rOKHil |<|n|

c =
Y

r2O
KHil�n

|rOKHil |<|n|

⇣
ar � ⇡⇤

har

⇡⇤

i⌘

= a'(n)S
Y

r2O
KHil�n

|rOKHil |<|n|

✓
1� ⇡⇤

ar

har

⇡⇤

i◆
.

Divide through by S to get

1 = a'(n)
Y

r2O
KHil�n

|rOKHil |<|n|

✓
1� ⇡⇤

ar

◆
⌘ a'(n)

0
BBB@1� ⇡⇤

X
r2O

KHil�n

|rOKHil |<|n|

1
ar

har

⇡⇤

i
1
CCCA (mod n2).
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Equivalently,

a'(n) � 1 ⌘ a'(n)⇡⇤

0
BBB@

X
r2O

KHil�n

|rOKHil |<|n|

1
ar

har

⇡⇤

i
1
CCCA (mod n2). (3)

Divide both sides of congruence (3) by ⇡⇤ and use a'(n) ⌘ 1( mod n) on the right.

Theorem 6. Let a, b 2 OKHil , let p be a prime ideal of OKHil , and let ⇡ be the
uniformizer of p. The Fermat quotient operator q(·, p) satisfies

q(ab, p) ⌘ q(a, p) + q(b, p)(mod p) and q(a + b⇡, p) ⌘ q(a, p)� b

a
(mod p).

Proof. Take ⇡ to be the uniformizer of the prime ideal p. Then

q(ab, p) =
(ab)|p|�1 � 1

⇡
=

(ab)|p|�1 � b|p|�1 + b|p|�1 � 1
⇡

=
b|p|�1(a|p|�1 � 1) + b|p|�1 � 1

⇡
⌘ q(a, p) + q(b, p)(mod p).

To prove the second congruence, we proceed as follows. We have

q(a + b⇡, p) =
(a + b⇡)|p|�1 � 1

⇡
=

a|p|�1 + (|p|� 1)a|p|�2b⇡ + · · · + (b⇡)|p|�1 � 1
⇡

⌘ (a|p|�1 � 1)
⇡

� a|p|�2b ⌘ q(a, p)� b

a
(mod p).

It is not hard to show that if p is coprime to 2, then

q(2, p) ⌘ 1
2

X
r2O

KHil�p

|rOKHil |<|p|

1
r
(mod p).

Let s be the least positive integer such that as ⌘ ↵(mod p), where ↵ 2 (OKHil)⇤.
Then as = ↵ + t⇡, where t 2 OKHil and p = ⇡OKHil . So |⇡| = 1 + su, u 2 (OKHil)⇤

and

q(a, p) =
a|p|�1 � 1

⇡
=

asu � 1
⇡

=
(↵ + t⇡)u � 1

⇡
=

(1 + �t⇡)u � 1
⇡

⌘ (1 + �ut⇡)� 1
⇡

⌘ ��
t

s
(mod p).

This is the OKHil-analogue of Johnson’s result.

Remark 7. The units ±1 in Johnson’s result [10] are now replaced by ↵,� 2 O⇤KHil .

Recently, J. Sauerberg, L. Shu [12] and other several authors have studied the
multiplicative Fq[t]-analogues of these results. In Section 3, we state their findings.
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3. Multiplicative Fq[t]-analogue of Lerch’s Formula for Euler Quotients

Let A := Fq[t] be the ring of polynomials in the variable t defined over the finite field
Fq and let P be a monic irreducible in A. For each a,m 2 A � {0}, the absolute
value of a is defined as |a| := #(A/aA) = qdeg(a). For this ring, the Euler Totient
Theorem states that, if m 2 A is coprime to a, then a'(m) ⌘ 1(mod m), where
'(m) := #(A/mA)⇤. If m = P , then we get an Fq[t]-analogue of Fermat’s Little
Theorem [11, Chapters 1, 3]. The Fermat and Euler quotients are then defined as

q(a, P ) :=
a|P |�1 � 1

P
and q(a,m) :=

a'(m) � 1
m

,

respectively. In Theorems 8 and 9, we give the two Fq[t]-analogues of Lerch’s formula
as proved by Y. Meemark and S. Chinwarakorn. For their proofs, refer to [9].

Theorem 8 ([9], Theorem 2). If a,m 2 A are coprime, then

q(a,m) =
a'(m) � 1

m
⌘

X
deg(R)<deg(m)

(R,m)=1

1
aR


aR

m

�
(mod m),

where [aR
m ] is the quotient when aR is divided by m.

Fix d | q � 1. For the prime P , the dth power residue symbol ( ·
P )d is defined as

⇣ a

P

⌘
d
⌘
(

a
|P |�1

d (mod P ), (a, P ) = 1,
0, otherwise.

Meemark and Chinwarakorn [9] defined the Fermat quotient of degree d to base a as

qd(a, P ) :=
a
|P |�1

d � ( a
P )d

P
.

Furthermore, Meemark and Chinwarakorn proved the following result.

Theorem 9 ([9], Theorem 3). If a 2 A is coprime to P , then

qd(a, P ) ⌘
 

Ca
R0
� ( a

P )d

P

!
+
⇣ a

P

⌘
d

X
deg(R)<deg(P )

(R,P )=1
( a

P )d=1

1
aR


aR

P

�
(mod P ),

where

R0 =
Y

deg(R)<deg(P )
(R,P )=1
( a

P )d=1

R and Ca =
Y

deg(R)<deg(P )
(R,P )=1
( a

P )d=1

✓
aR� P


aR

P

�◆
.
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Moreover, if there exists an ↵ 2 F⇤q such that ( a
P )d = ( ↵

P )d, then

qd(a, P ) ⌘ ↵
q�1

d deg(P )
X

deg(R)<deg(P )
(R,P )=1
( a

P )d=1

1
aR


aR

P

�
(mod P ).

The properties of the quotient operator q(·, P ) are summarized in Theorem 10.

Theorem 10. Let a, b 2 A. For any prime P , we have that q(·, P ) satisfies

q(ab, P ) ⌘ q(a, P ) + q(b, P )(mod P ), q(a + bP, P ) ⌘ q(a, P )� b

a
(mod P ) and

q(↵, P ) ⌘ 0(mod P ) for any ↵ 2 F⇤q .

The proofs of the congruences in Theorem 10 are straightforward calculations from
the definition of q(·, P ) and are therefore left for the reader.

Let s be the least positive integer for which as = ↵ + bP for some b 2 A and
↵ 2 F⇤q . So |P | = 1 + su for some positive integer u, (take ↵� ⌘ 1(mod P )) and

q(a, P ) =
a|P |�1 � 1

P
=

(↵ + bP )u � 1
P

=
(1 + �bP )u � 1

P
⌘ ��

b

s
(mod P ).

This is the version of Johnson’s result associated with the Fermat quotient q(a, P ).

Remark 11. Here, the units ±1 in Johnson’s result are replaced by ↵,� 2 F⇤q .

The above analogues are built out of the multiplicative parallels of Z in A. We
obtain the additive versions by using the analogy coming from the Carlitz module.

4. Carlitz Fq[t]-module Analogues of Lerch’s Formula

We shall maintain A := Fq[t], let A+ be the set of monic polynomials in A, let k
be the fraction field of A and let F be an algebraically closed field containing k.
Furthermore, let ⌧ be the qth power Frobenius map on F and let F{⌧} be the ring of
twisted polynomials over F with commutation relation ⌧w = wq⌧ for all w 2 F . The
ring F{⌧} is isomorphic to the non-commutative ring of Fq - linear polynomials in x
with coe�cients in F and multiplication defined by composition of polynomials. The
map ⇢ : A ! F{⌧} satisfying t 7! ⇢t = ⌧ + t⌧0 is called the Carlitz homomorphism.

With each m 2 A� {0}, ⇢ associates the separable polynomial ⇢m(x) := ⇢m(⌧)(x)
called the Carlitz m-polynomial. Proposition 12 shows one way to compute ⇢m(x).

Proposition 12 ([5], Proposition 3.3.10). Let m 2 A� {0}. Then

⇢m(x) = am,deg(m)x
|m| + · · · + am,0x,

where am,0 = m, and [i]am,i = (am,i�1)q � am,i�1, i = 1, . . . ,deg(m).
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As an example, we compute ⇢t2+1(x) using Proposition 12. Given m = t2 +1 2 A,
we have am,0 = t2 + 1 and am,2 = 1, since m is a degree 2 monic polynomial. Lastly,

am,1 =
aq

m,0 � am,0

tq � t
=

(t2 + 1)q � (t2 + 1)
tq � t

=
t2q � t2

tq � t
=

(tq � t)(tq + t)
tq � t

= tq + t.

So ⇢t2(x) = am,2xq2
+ am,1xq + am,0x = xq2

+ (tq + t)xq + (t2 + 1)x.

Remark 13. We have a few consequences of Proposition 12,

1. If m is a monic polynomial in A, then am,deg(m) = 1.

2. If m = P s where P is a prime, then am,i ⌘ 0(mod P ) for all i 6= deg(m).

Remark 13 (2) implies that for any a, P 2 A, we have that ⇢P (a) ⌘ a|P |(mod P ).
As a consequence, we get an analogue for Fermat’s Little Theorem for the Carlitz
module, i.e., for any a 2 A, ⇢P�1(a) ⌘ 0(mod P ). This version of the theorem
does not require a and P to be coprime. The requirement (a, P ) = 1 gives rise to a
definition of a Fermat quotient (we divide by a to exclude the case a ⌘ 0(mod P )):

qC(a, P ) :=
⇢P�1(a)

aP
=

a|P | � a

aP
+

1
P

�1+deg(P )X
i=0

aP,ia
qi�1.

We shall later refer to this as the Carlitz-Fermat quotient of type I.
For simplicity, we shall often refer to “Carlitz-something” as “c-something”. For

example, Carlitz-Fermat quotient will become c-Fermat quotient.

Theorem 14. Let a, P 2 A. If a and P are coprime, then

qC(a, P ) =
⇢P�1(a)

aP
⌘

X
deg(R)<deg(P )

(R,P )=1

1
aR

✓
aR

P

�
+ �(R)aqdeg(R)

◆
(mod P ),

where �(R) = 1 if R is monic and �(R) = 0 otherwise.

Before we prove Theorem 14, let us first recall the fundamental numbers used in
the arithmetic of the ring A. We shall use the following notation: for each positive
integer i, [i] := tq

i�t, Li := [i][i�1] · · · [1] and Di := [i][i�1]q · · · [1]q
i�1

. The symbol
[i] is the product of monic irreducible polynomials of degree dividing i, Li is the least
common multiple of monic polynomials of degree i and Di is the product of all monic
polynomials of degree i [5, Proposition 3.1.6] and [15, page 44]. To define [0], we use
the philosophy that the empty product is equal to 1. So, L0 = D0 = [0] = 1.

For each i 2 Z�0, set

Si :=
(�1)i

Li
=

X
R2Ai+

1
R

, (4)

where the sum runs over monic polynomials of degree i, [15].
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Proof of Theorem 14. Suppose that deg(P ) = n. By Proposition 12, we get aP,0 = P
and [i]aP,i = aq

P,i�1 � aP,i�1 for i = 1, . . . , n � 1. Taking coe�cients modulo P 2

gives aP,0 = P and [i]aP,i = aq
P,i�1 � aP,i�1 ⌘ �aP,i�1(mod P 2) for i = 1, . . . , n. By

recursion, we obtain the following chain of congruence relations:

LiaP,i = [i]Li�1aP,i�1 ⌘ �Li�1aP,i�1 = �[i� 1]Li�2aP,i�1

⌘ (�1)2Li�2aP,i�2 ⌘ · · · ⌘ (�1)iL0aP,0(mod P 2).

For all i = 1, . . . , n� 1, we have Li 6⌘ 0(mod P ) and so

aPqC(a, P ) = ⇢P�1(a) = a|P | � a +
n�1X
i=0

aP,ia
qi ⌘ a|P | � a + P

n�1X
i=0

(�1)i

Li
aqi

⌘ aP

 
q(a, P ) +

n�1X
i=0

Sia
qi�1

!
(mod P 2).

Dividing both sides of the congruence by aP gives

qC(a, P ) ⌘ q(a, P ) +
n�1X
i=0

Sia
qi�1(mod P )

Eq. (4)
⌘

X
deg(R)<n

(R,P )=1

1
aR


aR

P

�
+

�(R)
R

aqdeg(R)�1(mod P )

⌘
X

deg(R)<n

(R,P )=1

1
aR

✓
aR

P

�
+ �(R)aqdeg(R)

◆
(mod P ),

where � is defined as �(R) = 1 if R is monic and �(R) = 0 otherwise.

In [2] and [14], a c-Wieferich prime is defined to be any prime P satisfying
⇢P�1(1) ⌘ 0(mod P 2). This is equivalent to saying that qC(1, P ) ⌘ 0(mod P ). So
Lerch’s formula gives a criterion to check for c-Wieferich primes in A. Calculations
for c-Wieferich primes are simplified by the fact that q(↵, P ) = 0 for any ↵ 2 F⇤q .

For each m 2 A � {0}, the set ⇤m := {� 2 F : ⇢m(�) = 0} denotes the Carlitz
m-torsion points. An element � 2 ⇤m is primitive if it generates ⇤m as an A-module.

Definition 15. Let m 2 A+. The Carlitz m-cyclotomic polynomial is defined as

�m(x) :=
Y

�2⇤m:primitive

(x� �).

�m(x) has integer coe�cients, degree '(m) and is irreducible over k. It satisfies
nice relations, for example, factorization and composition identities, see [4] and [3].
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Fix d | q � 1. The c-Fermat quotient of degree d to base a is defined as

qC,d(a, P ) :=
⇢P (a 1

d )� ( a
P )da

1
d

a
1
d P

=
�P (a 1

d )� ( a
P )d

P
.

This is related to the multiplicative Fermat quotient of degree d to base a as follows:

qC,d(a, P ) =
a
|P |�1

d � ( a
P )d

P
+

1
P

n�1X
i=0

aP,ia
qi�1

d = qd(a, P ) +
1
P

n�1X
i=0

aP,ia
qi�1

d ,

where n = deg(P ). Moreover, if d = 1, then qC,1(a, P ) = qC(a, P ).

Theorem 16. Let a 2 A and P be a prime in A. If a and P are coprime, then

qC,d(a, P ) ⌘
X

deg(R)<deg(P )
(R,P )=1

 
1

a
1
d R

"
a

1
d R

P

#
+

�(R)
R

a
qdeg(R)�1

d

!
(mod P ),

where �(R) = 1 if R is a monic polynomial in A and �(R) = 0 otherwise.

Proof. Let b 2 A be such that bd = a. Then

qC,d(a, P ) = qC,d(bd, P ) = qd(bd, P ) +
1
P

�1+deg(P )X
i=0

aP,ib
qi�1

= q(b, P ) +
1
P

�1+deg(P )X
i=0

aP,ib
qi�1 = qC(b, P ).

By Theorem 14, we have

qC(b, P ) ⌘
X

deg(R)<deg(P )
(R,P )=1

1
bR

✓
bR

P

�
+ �(R)bqdeg(R)

◆
(mod P )

⌘
X

deg(R)<deg(P )
(R,P )=1

 
1

a
1
d R

"
a

1
d R

P

#
+

�(R)
R

a
qdeg(R)�1

d

!
(mod P ),

which completes the proof.

Theorem 17. Let a, b 2 A and P be a prime in A. We have that qC(·, P ) satisfies

qC(ab, P ) ⌘ q(a, P ) + q(b, P ) +
X

deg(f)<deg(P )
(f,P )=1

�(f)
f

(ab)qdeg(f)�1(mod P ),

qC(a + bP, P ) ⌘ qC(a, P )� b

a
(mod P ), and qC(↵, P ) ⌘

X
deg(f)<deg(P )

(f,P )=1

�(f)
f

(mod P ),

where �(f) = 1 if f a monic polynomial in A and �(f) = 0 otherwise.
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Proof. We have that

qC(ab, P ) =
⇢P�1(ab)

abP
=

1
abP

0
@(ab)qdeg(P ) � ab +

�1+deg(P )X
i=0

aP,i(ab)qi

1
A

=
(ab)qdeg(P ) � ab

abP
+

1
abP

0
@�1+deg(P )X

i=0

aP,i(ab)qi

1
A

⌘ q(ab, P ) +

0
@�1+deg(P )X

i=0

(�1)i

Li
(ab)qi�1

1
A (mod P )

⌘ q(a, P ) + q(b, P ) +
X

deg(f)<deg(P )
(f,P )=1

�(f)
f

(ab)qdeg(f)�1(mod P ).

For the second congruence, we have that

qC(a + bP, P ) =
⇢P�1(a + bP )

(a + bP )P
=

⇢P�1(a)
(a + bP )P

+
⇢P�1(bP )
(a + bP )P

⌘ ⇢P�1(a)
aP

+
⇢P�1(bP )

aP
⌘ qC(a, P )� b

a
(mod P ).

The last congruence follows from the first one utilising the fact that, for each ↵ 2 F⇤q ,

qC(↵, P ) ⌘ q(↵, P ) +
X

deg(f)<deg(P )
(f,P )=1

�(f)
f

↵qdeg(f)�1 ⌘
X

deg(f)<deg(P )
(f,P )=1

�(f)
f

(mod P ).

To extend qC(·, P ) to a c-Euler quotient, we use Theorem 18 below.

Theorem 18 (Carlitz-Euler Totient Theorem of type I). If (a,m) = 1, then

�m(a) ⌘ 1(mod m).

For the proper flow of the paper, we postpone the proof of Theorem 18 to after
Theorem 23. Now since Theorem 18 is analogous to the Euler Totient Theorem, we
define

qC(a, P ) :=
�P (a)� 1

P
and qC(a,m) :=

�m(a)� 1
m

,

as the c-Fermat and c-Euler quotients of type I respectively.

Theorem 19. Let a,m 2 A. If a and m are coprime, then

qC(a,m) =
�m(a)� 1

m
⌘

X
deg(R)<deg(m)

(R,m)=1

1
aR

✓
aR

m

�◆
+

1
m

'(m)�1X
i=0

cm,ia
i(mod m),

where cm,i is the coe�cient of xi in �m(x).
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Proof. Let a,m 2 A. If a and m are coprime, then

qC(a,m) =
�m(a)� 1

m
=

a'(m) � 1
m

+
1
m

'(m)�1X
i=0

cm,ia
i

⌘
X

deg(R)<deg(m)
(R,m)=1

1
aR

✓
aR

m

�◆
+

1
m

'(m)�1X
i=0

cm,ia
i(mod m).

Proposition 20. The sum of coe�cients of �m(x) is congruent to 1 modulo m.

Proof. Since (a,m) = 1, we have �m(a) ⌘ 1( mod m), by Theorem 18. Set a = 1.

To define another analogue of the Fermat and Euler quotients in the Carlitzian
context, we introduce the function �⇤. This is the map �⇤ : A+ ! A defined by
�⇤(m) =

P
deg(D)<deg(m)(D,m). This is an Fq[t]-analogue of the Pillai function.

Proposition 21. �⇤ is a multiplicative function.

Proof. By grouping the terms according to gcd, �⇤(m) =
P

deg(a)<deg(m)(a,m) =P
D|m '(m

D )(D,m). The result follows from the multiplicativity of the gcd map.

By definition, we have �⇤(1) = 1, �⇤(P s) = P s�1(P � 1). For any a, b 2 A, if a is
coprime to b, then �⇤(ab) = �⇤(a)�⇤(b), this is the multiplicativity property of �⇤.

Proposition 22. Equivalently,

m =
X
D|m

�⇤(D), and �⇤(m) =
X
D|m

Dµ
⇣m

D

⌘
.

Proof. For the second formula, �⇤(m) =
P

deg(a)<deg(m)(a,m) =
P

D|m '(m
D )(D,m) =P

D|m Dµ
�

m
D

�
. Let I be a map defined as I(m) = 1 for each m 2 A. I is completely

multiplicative, so by the Mobius inversion formula, we get m =
P

D|m �⇤(D).

With �⇤(·), we get the second (or additive) version of the c-Euler Totient Theorem.

Theorem 23 (Carlitz-Euler Totient Theorem of type II). Let a,m 2 A�{0}.
Then ⇢�⇤(m)(a) ⌘ 0(mod m).

Proof. Let n := deg(P ). Since �⇤ is a multiplicative function, it su�ces to check that
⇢�⇤(P s)(a) ⌘ 0(mod P s). So ⇢P s�1(a) =

Pn(s�1)
i=0 aP s�1,ia

qi
. It is not hard to show

that vP (aP s�1,i) = s � 1 � b i
nc for i = 0, 1, . . . , n(s � 1). If a = Pg, g 2 A, then

vP (aP s�1,ia
qi

) = s� 1� b i
nc+ qi � s, since qi > i for i � 0. So vP (⇢P s�1(Pg)) � s,

⇢�⇤(P s)(a)
P s�1

=
⇢P s�1(P�1)(a)

P s�1
=

⇢P s�1(⇢P�1(a))
P s�1

=
⇢P s�1(Pg)

P s�1
⌘ 0(mod P ).

It follows by the Chinese Remainder Theorem that ⇢�⇤(m)(a) ⌘ 0(mod m).
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Proof of Theorem 18. To prove this result, there are three cases we need to consider.

1. m = P , a prime polynomial in A. Since a and P are coprime, dividing both
sides of the congruence ⇢P (a) ⌘ a(mod P ) by a gives �P (a) ⌘ 1(mod P ).

2. m = P s, where s 2 Z>1. Then ⇢�⇤(P s)(a) ⌘ 0(mod P s). It follows that
⇢P (a) ⌘ a 6⌘ 0(mod P ) and ⇢P i(a) 6⌘ 0(mod P i). By [2, Corollary 2.2.5]
together with the congruence ⇢P s(a) ⌘ ⇢P s�1(a) 6⌘ 0(mod P s), we have that

�P s(a) =
⇢P s(a)

⇢P s�1(a)
⌘ 1(mod P s).

3. m has at least two prime factors. Here, it su�ces to show that �m(a) ⌘
1(mod P s) for every prime factor of m, with P skm, where s � 1. If m = NP s,
then

�m(a) =
�N (⇢P s(a))

�N (⇢P s�1(a))
=

�N (⇢�⇤(P s)(a) + ⇢P s�1(a))
�N (⇢P s�1(a))

⌘ 1(mod P s).

We define the c-Fermat and Euler quotients of type II as follows:

qC⇤(a, P ) :=
⇢�⇤(P )(a)

aP
and qC⇤(a,m) :=

⇢�⇤(m)(a)
am

.

Theorem 24. Let a,m 2 A. If a,m 2 A are coprime, then

qC⇤(a,m) ⌘
X

deg(R)deg(m)
06=R2A+

0
@µ

⇣m

R

⌘ deg(R)X
i=0

aR,i

m
aqi�1

1
A (mod m),

where µ(·) is the extended Möbius µ function. The extended Möbius function is defined
as µ

�
m
R

�
= µ(C), where m = CR for some C 2 A and 0 if R - m.

Proof. We have

qC⇤(a,m) =
⇢�⇤(m)(a)

am

Prop 22⌘
X
D|m

µ
⇣m

D

⌘ ⇢D(a)
am

⌘
X

deg(R)deg(m)
06=R2A+

µ
⇣m

R

⌘ deg(R)X
i=0

aR,i

m
aqi�1(mod m),

where aR,i is the coe�cient of xi in ⇢R(x) and µ(·) is the extended Möbius map.

Remark 25. The c-Fermat quotients of type I and II are the same.
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