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Abstract
Let p be an odd prime with p ⌘ 1 (mod 4) and " = (t + u

p
p)/2 > 1 be the

fundamental unit of the real quadratic field K = Q(pp) over the rationals. The
Ankeny-Artin-Chowla conjecture asserts that p - u, which still remains unsolved.
In this paper, we investigate various kinds of congruences equivalent to its negation
p | u by making use of Dirichlet’s class number formula, the products of quadratic
residues and non-residues modulo p and a special type of congruence for Bernoulli
numbers.

1. Introduction

§ 1.1 Let p be an odd prime with p ⌘ 1 (mod 4) and µ := (p � 1)/2. Also let h
be the class number of the real quadratic field K := Q(pp) over the rationals and
" := (t + u

p
p)/2 > 1 be the fundamental unit of K, where (x, y) = (t, u) is the

least positive integer pair satisfying the Pell equation

x2 � py2 = �4. (1.1)

A very important relation between h and " can be stated by Dirichlet’s class
number formula

h =
p

p

2 log "
L(1,�) (see, e.g., [25,Chap. 26]), (1.2)

where L(s,�) is the L-function attached to the Dirichlet character � of conductor
p, that is, the Legendre symbol in this case.

1The author was partially supported by the Ministry of Education, Culture, Sports, Science
and Technology in Japan, Grant-in-Aid for Scientific Research (C).
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In 1948, the following remarkable congruence was first proved by Kiselev [18],
and later independently by Ankeny and Chowla [11]:

hu

t
⌘ Bµ (mod p), (1.3)

where Bn denotes the nth Bernoulli number defined by the Taylor expansion

x

ex � 1
=

1X
n=0

Bn

n!
xn (|x| < 2⇡). (1.4)

In their paper [10] of 1952, Ankeny, Artin and Chowla asked the question whether
p - u is always true and this question gradually came to be called the Ankeny-
Artin-Chowla (AAC) conjecture. This conjecture remains as yet unsolved and it
has attracted a great deal of attention as a possible important property of the
fundamental unit of K. Since h <

p
p (see, e.g., [28, 21]), and so p - h, we recognize

from (1.3) that the AAC conjecture is actually equivalent to the assertion that
p - Bµ is always true.

According to traditional notation, in what follows we write

"n := "n =
✓

t + u
p

p

2

◆n

=
tn + un

p
p

2
for n � 1.

Then the pair (tn, un) is again a solution of (1.1), and since 2n�1un ⌘ ntn�1u
(mod p), we may state that p - u is equivalent to p - un for any n � 1 with p - n.

It is well-known that if p is a prime of the form p = n2 + 1 with n > 2 (i.e.,
p = 17, 37, 101, 257, 401, ...), then " = n+

p
n2 + 1 =

p
p� 1+pp is the fundamental

unit of K. Further, if p is a prime of the form p = n2 + 4 with n � 1 (i.e.,
p = 5, 13, 29, 53, 169, 229, ...), then " = (n +

p
n2 + 4)/2 = (

p
p� 4 +p

p)/2 is the
fundamental unit of K. These facts tell us that the AAC conjecture is true at least
in such special cases.

By numerical computations, van der Poorten et al. verified in [30] that the
AAC conjecture holds for all primes p < 2⇥ 1011 with p ⌘ 1 (mod 4) using a new
algorithm for finding an integer k � 1, p - k for which "k (and hence uk) can be
easily computed. Unfortunately, it is still open whether it can happen that p - u for
infinitely many primes p ⌘ 1 (mod 4).

On the other hand, it is a fact that there are some counter arguments against
this conjecture. For example, based on the heuristic reasoning as mentioned in [33,
p. 82], if we view the numerator of Bµ as a random number, then the probability
that it is divisible by p is 1/p. Thus the expected primes p  x with p ⌘ 1 (mod 4)
and p dividing the numerator of Bµ should be approximately

X
px

p⌘1 (mod 4)

1
p
⇡ 1

2
log log x,
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which leads to an inference that the AAC conjecture might not be true.

§ 1.2 It is the main purpose of this paper to investigate various kinds of congruences
equivalent to p | u. The paper is organized as follows: In Section 2 we recall
the present author’s previous results obtained by applying Dirichlet’s class number
formula and expound them with more detailed analysis and explanations. In Section
3 we first introduce Carlitz’s results which used the products of quadratic residues
and non-residues modulo p, and we later apply them to derive some variations by
means of the Wilson quotient, Fermat quotients and Bernoulli numbers. In Section
4 we concentrate on the study of a special type of congruences for Bernoulli numbers
found by Voronöı, Vandiver, Lehmer and other mathematicians, and making use of
them, we establish various conditions equivalent to p | Bµ and hence to p | u.

Here we wish to point out beforehand that this paper includes not only new but
also known results, and all the methods we will use are quite elementary without
any use of intricate tools.

2. Dirichlet’s Class Number Formula and its Application

§ 2.1 Let p be an odd prime with p ⌘ 1 (mod 4), �(k) :=
⇣

k
p

⌘
be the Legendre

symbol with respect to p and ⇣ be a primitive pth root of unity. With the help of
the quadratic Gauss sum X

k mod p

�(k)⇣nk = �(n)
p

p,

we obtain from (1.2) that

log "2h =
1X

n=1

1
n

8<
:
X

k mod p

�(k)⇣nk

9=
; =

p�1X
k=0

�(k)
1X

n=1

1
n

⇣nk

= �
p�1X
k=0

�(k) log(1� ⇣k) =
p�1X
k=0

log(1� ⇣k)��(k),

which gives
"2h =

Y
s

(1� ⇣s)
Y
r

(1� ⇣r)�1, (2.1)

where r and s are taken over the quadratic residues and non-residues modulo p
between 0 and p, respectively. In this section, by applying the expression of "2h in
(2.1), we will deduce some conditions equivalent to p | u.

§ 2.2 For simplicity, we denote

A :=
Y
r

(1� ⇣r) and B :=
Y
s

(1� ⇣s).
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Since
Qp�1

j=1(x�⇣j) = xp�1+· · ·+x+1, putting x = 1, we have AB =
Qp�1

j=1(1�⇣j) =

p. Further, if p ⌘ 1 (mod 4), then we see
⇣

k
p

⌘
=
⇣

p�k
p

⌘
and (1� ⇣k)(1� ⇣p�k) =

4 sin2(⇡k/p) > 0 for each k = 1, 2, ..., µ, and thus A,B > 0.
The magnitude relation between A and B can be determined as follows:

Lemma 2.1. Let p be an odd prime with p ⌘ 1 (mod 4). Then we have

B � pp

✓p
p +

p
p� 4

2

◆h

>
p

p

✓p
p�pp� 4

2

◆h

� A > 0. (2.2)

Proof. Since t and u are the least positive integers satisfying (1.1), we see that u � 1
and t � pp� 4, and so " � 1

2

�p
p +

p
p� 4

�
. Based on this fact, we get

"h =
r

B

A
=

B
p

p
=
p

p

A
�
✓p

p +
p

p� 4
2

◆h

=
✓

2
p

p�pp� 4

◆h

> 0,

which proves (2.2).

It is easily seen that there exist unique integers a, b and c such that

A = a + b
X

r

⇣r + c
X

s

⇣s;

B = a + b
X

s

⇣s + c
X

r

⇣r,
(2.3)

where the sums
P

r and
P

s run over the quadratic residues r and non-residues s
modulo p between 0 and p, respectively. Throughout this paper, we will use the
same sum notations unless otherwise noted.

Using the well-known identities
X

r

⇣r +
X

s

⇣s = �1 and
X

r

⇣r �
X

s

⇣s =
p

p, (2.4)

we obtain from (2.3) that

A + B = 2a� (b + c) = �(b + c)p and A�B = (b� c)
p

p. (2.5)

Since A + B > 0 and A�B < 0 by Lemma 2.1, we see a > 0 and b ± c < 0. Also,
it is clear that basic relations between a, b and c are given by

a + µ(b + c) = 0;
(b� c)2 + 4 = p(b + c)2,

(2.6)

which are easily shown by using (2.5).



INTEGERS: 16 (2016) 5

On the other hand, we can obtain from (2.1) and (2.5) that

"h =
B
p

p
=

1
2

✓
�A�B

p
p

+
A + B

p

p
p

◆
=
�(b� c)� (b + c)pp

2
. (2.7)

Since µ | a, set a0 := a/µ. Using (2.6), if we rewrite (2.7) in terms of a or a0, then

"h =
1

p� 1

⇣p
pa2 � (p� 1)2 + a

p
p
⌘

=
p

pa02 � 4 + a0
p

p

2
. (2.8)

Therefore, we have

th = �(b� c) =
1
µ

p
pa2 � (p� 1)2 =

p
pa02 � 4 ;

uh = �(b + c) =
1
µ

a = a0.
(2.9)

Here note that pa2�(p�1)2, and so pa02�4, are perfect squares. Also, rewriting
the second identity in (2.6) as (p� 1)b2 + 2(p + 1)bc + (p� 1)c2 � 4 = 0, if we solve
this identity as an equation for b (resp. c) in terms of c (resp. b), then we notice
that both pb2 + p� 1 and pc2 + p� 1 must be perfect squares, because b and c are
integers.

In addition, since th ⌘ th/2h (mod p) and uh ⌘ hth�1u/2h (mod p), we can
deduce the congruence

uh

th
=

b + c

b� c
=

a0p
pa02 � 4

⌘ hu

t
⌘ Bµ (mod p). (2.10)

With these preparations, we are able to state the following theorem already
mentioned in [1, Theorem 3]:

Theorem 2.2. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i) a ⌘ 0 (mod p); (ii) b + c ⌘ 0 (mod p); (iii) bc ⌘ 1 (mod p2).

Proof. Since p | u is equivalent to p | uh, we see from (2.9) that each of (i) and (ii)
is equivalent to p | u. It is also obvious that (ii) is equivalent to (iii) if we consider
the second identity in (2.6), rewritten as (1� p)(b + c)2 = 4(bc� 1).

§ 2.3 As was already mentioned in [1, 7], we may write A as A =
Qµ

k=1(1� ⇣k2
);

therefore the integer a in (2.3) can be represented by

a = µa0 = 1 +
µX

k=1

(�1)kNk,
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where Nk is the number such that

Nk := Card
n
(x1, ..., xk)

���
kX

i=1

x2
i ⌘ 0 (mod p), 1  x1 < · · · < xk  µ

o
.

For example, if p = 13, then the k-tuples (x1, ..., xk) satisfying
Pk

i=1 x2
i ⌘ 0

(mod 13) and 1  x1 < · · · < xk  6 are given as follows: (1, 5), (2, 3), (4, 6)
for k = 2; (1, 3, 4), (2, 5, 6) for k = 3; (1, 2, 3, 5), (1, 4, 5, 6), (2, 3, 4, 6) for k = 4;
(1, 2, 3, 4, 5, 6) for k = 6. Thus a = 1 + (3� 2 + 3 + 1) = 6, and so a0 = 6/6 = 1.

As a matter of fact, it is not so easy to compute the above Nk. Some recursive
methods of obtaining Nk have been found by Le [20] and Iyanaga [17]. An explicit
formula for Nk was completed by Shoji and the present author in [7] by means
of the number of certain quadratic hyper-surfaces in the vector space Fk

p over the
finite field Fp with p elements, which is however rather complicated to restate here.

If we represent b and c in terms of a (or a0), then we get from (2.9) that

b = � 1
p� 1

⇣p
pa2 � (p� 1)2 + a

⌘
= �1

2

⇣p
pa02 � 4 + a0

⌘
;

c =
1

p� 1

⇣p
pa2 � (p� 1)2 � a

⌘
=

1
2

⇣p
pa02 � 4� a0

⌘
.

Since a > 0, we see that b < 0. Also, by (2.5) and Lemma 2.1, if p > 5, then

A + B = 2a� (b + c) =
2ap

p� 1
>

p +
p

p2 � 4p
2

>
2pp
p� 1

> 0.

Thus a >
p

p� 1, which shows that
p

pa2 � (p� 1)2 > a and so c > 0 for p > 5.
When p = 5, we have a = 2, b = �1 and c = 0 by direct calculation.

If a was obtained in some way, then it is possible to deduce b and c immediately
using the above formulas. However, we do not have a good idea at this moment
how to compute a itself in an easy way based only on the definition in (2.3) without
any information of " and h.

§ 2.4 Next, we assume that p is an odd prime with p ⌘ 5 (mod 8). Then it is clear
that there exist unique integers ↵,� and � such that

A0 :=
Y
r

(1 + ⇣r) = ↵ + �
X

r

⇣r + �
X

s

⇣s;

B0 :=
Y
s

(1 + ⇣s) = ↵ + �
X

s

⇣s + �
X

r

⇣r.
(2.11)

These integers ↵,� and � are obviously positive and they satisfy the conditions

↵ + µ(� + �) =2µ;�
2µ+1 � p(� + �)

�2 � 4 = p(� � �)2.
(2.12)
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Similar to Lemma 2.1, the magnitude relation between A0 and B0 is determined
as follows:

Lemma 2.3. If p ⌘ 5 (mod 8), then

A0 �
 

p� 2 +
p

p2 � 4p
2

!h

>

 
p� 2�

p
p2 � 4p

2

!h

� B0 > 0. (2.13)

Proof. Since (1 + ⇣k)(1 + ⇣p�k) = 4 cos2(⇡k/p) > 0 for k = 1, 2, ..., µ, it is obvious
that A0, B0 > 0. If p ⌘ 5 (mod 8), then

⇣
2
p

⌘
= (�1)(p

2�1)/8 = �1, thus
⇣

2s
p

⌘
= 1

and
⇣

2r
p

⌘
= �1. So it follows that A = BB0 and B = AA0. Also, taking x = 1

in the identity (xp + 1)/(x + 1) =
Qp�1

j=1(x + ⇣j), we have A0B0 = 1. Since " �
1
2

�p
p +

p
p� 4

�
as stated in the proof of Lemma 2.1, we obtain

"2h =
B

A
= A0 =

1
B0 �

✓p
p +

p
p� 4

2

◆2h

=

 
p� 2 +

p
p2 � 4p

2

!h

=

 
2

p� 2�
p

p2 � 4p

!h

> 0,

which proves (2.13).

Using (2.4), (2.12) and (2.13), we can deduce from (2.11) that

A0 + B0 = 2↵� (� + �) = 2µ+1 � (� + �)p > 0;
A0 �B0 = (� � �)

p
p > 0.

Based on these identities, it is shown that if p ⌘ 5 (mod 8), then

"2h = A0 =
(A0 + B0) + (A0 �B0)

2
=

2µ+1 � (� + �)p + (� � �)pp

2
.

Therefore, from (2.12) we have

t2h = 2µ+1 � (� + �)p =
1
µ

(p↵� 2µ);

u2h = � � � =
1

µ
p

p

p
(p↵� 2µ)2 � (p� 1)2 =

1
µ

q
Mp(↵),

(2.14)

where Mp(↵) := p(↵2 � 1) � 2 (2µ↵� 1) + qp(2) and qp(2) := (2p�1 � 1)/p is the
Fermat quotient of p with base 2. Needless to say, Mp(↵) is a perfect square.

With the above observations, we establish the following theorem which is already
mentioned in [1, Theorem 4]:
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Theorem 2.4. If p ⌘ 5 (mod 8), then p | u is equivalent to each of

(i) ↵ ⌘ �1� 1
2
qp(2) (mod p); (ii) � ⌘ � ⌘ �1

2
qp(2) (mod p);

(iii) � + � ⌘ �qp(2) (mod p).

Proof. It is obvious that (ii) implies (iii). From (2.14), we see that p | u is equivalent
to p | u2h, and hence to � ⌘ � (mod p). If � ⌘ � (mod p), then, by using the second
identity in (2.12) we have

�
2µ+1 � p(� + �)

�2 � 4 ⌘ 4
�
(2p�1 � 1)� 2µ+1p�

�
⌘ 0 (mod p2),

which gives � ⌘ �qp(2)/2 (mod p), and so � ⌘ �qp(2)/2 (mod p), because
⇣

2
p

⌘
⌘

2µ ⌘ �1 (mod p) holds whenever p ⌘ 5 (mod 8). Thus, we recognize that p | u is
equivalent to (ii). Also, from the first identity in (2.12), it is clear that (i) implies
(iii), and vice versa. Using again the second identity in (2.12), we observe that (iii)
yields � ⌘ � (mod p). This completes the proof of the theorem.

§ 2.5 Similar to the case of a, it is possible to represent ↵ by means of Nk defined
in Subsection 2.3. Indeed, by writing A0 as A0 =

Qµ
k=1(1 + ⇣k2

) we see that

↵ = 1 +
µX

k=1

Nk.

If ↵ was given in some way, then � and � can be obtained by using the following
formulas derived from (2.14):

� =
1

p� 1

✓
2µ � ↵ +

q
Mp(↵)

◆
; � =

1
p� 1

✓
2µ � ↵�

q
Mp(↵)

◆
. (2.15)

For example, if p = 13, then N1 = 0, N2 = 3, N3 = 2, N4 = 3, N5 = 0 and N6 = 1
as was seen in Subsection 2.3; thus we have ↵ = 1 + (3 + 2 + 3 + 1) = 10. Then
M13(10) = 13(102 � 1)� 2

�
26 · 10� 1

�
+ q13(2) = 324, and hence

p
M13(10) = 18.

By using this value we get � = (26�10+18)/12 = 6 and � = (26�10�18)/12 = 3.
Incidentally, if p ⌘ 5 (mod 8), then 2µ ⌘ �1 (mod p), and thus we can deduce

from (2.14) and (2.15) that

u2h

t2h
=

� � �

2µ+1 � (� + �)p
⌘ �� � �

2
⌘
q

Mp(↵) ⌘ 2Bµ (mod p).

Making use of this congruence, we see at once that p | u is equivalent to each of

(i) p | Bµ; (ii) p | � � �; (iii) p2 | Mp(↵).
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3. Products of Quadratic Residues and Non-residues

§ 3.1 In this subsection, we will discuss some congruences equivalent to p | u which
are related to the individual products of quadratic residues and non-residues modulo
p, while mainly referring to results of Carlitz.

In what follows, we denote by R :=
Q

r r and S :=
Q

s s the products of the
quadratic residues r and non-residues s modulo p between 0 and p, respectively.

If p ⌘ 1 (mod 4), then
⇣

k
p

⌘
=
⇣

p�k
p

⌘
(k = 1, 2, ..., µ), hence by using Wilson’s

theorem (i.e., (p� 1)! ⌘ �1 (mod p)) we get

R ⌘ (µ!)2 ⌘ (�1)µ(p� 1)! ⌘ �1 (mod p);

S =
(p� 1)!

R
⌘ (�1)µ ⌘ 1 (mod p).

So there exist the integers Up > 0 and VP < 0 such that

R + 1 = pUp and S � 1 = �pVp. (3.1)

The following remarkable congruence was first announced by Ankeny, Artin and
Chowla in [9], and later proved by Carlitz in [14]:

u2h

t2h
⌘ 2hu

t
⌘ R + S

p
(mod p). (3.2)

Since "2h = "2
h, we obtain from (2.9) and (2.10) that

u2h

t2h
=

2thuh

t2h + pu2
h

=
2(b2 � c2)

(b� c)2 + p(b + c)2
⌘ 2(b + c)

b� c
⌘ 2Bµ (mod p).

Therefore, by using (3.1) and (3.2) we have

R + S

p
= Up � Vp ⌘ 2Bµ (mod p). (3.3)

Consequently, as Carlitz already mentioned, it can be shown from (3.3) that p | u
is equivalent to each of

(i) p | Bµ; (ii) p2 | R + S; (iii) p | Up � Vp. (3.4)

Let Wp := ((p� 1)! + 1)/p be the Wilson quotient for an odd prime p. We now
recall the following classical formulas supplying some relations between Wp and
specific Bernoulli numbers:

Wp ⌘ Bp�1 +
1
p
� 1 (mod p) (Beeger [12], Lerch [24]);

Wp ⌘ B2(p�1) �Bp�1 (mod p) (E. Lehmer [22]).
(3.5)
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Here note that the right-hand sides of these congruences are p-integral by the von
Staudt-Clausen Theorem. For the proof of (3.5), see, e.g., [2, Proposition 3.12].

As is easily seen, if p ⌘ 1 (mod 4), then it follows that

(p� 1)! = RS = (�1 + pUP ) (1� pVp) ⌘ �1 + p(Up + Vp) (mod p2),

and so, dividing by p we get Wp ⌘ Up + Vp (mod p). Combining this with (3.3),

Wp ⌘ 2 (Up �Bµ) ⌘ 2 (Vp + Bµ) (mod p). (3.6)

Theorem 3.1. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i) Wp ⌘ 2Up ⌘ 2Vp (mod p);

(ii) Bp�1 +
1
p
⌘ 2Up + 1 ⌘ 2Vp + 1 (mod p);

(iii) B2(p�1) �Bp�1 ⌘ 2Up ⌘ 2Vp (mod p).

Proof. In view of (3.3) and (3.6), it is clear that p | Bµ is equivalent to (i). Also,
the conditions (ii) and (iii) are derived by applying (i) and (3.5).

§ 3.2 If one of Up and Vp was known, then the other one can be given from the
congruence Wp ⌘ Up + Vp (mod p) mentioned above. It may be somewhat crude,
but we want to introduce below one of the methods of obtaining Up and Vp modulo
p without the use of any quadratic residues and non-residues.

If r is a quadratic residue modulo p, then there exists a unique integer j, 1 
j  µ, such that r ⌘ j2 (mod p), and so r = j2 � bj2/pcp. Therefore, we have

R =
Y
r

r =
µY

j=1

⇣
j2 �

�
j2

p

⌫
p
⌘
⌘ (µ!)2

 
1� p

µX
j=1

1
j2

�
j2

p

⌫!
(mod p2).

Since (p�1)! ⌘ (�1)µ (µ!)2 ⌘ �1 (mod p) by Wilson’s theorem, we have (µ!)2 ⌘ �1
(mod p), and hence

Up =
R + 1

p
⌘ (µ!)2 + 1

p
+

µX
j=bppc+1

1
j2

�
j2

p

⌫
(mod p).

Also, using the congruence (p� 1)! ⌘ (µ!)2(1� pHµ) (mod p2), it follows that

Wp ⌘
(µ!)2 + 1

p
� (µ!)2Hµ (mod p),

where Hk := 1 + 1/2 + · · · + 1/k is the kth harmonic number. As a result, we have

Vp ⌘ Wp � Up ⌘ �(µ!)2Hµ �
µX

j=bppc+1

1
j2

�
j2

p

⌫
(mod p).
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§ 3.3 For a positive integer n with p - n, let qp(n) := (np�1 � 1)/p be the Fermat
quotient of p with base n. We first present the well-known logarithmic property of
Fermat quotients, which can be easily shown by using Fermat’s little theorem.

Lemma 3.2. Let k and m be positive integers prime to p. Then it follows that
qp(km) ⌘ qp(k) + qp(m) (mod p).

Theorem 3.3. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
X

r

qp(r) ⌘
X

s

qp(s) (mod p);

(ii)
X

0<r<p/2

✓
2qp(r) +

1
r

◆
⌘

X
0<s<p/2

✓
2qp(s) +

1
s

◆
(mod p).

Proof. Since R = �1 + pUp and S = 1 � pVp, we have (R + S)/p = Up � Vp, as
already mentioned in Subsection 3.1. On the other hand, from the definition of the
Fermat quotient we have

qp(R) =
1
p

�
(�1 + pUp)p�1 � 1

�
⌘ Up (mod p);

qp(S) =
1
p

�
(1� pVp)p�1 � 1

�
⌘ Vp (mod p).

Therefore, by making use of Lemma 3.2 we obtain from (3.3) that
R + S

p
= Up � Vp ⌘ qp(R)� qp(S)

⌘
X

r

qp(r)�
X

s

qp(s) ⌘ 2Bµ (mod p),
(3.7)

which proves that p | Bµ is equivalent to (i). Next, noting that

qp(p�m) =
(p�m)p�1 � 1

p
⌘ qp(m)� (p� 1)mp�2

⌘ qp(m) +
1
m

(mod p)

and
⇣

m
p

⌘
=
⇣

p�m
p

⌘
for each m = 1, 2, ..., µ, we get from (3.7) that

X
r

qp(r)�
X

s

qp(s) ⌘
p�1X
m=1

✓
m

p

◆
qp(m)

⌘
µX

m=1

✓✓
m

p

◆
qp(m) +

✓
p�m

p

◆
qp(p�m)

◆

⌘
µX

m=1

✓
m

p

◆✓
2qp(m) +

1
m

◆
⌘ 2Bµ (mod p),

which shows that (i) is equivalent to (ii).
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In Section 4 we will give a direct proof of (3.7) and hence of Proposition 3.3 (i),
based on a certain congruence for Bernoulli numbers, without the use of (3.3).

Theorem 3.4. Let p be an odd prime with p ⌘ 1 (mod 4) and s0 be any fixed
quadratic non-residue modulo p. Then p | u is equivalent to

qp(s0) ⌘
2
s0

X
p/s0<r<p

1
r

�
s0r

p

⌫
(mod p). (3.8)

Proof. Since
⇣

s0

p

⌘
⌘ s0µ ⌘ �1 (mod p), we have

Up � Vp ⌘ �s0µ
R + S

p
⌘ �1

p

 Y
r

(s0r) + s0µS

!
(mod p). (3.9)

For a quadratic residue r, let cr be the least positive residue of s0r modulo p. Since
s0r = bs0r/pcp + cr ⌘ cr (mod p), we have

⇣
cr
p

⌘
=
⇣

s0

p

⌘⇣
r
p

⌘
= �1. Further, for

quadratic residues r1 and r2 modulo p, we see that r1 6= r2 if and only if cr1 6= cr2 ,
and so

Q
r cr = S follows. Based on this fact, we can obtain the congruence

Y
r

(s0r) =
Y
r

✓
cr +

�
s0r

p

⌫
p

◆
⌘ S

 
1 + p

X
r

1
cr

�
s0r

p

⌫!
(mod p2).

Thus, using (s0µ + 1)/p ⌘ �qp(s0)/2 (mod p) the right-hand side of (3.9) becomes

�1
p

 Y
r

(s0r) + s0µS

!
⌘ �S

 
s0µ + 1

p
+
X

r

1
cr

�
s0r

p

⌫!

⌘ S

 
1
2
qp(s0)�

X
r

1
cr

�
s0r

p

⌫!
(mod p).

If s0r < p, then bs0r/pc = 0, so we get from (3.9) that, exchanging cr for s0r,

Up � Vp ⌘ S

0
@1

2
qp(s0)�

X
p/s0<r<p

1
s0r

�
s0r

p

⌫1A (mod p),

which shows that (3.8) is equivalent to p | Up � Vp and hence to p | u by (3.4),
because p does not divide S. This completes the proof of the theorem.

4. Application of Bernoulli Number Congruences

§ 4.1 In this section, we prepare special type congruences for Bernoulli numbers
expressing exactly Bk/k (k > 0, an even), and by making use of them we will derive
various kinds of conditions equivalent to p | Bµ, and hence to p | u.
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In what follows, we denote by g a primitive root modulo p and by gi the least
positive residue of gi modulo p, i.e., gi ⌘ gi (mod p), 1  gi  p� 1.

Let Sk(n) := 1k +2k + · · ·+(n�1)k for integers k � 1 and n � 2. First of all, we
present an important consequence of the well-known Euler-Maclaurin summation
formula expressing Sk(n) by means of Bernoulli numbers. That is, if k � 1 and
n � 2, then

Sk(n) =
kX

i=0

1
i + 1

✓
k

i

◆
ni+1Bk�i. (4.1)

This formula itself can be derived by expanding both sides of (x/(ex�1))(enx�1) =
x
Pn�1

j=0 ejx into the Maclaurin power series and then comparing coe�cients of the
powers of x. Here note that 1

i+1

�k
i

�
= 1

k+1

�k+1
i+1

�
for each i � 0.

Using the von Staudt-Clausen theorem and (4.1) with n = p, we can prove the
following proposition (see [2, 29], for instance):

Proposition 4.1. If p is an odd prime, then

Sk(p) ⌘
(
�1 (mod p) if p� 1 | k;

0 (mod p) otherwise.
(4.2)

In particular, if k � 2 is even and p� 1 - k, then

Sk(p) ⌘ pBk (mod p2). (4.3)

By making use of (4.3) we may state the following theorem:

Theorem 4.2. If p ⌘ 1 (mod 4), then p | u is equivalent to

1
p

p�2X
i=0

(�g)i

gi
⌘ �1

2
qp(g) (mod p). (4.4)

Proof. First we note that

gµ(p�1) � 1 = (gp�1 � 1 + 1)µ � 1 =
µX

j=0

✓
µ

j

◆
(gp�1 � 1)j � 1

⌘ µ(gp�1 � 1) ⌘ �1
2
(gp�1 � 1) (mod p2).

Dividing this by gµ � 1, we have (gµ(p�1) � 1)/(gµ � 1) ⌘ (gp�1 � 1)/4 (mod p2),
because gµ ⌘ �1 (mod p) holds for a primitive root g modulo p. Also, since
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gi = gi � bgi/pcp, by taking k = µ in (4.3) we have

Sµ(p) =
p�2X
i=0

gµ
i =

p�2X
i=0

✓
gi �

�
gi

p

⌫
p

◆µ

⌘
p�2X
i=0

✓
giµ � µgi(µ�1)

�
gi

p

⌫
p

◆

⌘ gµ(p�1) � 1
gµ � 1

+
p

2

p�2X
i=0

gi(µ�1)

�
gi

p

⌫
⌘ 1

4
(gp�1 � 1) +

1
2

p�2X
i=0

(�1)i

gi
(gi � gi)

⌘ p

4
qp(g) +

1
2

p�2X
i=0

(�g)i

gi
⌘ pBµ (mod p2),

which proves, after dividing by p, that (4.4) is equivalent to p | Bµ.

Proposition 4.3. Let k be a positive integer such that p� 1 - k. Then

p�1X
m=1

mkqp(m) ⌘ �Bk

k
(mod p). (4.5)

Proof. The Kummer congruence asserts that if p� 1 - k, then

Bk+p�1

k + p� 1
⌘ Bk

k
(mod p),

which yields Bk+p�1 ⌘ ((k � 1)/k)Bk (mod p). Therefore, by making use of (4.3)
in Proposition 4.1 we obtain

p�1X
m=1

mkqp(m) =
p�1X
m=1

mk(mp�1 � 1)
p

⌘ 1
p

(Sk+p�1(p)� Sk(p))

⌘ Bk+p�1 �Bk ⌘
k � 1

k
Bk �Bk ⌘ �

Bk

k
(mod p),

which proves that (4.5) follows.

In particular, considering the special case where k = µ in (4.5), we have

p�1X
m=1

mµqp(m) ⌘
p�1X
m=1

✓
m

p

◆
qp(m) ⌘

X
r

qp(r)�
X

s

qp(s) ⌘ �
Bµ

µ
(mod p),

which gives another proof of Theorem 3.3 (i) without the use of (3.3).

§ 4.2 For the next discussion, we introduce Voronöı’s congruences using a primitive
root g modulo p, and by applying these we derive some conditions equivalent to p | µ.
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Proposition 4.4. Let p be an odd prime, k � 2 be an even integer with p� 1 - k
and a be a positive integer with p - a. Then we have

(i) (ak � 1)
Bk

k
⌘

p�2X
i=0

(agi)k�1

�
agi

p

⌫
(mod p);

(ii) (ak � 1)
Bk

k
⌘ 2

µ�1X
j=0

(agj)k�1

�
agj

p

⌫
+

2(a� 1)ak�1

gk�1 � 1
(mod p).

The proof of (i) can be found in many textbooks (for instance, see [29]), so it
may be unnecessary to reprove it. However, in order to make a basis of (ii) clear,
we would like to give a full proof of this proposition.

Proof. For a fixed integer a, let ci be the least positive residue of agi modulo p, i.e.,
ci is the integer such that agi = bagi/pcp + ci, 1  ci  p� 1. Then, it is shown by
direct calculation that

p�2X
i=0

(agi)k =
p�2X
i=0

✓�
agi

p

⌫
p + ci

◆k

⌘
p�2X
i=0

✓
k

�
agi

p

⌫
pck�1

i + ck
i

◆
(mod p2).

Hence, the fact that {gi | i = 0, 1, ..., p� 2} = {ci | i = 0, 1, ..., p� 2} leads to

(ak � 1)Sk(p) ⌘ kp
p�2X
i=0

ck�1
i

�
agi

p

⌫
(mod p2).

Dividing this by p and exchanging ci for agi, we see from (4.3) that (i) follows. On
the other hand, since gi + gµ+i = ci + cµ+i = p, the identity

a(gi + gµ+i) =
✓�

agi

p

⌫
+
�

agµ+i

p

⌫◆
p + ci + cµ+i

gives, dividing by p, �
agi

p

⌫
+
�

agµ+i

p

⌫
= a� 1.

Also, since g(k�1)µ ⌘ (�1)k�1 ⌘ �1 (mod p) for an even integer k, we have

µ�1X
j=0

(agj)k�1 ⌘ ak�1
µ�1X
j=0

g(k�1)j ⌘ ak�1 g(k�1)µ � 1
gk�1 � 1

⌘ � 2ak�1

gk�1 � 1
(mod p).

Making use of this congruence, the sum on the right-hand side of congruence (i)
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above can be written as

p�2X
i=0

(agi)k�1

�
agi

p

⌫
=

µ�1X
j=0

✓
(agj)k�1

�
agj

p

⌫
+ (agµ+j)k�1

�
agµ+j

p

⌫◆

=
µ�1X
j=0

✓
(agj)k�1

�
agj

p

⌫
+ ak�1(p� gj)k�1

�
agµ+j

p

⌫◆

⌘
µ�1X
j=0

✓
(agj)k�1

�
agj

p

⌫
+ (�agj)k�1

✓
a� 1�

�
agj

p

⌫◆◆

⌘
µ�1X
j=0

(agj)k�1

✓
2
�

agj

p

⌫
� (a� 1)

◆

⌘ 2
µ�1X
j=0

(agj)k�1

�
agj

p

⌫
+

2(a� 1)ak�1

gk�1 � 1
(mod p),

and this shows that (ii) follows.

Incidentally, we would like to mention that Voronöı’s congruence introduced in
Proposition 4.4 (i) can be generalized for a modulus pe+1 (e � 0) and it is used
to prove the generalized Kummer congruence (1� pm�1)Bm/m ⌘ (1� pn�1)Bn/n
(mod pe+1) deeply concerned with the construction of p-adic L-function, where m
and n are positive integers such that p � 1 - m and m ⌘ n (mod '(pe+1)) with
Euler’s totient function '. For details on generalized Voronöı’s congruences and
p-adic L-functions, see, e.g., [27, 5] and [16, 19, 33], respectively.

Based on Proposition 4.4, we can state the following theorem:

Theorem 4.5. Let p be an odd prime with p ⌘ 1 (mod 4) and s0 be any fixed
quadratic non-residue modulo p. Then p | u is equivalent to each of

(i)
p�2X
i=0

(�1)i

gi

�
s0gi

p

⌫
⌘ 0 (mod p);

(ii)
µ�1X
j=0

(�1)j

gj

�
s0gj

p

⌫
⌘ (s0 � 1)g

g + 1
(mod p).

Proof. Set k = µ and a = s0 in Proposition 4.4 (i). Noting that gµ
i ⌘ (�1)i (mod p)

and s0µ ⌘
⇣

s0

p

⌘
⌘ �1 (mod p), we obtain

�2
Bµ

µ
⌘

p�2X
i=0

(s0gi)µ�1

�
s0gi

p

⌫
⌘ � 1

s0

p�2X
i=0

(�1)i

gi

�
s0gi

p

⌫
(mod p),
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and this congruence proves that p | Bµ is equivalent to (i). Similar to the above,
setting k = µ and a = s0 in Proposition 4.4 (ii), we have, since s0µ ⌘ �1 (mod p),

�2
Bµ

µ
⌘ 2

µ�1X
j=0

(s0gj)µ�1

�
s0gj

p

⌫
+

2(s0 � 1)s0µ�1

gµ�1 � 1

⌘ � 2
s0

µ�1X
j=0

(�1)j

gj

�
s0gj

p

⌫
+

2(s0 � 1)g
s0(g + 1)

(mod p).

Multiplying this by s0/2, we can confirm that p | Bµ is equivalent to (ii).

§ 4.3 Next we introduce Vandiver’s curious congruence which, generally speak-
ing, involves two Bernoulli numbers having symmetric indices with respect to the
midpoint µ of the interval [0, p� 1].

For arbitrary positive integers m and a, we define the function �(m,a) by

�(m,a) :=

8><
>:

0 for m = 1;
P0 ⇠a � 1

⇠p � 1
for m � 2,

where p is a fixed odd prime and the sum
P0 is taken over all the mth roots ⇠ (6= 1)

of unity. Using this function, Vandiver [31, 32] proved the following proposition:

Proposition 4.6. Let p be an odd prime and let a and k be arbitrary integers with
1  a  p� 1 and 1  k < p� 1. Then

a
Bk

k
+ ak+1 Bp�1�k

p� 1� k
⌘

p�1X
m=1

mk�(m,a) (mod p). (4.6)

We now assume that p � 5 and k � 2 is even. Given arbitrary positive integers
m and a prime to p, let X := Xm(a) and Y := Ym(a) be solutions of the linear
Diophantine equation

pX �mY = a, 1  X  m, 1  Y  p� 1.

As is easily seen, these solutions are uniquely determined depending on m and a.
In particular, if a = 1, then we have

Xm(1) = m� mm� 1
p

and Ym(1) = p�m,

where m is the modular inverse of m modulo p, i.e., the integer satisfying mm ⌘ 1
(mod p) and 1  m  p� 1.
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Since {pk+mZ | k = 1, 2, ...,m�1} = {k+mZ | k = 1, 2, ..,m�1}, it is possible
to rewrite �(m,a) as

�(m,a) =
X

0 ⇠pXm(a) � 1
⇠p � 1

=
X

0 ⇠Xm(a) � 1
⇠ � 1

= m�Xm(a).

If k is even, then p � 1 - k + 1, and so we have Sk+1(p) ⌘ 0 (mod p) by (4.2) in
Proposition 4.1. Therefore, (4.6) leads to

a
Bk

k
+ ak+1 Bp�1�k

p� 1� k
⌘

p�1X
m=1

mk(m�Xm(a))

⌘ Sk+1(p)�
p�1X
m=1

mkXm(a) ⌘ �
p�1X
m=1

mkXm(a)

⌘ �
p�1X
m=1

mk mYm(a) + a

p
(mod p).

(4.7)

Making use of this congruence, we can prove the following theorem:

Theorem 4.7. Let p be an odd prime with p ⌘ 1 (mod 4) and r0 be any fixed
quadratic residue modulo p. Then p | u is equivalent to each of

(i)
X

r

Xr(r0) ⌘
X

s

Xs(r0) (mod p);

(ii)
X

r

rYr(r0) ⌘
X

s

sYs(r0) (mod p2).

Proof. Set a = r0 and k = µ in (4.7). Since
⇣

r0

p

⌘
⌘ r0µ ⌘ 1 (mod p) and mµ ⌘

⇣
m
p

⌘
(mod p), we have

2r0
Bµ

µ
⌘ �

p�1X
m=1

✓
m

p

◆
Xm(r0) ⌘ �

p�1X
m=1

✓
m

p

◆
mYm(r0) + r0

p
(mod p), (4.8)

which proves that p | Bµ is equivalent to each of (i) and (ii). Here we used the fact
that

Pp�1
m=1

⇣
m
p

⌘
= 0, after multiplying (4.8) by p, in order to derive (ii).

Theorem 4.8. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
X

r

rr � 1
p

⌘
X

s

ss� 1
p

(mod p);

(ii)
X

r

rr ⌘
X

s

ss (mod p2).
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Proof. In particular, if we take r0 = 1 in (4.8), then, using Ym(1) = p�m and the
fact that

Pp�1
m=1

⇣
m
p

⌘
m = 0, we have

2
Bµ

µ
⌘ �

p�1X
m=1

✓
m

p

◆
m(p�m) + 1

p
⌘ �

p�1X
m=1

✓
m

p

◆✓
m� mm� 1

p

◆

⌘
p�1X
m=1

✓
m

p

◆
mm� 1

p
⌘
X

r

rr � 1
p

�
X

s

ss� 1
p

(mod p),

(4.9)

which shows that p | Bµ is equivalent to (i). Also, multiplying (i) by p and usingPp�1
m=1

⇣
m
p

⌘
= 0 again, we can confirm that (i) is equivalent to (ii).

By shortening intervals for r and s in Theorem 4.8 we have the following:

Theorem 4.9. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
X

0<r<p/2

✓
2(rr � 1)

p
� (r + r)

◆

⌘
X

0<s<p/2

✓
2(ss� 1)

p
� (s + s)

◆
(mod p);

(ii)
X

0<r<p/2

(2rr � (r + r)p) ⌘
X

0<s<p/2

(2ss� (s + s)p) (mod p2).

Proof. Noting that p�m = p�m and
⇣

p�m
p

⌘
=
⇣

m
p

⌘
for each m = 1, 2, ..., µ� 1,

we obtain from (4.9) that

2
Bµ

µ
⌘

p�1X
m=1

✓
m

p

◆
mm� 1

p

⌘
µX

m=1

✓
m

p

◆✓
mm� 1

p
+

(p�m)(p�m)� 1
p

◆

⌘
µX

m=1

✓
m

p

◆✓
2(mm� 1)

p
� (m + m)

◆
(mod p),

which proves that p | Bµ is equivalent to (i). Also, multiplying (i) by p and usingPp�1
m=1

⇣
m
p

⌘
= 0, it can be easily confirmed that (i) is equivalent to (ii).

§ 4.4 In this subsection we will observe congruence (4.9) once more from a slightly
di↵erent viewpoint using a primitive root g modulo p and derive several conditions
equivalent to p | Bµ.
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Since gi = gp�1�i and gi = gi � bgi/pcp for each i = 0, 1, ..., p� 2, we get

gigi = gigp�1�i =
✓

gi �
�

gi

p

⌫
p

◆✓
gp�1�i �

�
gp�1�i

p

⌫
p

◆

⌘ gp�1 �
✓

gi

�
gp�1�i

p

⌫
+ gp�1�i

�
gi

p

⌫◆
p (mod p2).

Subtracting 1 from both ends and dividing by p, this congruence gives

gigi � 1
p

⌘ qp(g)�
✓

gi

�
gp�1�i

p

⌫
+ gi

�
gi

p

⌫◆
(mod p). (4.10)

By making use of (4.10), we will prove the following theorem:

Theorem 4.10. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
p�2X
i=0

(�1)i

✓
gi

�
gp�1�i

p

⌫
+ gi

�
gi

p

⌫◆
⌘ 0 (mod p);

(ii)
p�2X
i=0

(�1)igigi ⌘ 0 (mod p2).

Proof. Since gi 6= gj unless p�1 | i�j, we have {gi | 0  i  p�2} = {1, 2, ..., p�1},
and thus we obtain from (4.9) and (4.10) that

2
Bµ

µ
⌘

p�1X
m=1

✓
m

p

◆
mm� 1

p
⌘

p�2X
i=0

✓
gi

p

◆
gigi � 1

p

⌘
p�2X
i=0

(�1)i

✓
qp(g)� gi

�
gp�1�i

p

⌫
� gi

�
gi

p

⌫◆

⌘ �
p�2X
i=0

(�1)i

✓
gi

�
gp�1�i

p

⌫
+ gi

�
gi

p

⌫◆
⌘ 0 (mod p),

which proves that p | Bµ is equivalent to (i). Also, congruence (ii) can be deduced
from this if we multiply by p and use the fact that

Pp�2
i=0

⇣
gi

p

⌘
= 0.

We note that Theorem 4.10 (ii) is actually the same as Theorem 4.8 (ii), because⇣
gi

p

⌘
= (�1)i holds for any integer i.

Theorem 4.11. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
µ�1X
j=1

(�1)j

✓
gj

�
gp�1�j

p

⌫
+ gj

�
gj

p

⌫◆
⌘ � (qp(g) + 1) (mod p);

(ii)
µ�1X
j=1

(�1)jgjgj ⌘ p� 1 (mod p2).
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Proof. For brevity, set Ti := gibgp�1�i/pc+ gibgi/pc. Since g0 = g0 = 1, gµ = p�1
and (gµ + 1)/p ⌘ �qp(g)/2 (mod p), we have T0 = bgp�1/pc = qp(g) and

Tµ = 2gµ

�
gµ

p

⌫
⌘ �2

✓
gµ + 1

p
� 1
◆
⌘ �2

✓
�1

2
qp(g)� 1

◆

⌘ qp(g) + 2 (mod p),

which yield T0+Tµ ⌘ 2(qp(g)+1) (mod p). Also, since (�1)iTi = (�1)p�1�iTp�1�i

(1  i  p� 2; i 6= µ), we obtain from Theorem 4.10 (i) that

p�2X
i=0

(�1)iTi ⌘ 2(qp(g) + 1) + 2
µ�1X
j=1

(�1)jTj ⌘ 0 (mod p),

which gives (i) after dividing by 2. On the other hand, using the congruence

g0gp�1 + (�1)µg2
µ = 1 + (p� 1)2 ⌘ �2(p� 1) (mod p2),

we get from Theorem 4.10 (ii) that

p�2X
i=0

(�1)igigi ⌘ �2(p� 1) + 2
µ�1X
j=1

(�1)jgjgj ⌘ 0 (mod p2).

Dividing this by 2, we can immediately derive (ii), as desired.

§ 4.5 In this subsection we will utilize some classical congruences discovered by E.
Lehmer and derive several conditions equivalent to p | Bµ, and hence to p | u.

At first, we define the functions such that

Z2(x) :=2x � 1;

Z3(x) :=
1
2

(3x � 1) ;

Z4(x) :=
1
2

(2x � 1)
�
2x�1 + 1

�
;

Z6(x) :=
1
2
�
6x�1 + 3x�1 + 2x�1 � 1

�
.

Using these functions, E. Lehmer established in [22] the following proposition:

Proposition 4.12. Let p be an odd prime and k � 2 be an even integer such that
p� 1 - k � 2. Then it follows that for each ⌫ = 2, 3, 4, 6,

Z⌫(k)
Bk

k
⌘

X
0<i<p/⌫

(p� i⌫)k�1 (mod p2), (4.11)

provided that p � 7 for ⌫ = 6.
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Lehmer’s congruences (4.11) have played an important role for irregularity test-
ing of primes as well as Voronöı’s congruences introduced in Subsection 4.2. A
generalized version of (4.11) for the square-modulus n2 of any positive integer n
can be found, e.g., in [3, 5].

The following lemma can be easily verified by using only basic properties of the
Legendre symbol (for reference, see, e.g., [29, 25]).

Lemma 4.13. Let p be an odd prime with p ⌘ 1 (mod 4). Then we have

(i)
✓

2
p

◆
= �1 if p ⌘ 5 (mod 8); (ii)

✓
3
p

◆
= �1 if p ⌘ 5 (mod 12);

(iii)
✓

6
p

◆
= 1 if p ⌘ 1, 5 (mod 24).

This lemma will be used in the next theorem in order to evaluate values of Z⌫(k)
at k = µ modulo p.

Theorem 4.14. Let p be an odd prime and let ⌫1 := 2 if p ⌘ 5 (mod 8), ⌫2 := 3 if
p ⌘ 5 (mod 12), ⌫3 := 4 if p ⌘ 5 (mod 8) and ⌫4 := 6 if p 6= 5 and p ⌘ 5 (mod 24).
Then p | u is equivalent to

X
0<r<p/⌫l

1
r
⌘

X
0<s<p/⌫l

1
s

(mod p), l = 1, 2, 3, 4. (4.12)

Proof. Take k = µ in (4.11). Then we have for each l = 1, 2, 3, 4,

Z⌫l(µ)
Bµ

µ
⌘

X
0<i<p/⌫l

(p� i⌫l)µ�1 ⌘ �⌫µ�1
l

X
0<i<p/⌫l

iµ�1 (mod p). (4.13)

Here we see from Lemma 4.13 that

Z⌫1(µ) = 2µ � 1 ⌘ �2 (mod p);

Z⌫2(µ) =
1
2

(3µ � 1) ⌘ �1 (mod p);

Z⌫3(µ) =
1
2

(2µ � 1)
�
2µ�1 + 1

�
⌘ �1

2
(mod p);

Z⌫4(µ) =
1
2
�
6µ�1 + 3µ�1 + 2µ�1 � 1

�
⌘ �5

6
(mod p).

These congruences show that p - Z⌫l(µ) for all l = 1, 2, 3, 4, and thus we can state
from congruence (4.13) that p | Bµ is equivalent to

X
0<i<p/⌫l

iµ�1 ⌘
X

0<i<p/⌫l

✓
i

p

◆
1
i
⌘ 0 (mod p),

which proves (4.12), as desired.
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§ 4.6 Let Gn be the nth Genocchi number defined by the Taylor expansion

2x
ex + 1

=
1X

n=0

Gn
xn

n!
(|x| < ⇡).

These numbers are integers and the first few of them are 0, 1,�1, 0, 1, 0,�3, 0, 17
and so on. From the functional identity

2
✓

x

ex � 1
� 2x

e2x � 1

◆
=

2x
ex + 1

,

we see that Gn = 2(1� 2n)Bn for any n � 0 and hence Gn = 0 if n � 3 is odd.
Making use of the well-known recurrence relation

Gk +
1
2

k�1X
j=0

✓
k

j

◆
Gjn

k�j = k
n�1X
i=1

(�1)iik�1 (n � 1, an odd)

and the von Staudt-Clausen theorem, it is easy to prove the following:

Proposition 4.15. For an odd prime p and an integer k � 2, it follows that

Gk ⌘ k
p�1X
i=1

(�1)iik�1 (mod p). (4.14)

Based on this proposition, we can derive the following theorem:

Theorem 4.16. If p ⌘ 5 (mod 8), then p | u is equivalent to each of

(i)
X

0<r<p/2
r odd

1
r
⌘

X
0<s<p/2

s odd

1
s

(mod p);

(ii)
X

0<r<p/2
r even

1
r
⌘

X
0<s<p/2

s even

1
s

(mod p).

Proof. Set k = µ in (4.14). If p ⌘ 5 (mod 8), then 2µ ⌘
⇣

2
p

⌘
⌘ �1 (mod p). Also,

since µ ⌘ �1/2 (mod p), iµ�1 ⌘
⇣

i
p

⌘
1
i (mod p) and (�1)p�i

⇣
p�i
p

⌘
= �(�1)i

⇣
i
p

⌘
for i = 1, 2, ..., p� 1, we have

Gµ ⌘ 4Bµ ⌘ �
1
2

p�1X
i=1

(�1)i

i

✓
i

p

◆
⌘ �

X
0<i<p/2

(�1)i

i

✓
i

p

◆

⌘ �
X

0<r<p/2

(�1)r

r
+

X
0<s<p/2

(�1)s

s
(mod p).

(4.15)
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On the other hand, considering (4.13) with l = 1 (and hence ⌫1 = 2) and multiplying
by 2, it follows that

2Z2(µ)
Bµ

µ
⌘ 8Bµ ⌘ �2µ

X
0<i<p/2

iµ�1 ⌘
X

0<i<p/2

✓
i

p

◆
1
i

⌘
X

0<r<p/2

1
r
�

X
0<s<p/2

1
s

(mod p).
(4.16)

Adding (4.15) to (4.16) and dividing by 2, we get

6Bµ ⌘
X

0<r<p/2
r odd

1
r
�

X
0<s<p/2

s odd

1
s

(mod p),

which implies that p | Bµ is equivalent to (i). Also, subtracting (4.15) from (4.16)
and dividing by 2, we get

2Bµ ⌘
X

0<r<p/2
r even

1
r
�

X
0<s<p/2

s even

1
s

(mod p),

which proves that p | Bµ is equivalent to (ii).

Theorem 4.17. If p ⌘ 5 (mod 8), then p | u is equivalent to
X

0<r<p/2

qp(r) ⌘
X

0<s<p/2

qp(s) (mod p). (4.17)

Proof. As we have seen in (4.16), if p ⌘ 5 (mod 8), then p | Bµ is equivalent to

X
0<r<p/2

1
r
⌘

X
0<s<p/2

1
s

(mod p),

and so we may state from Theorem 3.3 (ii) that p | Bµ is equivalent to (4.17).

§ 4.7 For further discussion, we define the following two special polynomials in the
ring Z[x] over the integers:

P (x) :=g0 + g1x + · · · + gp�2x
p�2;

Q(x) :=s0 + s1x + · · · + sp�2x
p�2,

where si := (ggi � gi+1)/p for each i = 0, 1, ..., p� 2.
Incidentally, we wish to mention that these polynomials have been utilized in

order to formulate the relative class number h�p of the cyclotomic field Q(⇣) defined
by ⇣, a primitive pth root of unity. Indeed, Kummer (in 1851) and Inkeri (in 1955)
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established the following expressions (i) and (ii) of h�p used special values of P (x)
and Q(x), respectively: let ✓ be a primitive (p� 1)st root of unity. Then

(i) h�p =
(�1)µ

(2p)µ�1

µ�1Y
k=0

P (✓2k+1); (ii) h�p =
(�1)µp

2pµ�1(gµ + 1)

µ�1Y
k=0

Q(✓2k+1).

For more details and related class number topics, see, e.g., [15, 23, 26, 33, 25, 8].
A basic relation between P (x) and Q(x) can be stated by

1
p
(gx� 1)P (x) = xQ(x) +

1
p
(xp�1 � 1), (4.18)

which is easily confirmed by direct calculation.
We now extract from [6, Section 3] two congruences expressing Bk/k by means

of special values of P (x) and Q(x), and reprove them for the sake of completeness.

Proposition 4.18. Let p be an odd prime and k � 2 be an even integer with
p� 1 - k. Then we have

(i)
1
p
P (gk�1) ⌘ Bk

k
+

k � 1
gk � 1

qp(g) (mod p);

(ii) Q(gk�1) ⌘ gk � 1
gk�1

· Bk

k
(mod p).

Proof. At first, we mention the following congruence proved in [4, Theorem 1.1]:

Bk

k
⌘ gk

gk � 1
qp(g)�

p�1X
i=1

g(k�1)i

�
gi

p

⌫
(mod p). (4.19)

Since bgi/pc = (gi � gi)/p, gp�1 = g0 = 1 and qp(gk�1) ⌘ (k � 1)qp(g) (mod p) by
Lemma 3.2, we obtain from (4.19) that

Bk

k
⌘ gk

gk � 1
qp(g)� 1

p

 
p�1X
i=1

gki �
p�1X
i=1

g(k�1)igi

!

⌘ gk

gk � 1
qp(g)� gk

gk � 1
qp(gk) +

1
p
P (gk�1) + qp(gk�1)

⌘� k � 1
gk � 1

qp(g) +
1
p
P (gk�1) (mod p),

which gives (i). For the proof of (ii), take x = gk�1 in (4.18). That is,

1
p
(gk � 1)P (gk�1) = gk�1Q(gk�1) + qp(gk�1),

which leads to (ii) by using (i) and qp(gk�1) ⌘ (k � 1)qp(g) (mod p) again.
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We note that Proposition 4.18 (ii) is just a special case of Voronöı’s congruences
mentioned in Subsection 4.2. Indeed, if we take a = g in Proposition 4.4 (i), then,
noticing the fact such that Q(gk�1) ⌘

Pp�2
i=0 sig

k�1
i (mod p), we have

(gk � 1)
Bk

k
⌘

p�2X
i=0

(ggi)k�1

�
ggi

p

⌫
⌘ gk�1

p�2X
i=0

gk�1
i

ggi � gi+1

p

⌘ gk�1Q(gk�1) (mod p),

which is exactly the same as Proposition 4.18 (ii). As is well-known, this congruence
is very practical for the irregularity testing of primes by computer, in view of the
running time of operations. More detailed explanations can be found in the excellent
paper [13] by Buhler and Harvey.

Using Proposition 4.18, we may state the following theorem:

Theorem 4.19. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
1
p
P (gµ�1) ⌘ 3

4
qp(g) (mod p);

(ii) Q(gµ�1) ⌘ 0 (mod p).

Proof. Taking k = µ in Proposition 4.18 and noting that (µ � 1)/(gµ � 1) ⌘ 3/4
(mod p), we immediately see that p | Bµ is equivalent to each of (i) and (ii).

The following is just a transformation of Proposition 4.18:

Proposition 4.20. Let p be an odd prime and k � 2 be an even integer with
p� 1 - k. Then we have

(i)
Bk

k
⌘ 2

p

µ�1X
j=0

gjg
(k�1)j � k � 1

gk � 1
qp(g) +

2
gk�1 � 1

(mod p);

(ii)
Bk

k
⌘ 2gk�1

gk � 1

0
@µ�1X

j=0

sjg
(k�1)j +

g � 1
gk�1 � 1

1
A (mod p).

Proof. Since gj + gj+µ ⌘ gj(1 + gµ) ⌘ 0 (mod p) and 1  gj , gµ+j  p� 1 for each
j = 0, 1, ..., µ� 1, we see that gj + gj+µ = p, and hence

P (x) =
µ�1X
j=0

gjx
j +

µ�1X
j=0

(p� gj)xµ+j = (1� xµ)
µ�1X
j=0

gjx
j + pxµ 1� xµ

1� x
.

Putting here x = gk�1 for an even k � 2 and dividing by p, we get

1
p
P (gk�1) =

1
p
(1� g(k�1)µ)

µ�1X
j=0

gjg
(k�1)j + g(k�1)µ 1� g(k�1)µ

1� gk�1

⌘ 2
p

µ�1X
j=0

gjg
(k�1)j +

2
gk�1 � 1

(mod p),



INTEGERS: 16 (2016) 27

and this proves (i) by Proposition 4.18 (i). On the other hand, since gk+µ = p� gk

(0  k  µ), it follows that

sj + sj+µ =
gjg � gj+1

p
+

(p� gj)g � (p� gj+1)
p

= g � 1, (4.20)

and therefore, Q(x) can be written as

Q(x) =
µ�1X
j=0

(sjx
j + sj+µxj+µ) =

µ�1X
j=0

(sj + (g � 1� sj)xµ)xj

= (1� xµ)
µ�1X
j=0

sjx
j + (g � 1)xµ 1� xµ

1� x
.

Here, we set x = gk�1 for an even k � 2. Since g(k�1)µ ⌘ (�1)k�1 ⌘ �1 (mod p),
it is shown that

Q(gk�1) =
⇣
1� g(k�1)µ

⌘ µ�1X
j=0

sjg
(k�1)j + (g � 1)g(k�1)µ 1� g(k�1)µ

1� gk�1

⌘ 2
µ�1X
j=0

sjg
(k�1)j +

2(g � 1)
gk�1 � 1

(mod p),

which gives (ii) from Proposition 4.18 (ii).

Theorem 4.21. If p ⌘ 1 (mod 4), then p | u is equivalent to each of

(i)
1
p

µ�1X
j=0

gjg
(µ�1)j ⌘ 3

8
qp(g) +

g

g + 1
(mod p);

(ii)
µ�1X
j=0

sj

✓
�1

g

◆j

⌘ g(g � 1)
g + 1

(mod p).

Proof. Take k = µ in congruences (i) and (ii) in Proposition 4.20. Since gµ ⌘ �1
(mod p), µ ⌘ �1/2 (mod p) and 2gµ�1/(gµ � 1) ⌘ 1/g 6⌘ 0 (mod p), it can be
easily confirmed that p | Bµ is equivalent to each of (i) and (ii).

We now consider a special case where p has g = 2 as a primitive root. In this
case, the value of sj can be evaluated as follows:

Lemma 4.22. For an odd prime p, if 2 is a primitive root modulo p, then it follows
that for each j = 0, 1, ..., µ� 1,

sj = 1� sj+µ =

(
0 if b2j+1/pc is even;
1 if b2j+1/pc is odd.
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Proof. In general, since gj = gj � bgj/pcp, we have

sj =
1
p

✓✓
gj �

�
gj

p

⌫
p

◆
g �

✓
gj+1 �

�
gj+1

p

⌫
p

◆◆
=
�

gj+1

p

⌫
� g

�
gj

p

⌫
.

In particular, if g = 2, then we see that sj 2 {0, 1} from (4.20) and the last term
on the right-hand side of this identity is always even, so the lemma follows.

Note that b2j+1/pc is odd if and only if the least positive residue of 2i+1 modulo
p is odd, because we have 2j+1 � b2j+1/pcp ⌘ b2j+1/pc (mod 2).

Theorem 4.23. Let p be an odd prime with p ⌘ 1 (mod 4). If 2 is a primitive
root modulo p, then p | u is equivalent to each of

(i)
µ�1X
j=0

sjµ
j ⌘ 2

3
(mod p);

(ii)
µ�1X
j=0

sj+µµj ⌘ 2
3

(mod p).

Proof. Take g = 2 in Theorem 4.21 (ii). Since (�1/2)j ⌘ µj (mod p), we may
immediately conclude that p | Bµ is equivalent to (i). For the proof of (ii), substitute
sj = 1 � sj+µ into (i). The condition g = 2 gives

⇣
2
p

⌘
= 2µ = �1 and hence

µµ ⌘ (�1/2)µ ⌘ �1 (mod p), so we have
Pµ�1

j=0 µj = (1 � µµ)/(1 � µ) ⌘ 4/3
(mod p). By using this fact we can deduce

µ�1X
j=0

sj+µµj ⌘ 1� µµ

1� µ
� 2

3
⌘ 4

3
� 2

3
⌘ 2

3
(mod p),

which proves that (i) is equivalent to (ii), as desired.

Since sj + sj+µ = 1 from (4.20), we notice that more than µ/2 terms in the sum
on the left-hand side of either (i) or (ii) in Theorem 4.23 vanish and this fact may
be useful for practical testing by computer as to whether p | u is false or not.

We note that if p ⌘ 1 (mod 8), then
⇣

2
p

⌘
= 1, so that the integer 2 is not a prim-

itive root modulo p. Therefore, as a criterion for the AAC conjecture, we can apply
Theorem 4.23 only for primes p ⌘ 5 (mod 8) having a primitive root g = 2 such
as p = 5, 13, 29, 37, 53, 61, 101 and so on. Unfortunately, it is not known whether
there exist infinitely many such primes, and this problem is still open as a part of
the famous Artin conjecture on primitive roots.
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