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Abstract
The ordinary n-in-a-row game is a positional game in which two players alternately
claim points in Z2 with the winner being the first player to claim n consecutive
points in a line. We consider a variant of the game, suggested by Croft, where the
number of points claimed increases by 1 each turn, and so on turn t a player claims
t points. Croft asked how long it takes to win this game. We show that, perhaps
surprisingly, the time needed to win this game is (1� o(1))n.

1. Introduction

A positional game is a pair (X,F) where X is a set and F ⇢ P(X). We call X
the board, and the members F 2 F are winning sets. The game is played by two
players, Red and Blue, who alternately claim unclaimed points from the board. The
first player to claim all points from a winning set wins. The n-in-a-row game is a
positional game played on Z2 where the winning sets are any n consecutive points
in a row, either horizontally, vertically or diagonally. A simple strategy stealing
argument shows that any positional game is either a first player win or a draw. It
is known [1] that for n  4 the n-in-a-row game is a first player win, and a draw for
n � 8. It is believed that for n = 5 the game is a first player win, and a draw for
n � 6.

In this note we consider a related game. Given a function f : N ! N we define
the (n, f) game to be a positional game played on the same board with the same
winning sets as n-in-a-row, however, now during the tth turn a player claims f(t)
points. By this we mean that in the first turn Red will claim f(1) points, and in
the second turn Blue will claim f(2) points, and so on. We will think of the game
as consisting of a series of timesteps, with the tth turn happening at time t.

The ordinary n-in-a-row game corresponds to the (n, 1) game, where 1 is the
constant function taking value 1. In this note we will consider the (n, ◆) game,
where ◆ is the identity function. Unlike the n-in-a-row game the (n, ◆) game is not
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(with perfect play) a draw, since at time n some player will claim n points and
so can claim a winning set. A small case analysis shows that player 1 wins for
n = 1, 3, 4, 6, 7 and player 2 wins for n = 2, 5, and so a strategy stealing argument
cannot apply. Since the game is never a draw, for each n, either the first or second
player must have a winning strategy, Croft [3] asked two questions about this game:

Question 1. For general n, is the (n, ◆) game a first or second player win?

Question 2. How long does it take for that player to win?

Our aim is to provide a partial answer to Question 2 by showing that neither
player can win in time less than (1 � o(1))n. Question 1 is still an open problem.
In fact, we prove a stronger result by considering the Maker-Breaker version of the
game.

A Maker-Breaker game is a pair (X,F) where X is a set and F ⇢ P(X), and
as before we call X the board and the members F 2 F winning sets. Two player,
Maker and Breaker, alternately claim unclaimed points from the board, Maker
colouring his points red and Breaker blue. If Maker is able to claim all points from
a winning set he wins, otherwise Breaker wins. For more on Maker-Breaker games
see the monograph of Beck [1].

The Maker-Breaker (n, f) game is played on the same board with the same
winning sets as the (n, f) game. It is obvious that the Maker-Breaker (n, ◆) game
is a Maker win. We will consider the question of how long it takes for Maker to
win. More formally given a strategy � for Breaker and a winning strategy  for
Maker, at some time T (�, )n Maker will first fully occupy a winning set. We let
Tn = max�min T (�, )n, that is, Tn is the first time at which, with perfect play,
Maker is guaranteed to have won. It is simple to see that

2
p

n� 1  Tn  n + 1. (1)

the lower bound follows since before t = 2
p

n � 1 Maker has not claimed n points
in total. In Section 2 we show that, perhaps surprisingly, Breaker has a strategy
that gives Tn � (1� o(1))n.

Theorem 1. We have Tn � n� o(
p

n log n).

This strategy will give similar lower bounds for the ordinary (non Maker-Breaker)
(n, ◆) game when adopted by either player.

2. Proof of Theorem 1

When we refer to properties of the game “at time t”, we will mean immediately
prior to the turn where t points are claimed.
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Proof of Theorem 1. We first cover Z2 with a family of line segments of length 2n.
We let

Fi,j = {(x, i) : jn  x  (j + 2)n� 1},
Gi,j = {(i, y) : jn  y  (j + 2)n� 1},

Hi,j = {(i + k, k) : jn  k  (j + 2)n� 1},
Ii,j = {(i + k,�k) : jn  k  (j + 2)n� 1},

and take
F = {Fi,j , Gi,j ,Hi,j , Ii,j : i, j 2 Z}.

We call a segment good if Maker can no longer claim a winning line that is contained
in that segment, otherwise the segment is bad. Breaker’s strategy is as follows: At
time 2t he identifies the t bad segments F1, F2, . . . , Ft 2 F with the most red points
in them. Given such a segment Fi, without loss of generality let us suppose it is
the segment {(x, 0) : 0  x  2n� 1}, let xi be the largest point (in terms of the
first co-ordinate) between (0, 0) and (n � 1, 0) which is either blue or unclaimed.
Similarly, let yi be the smallest point between (n, 0) and (2n� 1, 0) which is either
blue or unclaimed. For each i Breaker claims the points xi and yi, if either of these
points are already claimed he takes an arbitrary move instead, note that these extra
moves can only help Breaker.

We first note that Breaker can always perform this strategy. Indeed, if Maker
has not yet won, then there must be at least one blue or unclaimed point between
(0, 0) and (n�1, 0) and similarly between (n, 0) and (2n�1, 0). Secondly, we claim
that after Breaker has claimed both xi and yi the set Fi is good. This will follow
from the following lemma.

Lemma 1. The segment Fi = {(x, 0) : 0  x  2n� 1} is good if and only if there
is a blue point xi between (0, 0) and (n�1, 0) and a blue point yi between (n, 0) and
(2n� 1, 0) such that ||yi � xi|| < n.

Proof. Clearly, if no such xi and yi exist then there is a line of at least n points in
a row which are either red or unclaimed, and hence Maker can still claim a winning
line contained in Fi. Conversely, suppose such an xi and yi exist. Any winning
line contained in the segment must start between (0, 0) and (n, 0). However, if it
started between (0, 0) and xi then it would contain the blue point xi and if it started
between xi and (n, 0) then it would contain the blue point yi, since ||yi � xi|| < n.
Therefore, every winning line contained in the segment contains either xi or yi and
so if Breaker has claimed them both the segment is good.

Since Maker has not yet won we must have that, for the xi and yi defined by the
strategy, ||yi� xi|| < n. Therefore, by Lemma 1, after Breaker has claimed both xi

and yi, each Fi is good. Note that, since each Fi was bad before Breaker’s turn, on
the 2tth turn at least t segments become good.
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We note that every point v 2 Z2 is in 8 segments and also every winning line is
contained in some segment. For a given play of the game, we define

At
r = {F 2 F : F is bad and the number of red points in F at time t is at least r}.

Suppose that Maker wins with the tth move such that t < n��
p

n log n, for some
� > 0. Then we must have that |At

n�t| > 0. Note that t is odd. We claim that for
all integers C  min{ n�t

log n , t
8}

|At�2C
(n�t)�C log n| > C

t

4
� C

8t
log n

.

The claim clearly holds for C = 0. Suppose that it holds for a given value of
C < min{ n�t

log n , t
8}. Then we must have

|At�2C�1
(n�t)�C log n| > (C + 1)

t

4
� C

8t
log n

since Breaker will make t�2C�1
2 � t

4 of the F 2 F good with his turn. This
inequality holds since C < t

8 . We claim that now

|At�2C�2
(n�t)�(C+1) log n| > (C + 1)

t

4
� (C + 1)

8t
log n

,

where, since C < n�t
log n , the left hand side is defined. Indeed, since each point is

in 8 of the F 2 F then by claiming t � 2C � 2 points Maker can only claim log n
points in at most 8 t�2C�2

log n  8 t
log n segments. Therefore, the claim holds for all

C  min{ n�t
log n , t

8}.
Now if min{ n�t

log n , t
8} = t

8 , then t  8n
log n , so we conclude that, with C = t

16 ,
which for ease of presentation we assume to be an integer,

|A
7t
8
n
4
| � |At� t

8
(n�t)� t

16 log n
| > t2

64
� t2

2 log n
>

t2

128
,

for large enough n. But in order to claim at least n
4 points in at least ⌦(t2) of the

F 2 F , Maker must have claimed at least 1
8⌦(t2)n

4 = ⌦(nt2) points. However, by
time 7t

8 Maker has claimed at most O(t2) points, a contradiction.
Similarly, in the case where min{ n�t

log n , t
8} = n�t

log n , we conclude that, with C =
n�t

2 log n , which again we will assume to be an integer,

|At�2C
(n�t)

2
| � |At�2C

(n�t)� n�t
2 log n log n

| >
✓

n� t

2 log n

◆✓
t

4

◆
�

✓
n� t

2 log n

◆✓
8t

log n

◆
� (n� t)t

16 log n
,

for large enough n. But in order to claim at least (n�t)
2 points in at least ⌦

⇣
(n�t)t
log n

⌘
of the F 2 F , Maker must have claimed at least 1

8⌦
⇣

(n�t)t
log n

⌘
(n�t)

2 = ⌦
⇣

(n�t)2t
log n

⌘
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points. The minimum of (n�t)2t
log n for t 2 [2

p
n� 1, n� �

p
n log n], the lower bound

here is from (1), is at t = n� �
p

n log n, for large enough n, and so at time t� 2C
Maker must have claimed at least ⌦(n2 log n) points. However, in the entire game
Maker will claim at most O(n2) points, a contradiction.

We mention that the same strategy would show that Maker cannot win signifi-
cantly before the time at which he is playing n points in a turn, even if at time 2t
Maker claimed 100t points and at time 2t+1 Breaker claimed 0.01t points. Indeed,
this strategy only uses the fact that both f(2t) and f(2t + 1) are linear in t. Hence
the same strategy will show that the (n, f) game has Tn � n/a � o(

p
n log n) as

long as f(2t) = at + b and f(2t + 1) = ct + d for a, b, c, d 2 R+.
Kane noted [4] that a more careful analysis of the above strategy of Breaker’s

gives a bound of Tn � n�O(log n). In a paper in preparation with Mark Walters
we analyse this strategy more closely in order to apply it to a more general class
of games. Essentially the strategy can be viewed as comparing the game to an
auxiliary “ball and bin” game, as in the classical paper of Chvátal and Erdős [2],
where Maker gets to place balls spread out over some bins on each turn and Breaker
gets to pick a bin and remove it from the game, with the aim being to minimise
the number of balls in the bin with the most balls in at the end of the game. One
can find optimal strategies for both Maker and Breaker in this game, and in fact
Breaker’s is the greedy strategy described in this paper, and from that deduce a
simple bound for the number of balls in the largest bin at the end of the game.

From this work it follows that Tn � n � O(log n) is the best bound achievable
with this strategy. It would be interesting to know if the bound could be improved,
or if a strategy for Maker can be found to prove a corresponding upper bound on
Tn.

As mentioned in the introduction, since the analysis of this strategies would
be unchanged, up to a small constant, if Breaker were to play first, both of these
strategies can be used by the losing player in the (n, ◆) game and so the lower bounds
on Tn are also applicable to the (n, ◆) game.
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[2] V. Chvátal and P. Erdős, Biased positional games, Ann. Discrete Math. 2 (1978) 221-229.

[3] H.T. Croft, personal communication, (2011).

[4] D. Kane, personal communication, (2012).


