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Abstract
Let fn be the number of vertex labeled forests (acyclic graphs) on n vertices. In this
paper we study the number-theoretic properties of the sequence (fn : n ≥ 1). First,
we find recurrence congruences that relate fn+pk to fn, for all positive integers n
and prime powers pk. We deduce that this sequence is ultimately periodic modulo
every positive integer, and that every positive integer divides infinitely many terms
of this sequence. More generally, we state and prove these results for sequences
defined by a weighted generalization of fn, or equivalently, by a special evaluation
of the Tutte polynomial of the complete graph Kn.

1. Introduction

Let Fn be the set of labeled forests on the vertex set {1, 2, . . . , n}. In this work,
we will find congruences satisfied by evaluations at integer points of the forest
polynomial Fn(x), defined by

Fn(x)
def.
=

∑

A∈Fn

xn−1−|A|, (1)
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where |A| denotes the number of edges of forest A. These evaluations include as
special cases, the number of n-vertex labeled trees when x = 0 (= nn−2 by Cayley’s
Formula [5]), and the number of n-vertex labeled forests when x = 1. For a ∈ Z,
we can think of Fn(a) as counting the n-vertex labeled forests A ∈ Fn, each with
weight an−1−|A|. The first few forest polynomials are given in Table 2.

The forest polynomial is also a partial evaluation of the Tutte polynomial of Kn,
the complete graph on n vertices. The Tutte polynomial of Kn is a two-variable
polynomial given by

Tn(x, y)
def.
=

∑

G∈Gn

(x− 1)c(G)−1(y − 1)c(G)+|G|−n,

where Gn is the the set of all labeled graphs on n vertices and c(G) is the number
of connected components of graph G. The forest polynomial Fn(x) is the same as
Tn(1 + x, 1).

The aim of this paper is to prove the following proposition which gives a recur-
rence congruence for Fn(a) whenever a ∈ Z.

Proposition 1. Let p be a prime, n ≥ 0, k ≥ 1 and a ∈ Z. Then

Fn+pk(a) (mod pk) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n+ a)p
k
Fn(a) if p ≥ 3 and n ≥ 1

ap
k−1 if p ≥ 3 and n = 0

Fn(a) if p = 2, k ̸= 2 and n is odd

(−1)aFn(a) if p = 2, k = 2 and n is odd

1 if p = 2, k = 1, n = 0 and a is even

2 if p = k = 2, n = 0 and a ̸≡ 0 (mod 4)

4 if p = 2, k = 3, n = 0 and a is odd

0 otherwise.

We give a proof in Section 2. Proposition 1 implies that for a ∈ Z, prime p and
k ≥ 1, every term of the infinite integer sequence (Fn(a) : n ≥ 1) modulo pk is fully
determined by its first pk terms. A standard number-theoretic tool, the Chinese
Remainder Theorem [2, Th. 5.4], readily extends this observation to modulo any
positive integer as shown in Section 3.1.

Proposition 1 also helps us identify small prime factors of Fn(a), in particular,
factors pk such that pk ≤ n. Indeed we give a complete characerization of all
such small prime factors of Fn(a) in Section 3.2. As a consequence, we show that
for all a ∈ Z, every positive integer divides infinitely many terms in the sequence
(Fn(a) : n ≥ 1).

Lastly, in Section 3.3, we use Proposition 1 to show that for all a ∈ Z and
positive integers m, the sequence

(
Fn(a) : n ∈ Z≥1

)
is ultimately periodic modulo

m. Such sequences were called modularly C-finite (MC-finite) by Fischer, Kotek,
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and Makowsky [6], who showed that the sequence (fn = Fn(1) : n ≥ 1) is MC-finite.
We generalize this observation to (Fn(a) : n ≥ 1) for every a ∈ Z, and our proof can
also be used to compute the period, unlike the proof of periodicity of (fn : n ≥ 1)
in [6].

1.1. Notation

The notation in Table 1 is consistent throughout this paper and, for brevity, we will
not restate these definitions for each subsequent result.

n an arbitrary non-negative integer
p an arbitrary prime
k an arbitrary positive integer
a an arbitrary integer

|G| the number of edges in the graph G
N the set N = {1, 2, . . . , n}
α the permutation (n+ 1, n+ 2, . . . , n+ pk)
β the permutation (n+ 1, n+ 2, . . . , n+ p)(n+ p+ 1, n+ p+ 2, . . . , n+ 2p) · · · (n+ pk − p+ 1, n+ pk − p+ 2, . . . , n+ pk)
Pi the block Pi = {n+ p(i− 1) + 1, n+ p(i− 1) + 2, . . . , n+ p(i− 1) + p} formed by the i-th non-trivial cycle of β
Γ the permutation group generated by α
C the set of labeled forests on the vertex set {1, 2, . . . , n+ pk}
A the set A = {G ∈ C : βG = G}
S the set of partitions of the set {1, 2, . . . , pk−1}
Q a partiton in S
q a part in Q (which will be a subset of {1, 2, . . . , pk−1})
π a partition of the number pk−1

Sπ the set of partitions of the set {1, 2, . . . , pk−1} whose cardinalities induce the partition π
Qπ an arbitrary representative of Sπ

π0 the partition {
pk−1

︷ ︸︸ ︷
1, 1, . . . , 1} of pk−1

π1 the partition {
2k−1−2︷ ︸︸ ︷

1, 1, . . . , 1, 2} of 2k−1 (we require k ≥ 2)

π2 the partition {
2k−1−4︷ ︸︸ ︷

1, 1, . . . , 1, 2, 2} of 2k−1 (we require k ≥ 3)

Table 1: Table of notation.

2. Proof of Proposition 1

We begin the proof of Proposition 1 with the following lemma. Importantly, it
allows us to study the set A defined in Table 1, whose members admit a non-trivial
symmetry (instead of the set C).

Lemma 1.
Fn+pk(a) ≡

∑

G∈A
an+pk−|G|−1 (mod pk). (2)

Proof. Rephrasing (1), we have

Fn+pk(a) =
∑

G∈C
an+pk−|G|−1. (3)
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The action of Γ (defined in Table 1) on C partitions C into orbits.

• All graphs within a single orbit are isomorphic to each other, and make the
same contribution to (3).

• By the Orbit-Stabilizer Theorem [3, Th. 17.2], an orbit has size pk unless
it contains a forest G whose stabilizer has cardinality divisible by p, whence
αpk−1

is an automorphism of G.

• If we define B = {G ∈ C : αpk−1
G = G}, then B (and hence C \ B) is closed

under the action of Γ. Further, the action of Γ partitions C \ B into orbits of
size |Γ| = pk.

Hence we have
Fn+pk(a) ≡

∑

G∈B
an+pk−|G|−1 (mod pk).

Since αpk−1
and β (defined in Table 1) have the same cycle structure, there exists

a permutation χ such that β = χαpk−1

χ−1. Hence, αpk−1

is an automorphism of G
if and only if β is an automorphism of χ(G). The permutation χ gives a bijection
between B and χ(B) = A which preserves the contribution to (3), and the lemma
follows.

We are now ready to start proving cases of Proposition 1. As we will see, the
forests in A are structurally different in the p = 2 and p ≥ 3 cases, and the n ≥ 1
and n = 0 cases, which results in four cases we will study (Theorems 1, 2, 3, and 4).

Each case, however, has a similar theme: we give a description of how to construct
forests in A, which we then use to split (2). In each case, we partition the vertices of
the forests in A into the blocks N and Pi for 1 ≤ i ≤ pk−1 (see Table 1). Vertices in
N are fixed by the automorphism β, whereas vertices in each Pi are simultaneously
cyclically permuted by β. An example is given in Figure 1; the dotted arrows
indicate that action of β.

Theorem 1. If p ≥ 3 and n ≥ 1 then

Fn+pk(a) ≡ (n+ a)p
k

Fn(a) (mod pk).

Proof. We make the following two observations, valid for arbitrary G ∈ A (illus-
trated in Figure 2).

Observation 1. Suppose w and x are two distinct vertices in N and y ∈ Pj . Then
G cannot have both edges wy and xy. Proof : Otherwise {wy, yx, xβ(y),β(y)w} is
a 4-cycle in G.

Observation 2. Suppose w and x are two distinct vertices in N and y ∈ Pi, z ∈ Pj

where i ̸= j. Then G cannot have edges wy and xz and any path T from y to z
contained in the subgraph induced by ∪rPr. Proof : Otherwise {β(y)w,wy} ∪ T ∪
{zx, xβ(z)} ∪ β(T ) is a cycle.
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Figure 1: An example of a graph in G ∈ A when p = 3, k = 2 and n = 5.
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(a) Observation 1
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(b) Observation 2

Figure 2: Illustrating how cycles arise in Observations 1 and 2.

We can decompose any G ∈ A into two components: the subgraph J = J(G)
induced by the vertices in N , and H = H(G) formed from G by deleting the edges
in J . For the example in Figure 1, J and H are given in Figure 3.

Importantly, Observations 1 and 2 imply that, regardless of the structure of G,
we can delete the edges in J and replace them by the edges from any other forest
on the vertex set N to obtain another forest in A; i.e., this replacement (a) does
not introduce any cycles and (b) preserves the automorphism β. Let J and H
respectively be the sets of possible subgraphs J and H that arise in any G ∈ A (i.e.,
the range of J and H). Hence

A = {J ∪H : J ∈ J and H ∈ H}

and each J ∪H is unique. Moreover, J is the set of spanning forests on the vertex
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(a) J , the subgraph induced by
N = {1, 2, . . . , 5}.
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(b) H, formed from G by deleting
the edges in J .

Figure 3: Illustrating how the forest G in Figure 1 decomposes into J and H .

set N . Consequently, we may split (2) as follows:

Fn+pk(a) (mod pk) ≡
∑

G∈A
an+pk−|G|−1

≡
∑

J∈J

∑

H∈H
an−|J|−1 ap

k−|H| [since n ≥ 1]

≡
(
∑

J∈J
an−|J|−1

)(
∑

H∈H
ap

k−|H|

)

≡ Fn(a)
∑

H∈H
ap

k−|H|. (4)

Remark. Note that (4) is not valid when n = 0, so this case will need to be resolved
separately; see Theorem 3.

The next step in this proof is therefore to classify which H are in H. EachH ∈ H
induces a partition Q ∈ S (defined in Table 1) and a subset R ⊆ Q, wherein:

(i) Integers i and j belong to the same part in Q whenever there is a path in H
between a vertex in Pi to a vertex in Pj (i ̸= j).

(ii) A part q ∈ Q belongs to R whenever there is some i ∈ q such that there is an
edge in H between a vertex in Pi and a vertex in N .

For example, the graph in Figure 1 induces the partition Q =
{
{1}, {2, 3}

}
and the

subset R =
{
{1}
}
⊆ Q.

We will use Q to account for the possible ways that the vertices in the various
Pi’s might be connected to each other, and similarly we will use R to account for
the possible ways that the vertices in Pi might be connected to those in N . We
partition H into the sets

H(Q,R) = {H ∈ H : H induces partition Q and subset R ⊆ Q}.
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Hence (4) splits as

Fn+pk(a) ≡ Fn(a)
∑

Q∈S

∑

R⊆Q

∑

H∈H(Q,R)

ap
k−|H| (mod pk). (5)

Thus we will now classify which H are in H(Q,R). Note that Observations 1
and 2 are also valid for all H ∈ H. Next, we make two additional observations
about the graphs in H.

Observation 3. Suppose w and x are two distinct vertices in Pi, and y ∈ Pj , where
i ̸= j. Then H cannot have edges wy and xy. Proof : Otherwise {β(w)rβ(y)r : 0 ≤
r ≤ p − 1} ∪ {β(x)rβ(y)r : 0 ≤ r ≤ p − 1} are the edges of a 2-regular bipartite
subgraph, which must contain a cycle. (In fact, since p is prime, it would be a
2p-cycle.)

Observation 4. We cannot have an edge yz for distinct y, z ∈ Pi. Proof : Otherwise,
since p ≥ 3, the induced subgraph on the vertices Pi contains a p-cycle.

Remark. Observation 4 is false when p = 2, and is where the p = 2 and p ≥ 3
cases first deviate.

Now, given Q ∈ S and R ⊆ Q, we can construct forests H ∈ H(Q,R) in the
following way:

(a) We begin with H as the null graph on the vertex set {1, 2, . . . , n+ pk}.

(b) For each part q ∈ Q we choose one of the |q||q|−2 spanning trees Tq on the
vertex set q.

(c) For each edge ij in Tq, we choose a vertex y in Pi and a vertex z in Pj , and add
the edges {βr(y)βr(z) : 0 ≤ r ≤ p − 1} to H . This can be achieved in p ways
per edge in Tq, and hence p|q|−1 ways in total for a given Tq. In this step, we
add (|q|− 1)p edges to the graph H for each part q ∈ Q.

(d) For each part r ∈ R, we choose an i ∈ r and an x ∈ N , and add to H the p
edges from each vertex in Pi to x. Clearly, this can be achieved in |r|n ways for
each r ∈ R. This step adds a further |R|p edges to the graph H .

Observations 1–4 imply that we can construct all H ∈ H(Q,R) this way. Specif-
ically, if we attempt to add edges in a manner not accounted for above, we will
introduce a cycle: Observations 1 and 2 preclude having Pi-to-N edges in any other
way; Observation 3 precludes having additional Pi-to-Pj edges in step (c); Obser-
vation 4 precludes adding Pi-to-Pi edges. By definition, there are no N -to-N edges
in H .
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From the above construction we find, for a given Q ∈ S and an R ⊆ Q, we have
|H | = |R|p+

∑
q∈Q

(|q|− 1)p = pk − (|Q|− |R|)p for all H ∈ H(Q,R). Hence,

∑

H∈H(Q,R)

ap
k−|H| = |H(Q,R)| a(|Q|−|R|)p

=
( ∏

q∈Q

|q||q|−2p|q|−1
)( ∏

r∈R

|r| n
)
a(|Q|−|R|)p. (6)

When R is empty, step (d) can be performed in exactly one way (i.e., do nothing),
in which case we define

∏
r∈R

|r| n = 1. Defining

h(Q) =
∑

R⊆Q

( ∏

q∈Q

|q||q|−2p|q|−1
)( ∏

r∈R

|r| n
)
a(|Q|−|R|)p,

and substituting (6) into (5) gives

Fn+pk(a) ≡ Fn(a)
∑

Q∈S
h(Q) (mod pk). (7)

We will split (7) according to which number partition is induced by the cardinalities
of the sets in Q. From any set partition Q ∈ S we can generate a multiset π(Q) =
{|q| : q ∈ Q} that forms an integer partition of pk−1. For any integer partition π of
pk−1, let Sπ = {Q ∈ S : π(Q) = π}. Importantly, for a given π, the value of h(Q)
is identical for all Q ∈ Sπ, and we denote this common value by hπ. Hence

Fn+pk(a) (mod pk) ≡ Fn(a)
∑

π

∑

Q∈Sπ

h(Q)

≡ Fn(a)
∑

π

|Sπ| hπ

≡ Fn(a)
(
hπ0 +

∑

π ̸=π0

|Sπ | hπ

)
[π0 is defined in Table 1]

≡ Fn(a) hπ0 . [by Lemma 13]

Let Qπ0 = {{1}, {2}, . . . , {pk−1}}, the unique set partition in Sπ0 . We compute

hπ0 =
∑

R⊆Qπ0

( ∏

q∈Qπ0

✘✘✘✘|q||q|−2
✟✟✟p|q|−1

)( ∏

r∈R
##|r| n

)
a(|Qπ0 |−|R|)p [since |q| = |r| = 1]

=
∑

R⊆Qπ0

n|R|ap
k−|R|p

=
pk−1∑

i=0

(
pk−1

i

)
niap

k−ip

= (n+ ap)p
k−1

. [by the Binomial Theorem]
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Thus,

hπ0 (mod pk) ≡ (n+ a)p
k−1

[by Lemma 8]

≡ (n+ a)p
k

, [by Lemma 9]

and the result follows.

Next we resolve the p = 2 and n ≥ 1 case.

Theorem 2. If n ≥ 1 then

Fn+2k(a) (mod 2k) ≡

⎧
⎪⎨

⎪⎩

Fn(a) if n is odd and k ̸= 2

(−1)aFn(a) if n is odd and k = 2

0 otherwise.

(8)

Proof. The proof for the p = 2 case begins the same as the proof for Theorem 1,
so we will only elaborate on the discrepancies between the proofs. Firstly, Obser-
vation 4 is invalid for p = 2; a counter-example is given in Figure 4. The second
difference between these proofs is that Lemma 13 behaves differently in the p = 2
case.

4 5

P1

6 7

P2

8 9

P3

10 11

P4

1

2 3
N

Figure 4: A example of a forest in A when p = 2, k = 3, and n = 3.

We make the following additional observations when p = 2 (illustrated in Fig-
ure 5).

Observation 5. Suppose y ∈ Pi and z ∈ Pj for distinct i and j. Then H cannot
have the edges yβ(y), zβ(z) and a path T between y and z. Proof : Otherwise
{yβ(y)} ∪ T ∪ {zβ(z)} ∪ β(T ) is a cycle.

Observation 6. Suppose w ∈ N , y ∈ Pi and z ∈ Pj for distinct i and j. Then H
cannot have the edges yβ(y), zw and a path T between y and z. Proof : Otherwise
{yβ(y)} ∪ T ∪ {zw,wβ(z)} ∪ β(T ) is a cycle.

Each H ∈ H induces a partition Q ∈ S and two disjoint subsets R,W ⊆ Q,
where the partition Q and the subset R are defined as in the odd p case (see the
proof of Theorem 1), and
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β(y)y
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β(z)z

P3

N

(a) Observation 5

β(y)y

P1

P2

β(z)z

P3
w

N

(b) Observation 6

Figure 5: Illustrating how cycles arise in Observations 5 and 6.

(iii) a part q ∈ Q belongs to W whenever there is some i ∈ q such that there
is an edge joining the two vertices in Pi.

We will use W to account for the possible ways that the individual Pi might be
internally connected. Observation 6 ensures that the sets R and W are disjoint.
For example, the graph in Figure 4 induces the partition Q =

{
{1, 2}, {3, 4}

}
and

subsets R =
{
{3, 4}

}
and W =

{
{1, 2}

}
.

This time, we partition H into sets

H(Q,R,W ) = {H ∈ H : H induces partition Q and R,W ⊆ Q}.

Note that H(Q,R,W ) is empty when R and W have a nonempty intersection.

When constructing H ∈ H(Q,R,W ), we add the following additional step to the
construction in the odd p case.

(e) For each part w ∈ W , we add an edge to H between the two vertices in Pi for
some i ∈ w. For each w ∈ W , we add this edge for exactly one i ∈ w, and this
can be achieved in |w| ways. Note that this step adds a further |W | edges to
H .

For a given Q ∈ S and disjoint R,W ⊆ Q, we find |H | = 2k − 2(|Q|− |R|) + |W |.
Since (4) is valid for p = 2 and n ≥ 1, we obtain

Fn+2k(a) (mod 2k) ≡ Fn(a)
∑

Q∈S

∑

R,W⊆Q
R∩W=∅

∑

H∈H(Q,R,W )

a2
k−|H|

≡ Fn(a)
∑

Q∈S

∑

R,W⊆Q
R∩W=∅

|H(Q,R,W )| a2(|Q|−|R|)−|W |. (9)
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We define

ℓ(Q) =
∑

R,W⊆Q
R∩W=∅

|H(Q,R,W )| a2(|Q|−|R|)−|W |

=
∑

R,W⊆Q
R∩W=∅

( ∏

q∈Q

|q||q|−22|q|−1
)( ∏

r∈R

|r| n
)( ∏

w∈W

|w|
)
a2(|Q|−|R|)−|W |.

Here, when W is empty, step (e) can be performed in exactly one way (i.e., do
nothing), in which case we set

∏
w∈W

|w| = 1.

As with the odd p case, given an integer partition π, the value of ℓ(Q) is identical
for all Q ∈ Sπ, and we denote this by ℓπ. Now, Lemma 13 implies

∑

Q∈S
ℓ(Q) (mod 2k) ≡ ℓπ0 + |Sπ1 | ℓπ1 + |Sπ2 | ℓπ2 , (10)

where π0, π1, and π2 are as defined in Table 1. Note that, for π1 to be realizable, we
need 2k−1 − 2 ≥ 0, and for π2 to be realizable, we need 2k−1 − 4 ≥ 0. So |Sπ1 | = 0
when k = 1 and |Sπ2 | = 0 when k ≤ 2.

We first compute ℓπ0 (mod 2k) as follows:

ℓπ0 =
∑

R,W⊆Qπ0
R∩W=∅

( ∏

q∈Qπ0

✘✘✘✘|q||q|−2✘✘✘2|q|−1
)( ∏

r∈R
##|r| n

)

✟✟✟✟✟✟( ∏

w∈W

|w|
)
a2(|Qπ0 |−|R|)−|W |,

where the cancellations occur because |q| = |r| = |w| = 1 for all q, r and w in this
case. That is,

ℓπ0 (mod 2k) ≡
∑

R,W⊆Qπ0
R∩W=∅

n|R|a2
k−2|R|−|W |

≡
∑

i,j≥0
i+j≤2k−1

(
2k−1

i, j, 2k−1 − i− j

)
nia2

k−2i−j

≡
∑

i,j≥0
i+j≤2k−1

(
2k−1

i, j, 2k−1 − i− j

)
niaj(a2)2

k−1−i−j

≡ (n+ a+ a2)2
k−1

[by the Multinomial Theorem]

≡ n2k−1

[by Lemma 8]

≡
{
1 if n is odd;

0 otherwise.
[by Lemma 7 (Euler’s Theorem)]
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Now let Qπ1 be an arbitrary set partition in Sπ1 . We find:

ℓπ1 =
∑

R,W⊆Qπ1
R∩W=∅

( ∏

q∈Qπ1

✘✘✘✘|q||q|−22|q|−1
)( ∏

r∈R

|r| n
)( ∏

w∈W

|w|
)
a2(|Qπ1 |−|R|)−|W |,

since |q| ≤ 2 for all q ∈ Qπ1 . Thus,

|Sπ1 | ℓπ1 = |Sπ1 |
∏

q∈Qπ1

2|q|−1
∑

R,W⊆Qπ1
R∩W=∅

( ∏

r∈R

|r| n
)( ∏

w∈W

|w|
)
a2(|Qπ1 |−|R|)−|W |

≡ 2k−1
∑

R,W⊆Qπ1
R∩W=∅

( ∏

r∈R

|r| n
)( ∏

w∈W

|w|
)
a2(|Qπ1 |−|R|)−|W | (mod 2k),

where we apply Lemma 13 in the last step. Further note that if there exists an
r ∈ R such that |r| = 2 or a w ∈ W such that |w| = 2 then, together with the
common 2k−1 factor, the corresponding (R,W ) pair will contribute nothing to the
sum modulo 2k in the last step. Hence,

|Sπ1 | ℓπ1 (mod 2k) ≡ 2k−1
∑

R,W⊆Qπ1
R∩W=∅

r∈R =⇒ |r|=1
w∈W =⇒ |w|=1

( ∏

r∈R
##|r| n

)

✟✟✟✟✟✟( ∏

w∈W

|w|
)
a2(|Qπ1 |−|R|)−|W |,

where the cancellations occur because |r| = |w| = 1. We finally obtain,

|Sπ1 | ℓπ1 (mod 2k) ≡ 2k−1
∑

R,W⊆Qπ1
R∩W=∅

r∈R =⇒ |r|=1
w∈W =⇒ |w|=1

n|R|a2
k−2−2|R|−|W |

≡ 2k−1
∑

i,j≥0
i+j≤2k−1−2

(
2k−1 − 2

i, j, 2k−1 − 2− i− j

)
nia2

k−2−2i−j

≡ 2k−1
∑

i,j≥0
i+j≤2k−1−2

(
2k−1 − 2

i, j, 2k−1 − 2− i− j

)
niaj(a2)2

k−1−1−i−j

≡ 2k−1a2(n+ a+ a2)2
k−1−2 [by the Multinomial Theorem].

We can similarly prove |Sπ2 | ℓπ2 ≡ 2k−1a4(n+ a+ a2)2
k−1−4 (mod 2k).

Consequently, whenever a ≡ 0 (mod 2) we have |Sπ1 | ℓπ1 ≡ |Sπ2 | ℓπ2 ≡ 0
(mod 2k). When a ≡ 1 (mod 2), we tabulate below the values of |Sπ1 | ℓπ1 and
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|Sπ2 | ℓπ2 modulo 2k.

n ℓπ0 |Sπ1 | ℓπ1 |Sπ2 | ℓπ2 ℓπ0 + |Sπ1 | ℓπ1 + |Sπ2 | ℓπ2 (mod 2k)
k = 1 even 0 − − 0
k = 2 even 0 2 − 2
k = 3 even 0 0 4 4
k ≥ 4 even 0 0 0 0
k = 1 odd 1 − − 1
k = 2 odd 1 2 − 3 ≡ −1
k ≥ 3 odd 1 2k−1 2k−1 1

Using the above table, and from (9) and (10), we can write

Fn+2k(a) (mod 2k) ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fn(a) if n is odd and k ̸= 2

(−1)aFn(a) if n is odd and k = 2

2Fn(a) if n is even, k = 2 and a is odd

4Fn(a) if n is even, k = 3 and a is odd

0 otherwise.

(11)

However, when a is odd, we know F2(a) = a+1 (see Table 2) is even. Further, (11)
implies Fn(a) is even for all a ∈ Z and even n ≥ 4. These two observations, together
with (11), give Fn+2k(a) ≡ 0 (mod 2k) for all even n ≥ 2 when k ∈ {2, 3}, and the
claimed result follows.

We have now completed the n ≥ 1 cases. For the n = 0 cases, we will need the
following lemma (which is interesting in its own right).

Let fm,q denote the number of labeled forests on m vertices with exactly q edges.
In other words, fm,q is the coefficient of the term xm−1−q in the polynomial Fm(x).

Lemma 2. If m is odd, m ≥ 3 and q ≥ 1, then fm,q ≡ 0 (mod m).

Proof. Let Fm,q be the set of labeled forests on the vertex set {1, 2, . . . ,m} with
exactly q edges. Let p be a (necessarily odd) prime divisor of m, and let m = pct
where gcd(t, p) = 1. The cyclic group ⟨(1, 2, . . . ,m)⟩ acts on Fm,q. By the Orbit-
Stabilizer Theorem, the orbits of this action have size divisible by pc unless they
contain forests with a stabilizer of order divisible by p or, equivalently, they admit
the automorphism ζ := (1, 2, . . . ,m)m/p. Hence

fm,q = |Fm,q| ≡ |{G ∈ Fm,q : ζG = G}| (mod pc).

Let γ = (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p) · · · (m − p + 1,m − p + 2, . . . ,m) and
B = {G ∈ Fm,q : γG = G}. Since ζ and γ have the same cycle structure, we have

fm,q ≡ |B| (mod pc).
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Let G be an arbitrary forest in B. We partition the vertices of G into blocks
Di := {p(i− 1) + 1, p(i− 1) + 2, . . . , pi} for i ∈ {1, 2, . . . ,m/p}. Blocks correspond
to disjoint cycles of γ.

A property of admitting the automorphism γ is that we can apply Observations 3
and 4 from the proof of Theorem 1 on the blocks Di of any forest in B. In other
words, there are either 0 or p edges between any distinct pair of blocks Di and
Dj, and no edges between the p vertices of any block Di. Thus as q ≥ 1, if B is
non-empty then p divides q.

When B is non-empty, for each G ∈ B we can obtain a corresponding forest
G′ ∈ Fm/p,q/p by identifying all p vertices of block Di in G into a single vertex
for each i ∈ {1, . . . ,m/p}, and identifying parallel edges in the reduced graph to a
single edge. Similarly, we can reverse this process to obtain pq/p forests in B from
each G′ ∈ Fm/p,q/p as follows: we “blow up” each vertex i in G′ to a p-vertex block
Di, then for each edge ij in G′ (there are q/p such edges) we have p choices to
connect the vertices in blocks Di and Dj (so as to achieve the automorphism γ
without introducing cycles). An example of this reversing process is illustrated in
Figure 6.

1

2

3

4

5

(a) A graph in Fm/p(q/p).

D1

D2

D3

D4

D5

(b) An example of a blow up of the for-
est in (a), giving a forest in B.

Figure 6: Illustrating the blow up process. Here we have m = 25, q = 15, and
p = 5.

Hence

fm,q (mod pc) ≡
{
0 if p does not divide q

pq/pfm/p,q/p otherwise.

Since q ≥ 1, we know that p divides pq/p. Hence, if pc−1 divides fm/p,q/p, then
pc divides fm,q. We repeat this descent until we either (a) reach q/pk edges, for
some k in the range 1 ≤ k < c, such that p does not divide q/pk, or (b) reach the
base condition that p divides fm/pc−1,q/pc−1 , and it follows from either of these
that fm,q ≡ 0 (mod pc). The result now follows from the Chinese Remainder
Theorem.
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The p ≥ 3 and n = 0 case of Proposition 1 follows easily from Lemma 2.

Theorem 3. If m is odd and m ≥ 3 then Fm(a) ≡ am−1 (mod m). In particular,
if p is an odd prime and k ≥ 1 then Fpk(a) ≡ ap

k−1 (mod pk).

Proof. From (1) and Lemma 2, we have

Fm(a) =
∑

q≥0

fm,q am−1−q ≡ am−1 (mod m).

The last step in the proof of Proposition 1 is the p = 2 and n = 0 case.

Theorem 4. For integers k ≥ 1,

F2k(a) (mod 2k) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if k = 1 and a is even

2 if k = 2 and a ̸≡ 0 (mod 4)

4 if k = 3 and a is odd

0 otherwise.

Proof. We continue with the setup in the p = 2 and n ≥ 1 case (Theorem 2).
Equation (4) does not hold when n = 0, so instead use (2), which gives

F2k(a) ≡
∑

G∈A
a2

k−|G|−1 (mod 2k).

Since |N | = 0, we have A = H, and for H = H(Q,R,W ) to be non-empty, we must
have R = ∅, so

F2k(a) ≡
∑

Q∈S

∑

W⊆Q

∑

G∈H(Q,∅,W )

a2
k−|G|−1 (mod 2k).

We can construct forests G ∈ H(Q, ∅,W ) following Steps (a)–(e) in the proofs of
Theorems 1 and 2. The number of edges of any G ∈ H(Q, ∅,W ) is 2k − 2|Q|+ |W |,
and so

F2k(a) (mod 2k) ≡
∑

Q∈S

∑

W⊆Q

|H(Q, ∅,W )| a2|Q|−|W |−1

≡
∑

Q∈S

∑

W⊆Q

⎛

⎝
∏

q∈Q

2|q|−1|q||q|−2

⎞

⎠
(
∏

w∈W

|w|
)
a2|Q|−|W |−1

≡
∑

Q∈S

∑

Z⊆Q

⎛

⎝
∏

q∈Q

2|q|−1|q||q|−2

⎞

⎠

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a|Q|+|Z|−1,

where we define Z = Q \W . If we also denote

ℓ′(Q) =
∑

Z⊆Q

⎛

⎝
∏

q∈Q

2|q|−1|q||q|−2

⎞

⎠

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a|Q|+|Z|−1,
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then

F2k(a) (mod 2k) ≡
∑

π

∑

Q∈Sπ

ℓ′(Q),

where the outer sum is over all integer partitions π of 2k−1.

As before, given a partition π, the value of ℓ′(Q) is identical for all Q ∈ Sπ, and
we denote this common value by ℓ′π. From Lemma 13, we know π makes a zero
contribution modulo 2k above, except possibly when π ∈ {π0,π1,π2}. Hence

F2k(a) ≡ ℓ′π0
+ |Sπ1 | ℓ′π1

+ |Sπ2 | ℓ′π2
(mod 2k),

again noting that |Sπ1 | = 0 when k = 1 and |Sπ2 | = 0 when k ∈ {1, 2}. We will
complete the proof of the theorem by finding formulas for |Sπi | ℓ′πi

(mod 2k) for
i ∈ {0, 1, 2}.

First,

ℓ′π0
=

∑

Z⊆Qπ0

⎛

⎝
∏

q∈Qπ0

✘✘✘2|q|−1✘✘✘✘|q||q|−2

⎞

⎠

✚
✚
✚
✚✚

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a|Qπ0 |+|Z|−1 [since |q| = |z| = 1]

= a2
k−1−1

∑

Z⊆Qπ0

a|Z|

= a2
k−1−1(a+ 1)2

k−1

. [by the Binomial Theorem]

We thus compute

ℓ′π0
(mod 2k) ≡

⎧
⎪⎨

⎪⎩

1 if k = 1 and a is even

2 if k = 2 and a ≡ 2 (mod 4)

0 otherwise.

(12)

Next, when k ≥ 2, we have

ℓ′π1
=

∑

Z⊆Qπ1

⎛

⎝
∏

q∈Qπ1

2|q|−1✘✘✘✘|q||q|−2

⎞

⎠

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a|Qπ1 |+|Z|−1. [since |q| ≤ 2]

Hence,

|Sπ1 | ℓ′π1
(mod 2k) ≡ |Sπ1 |

∏

q∈Qπ1

2|q|−1
∑

Z⊆Qπ1

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a2
k−1+|Z|−2

≡ 2k−1
∑

Z⊆Qπ1

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a2
k−1+|Z|−2. [by Lemma 13]
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If the part of size 2 is not in Z, then
∏

z ̸∈Z |z| = 2, and Z makes a zero contribution
modulo 2k in the above sum. Thus,

|Sπ1 | ℓ′π1
(mod 2k) ≡ 2k−1a2

k−1−1
∑

Z⊆Qπ1
z ̸∈Z =⇒ |z|=1

✚
✚
✚
✚✚

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠ a|Z|−1. [since |z| = 1]

As |Z| ≥ 1 in the above sum, we get

|Sπ1 | ℓ′π1
(mod 2k) ≡ 2k−1a2

k−1−1
∑

t≥0

(
2k−1 − 2

t

)
at

≡ 2k−1a2
k−1−1(a+ 1)2

k−1−2 [by the Binomial Theorem]

≡
{
2 if k = 2 and a is odd

0 otherwise.
(13)

Lastly, when k ≥ 3, similar to the π1 case, we have

|Sπ2 | ℓ′π2
(mod 2k) ≡ 2k−1

∑

Z⊆Qπ2

⎛

⎝
∏

z ̸∈Z

|z|

⎞

⎠a2
k−1+|Z|−3. [by Lemma 13]

Again, if a part of size 2 is not in Z, then 2 divides
∏

z ̸∈Z |z|, and Z makes a zero
contribution modulo 2k. Hence,

|Sπ2 | ℓ′π2
(mod 2k) ≡ 2k−1a2

k−1−1
∑

Z⊆Qπ2
q ̸∈Z =⇒ |q|=1

a|Z|−2.

As both parts of size 2 are in Z, we have |Z| ≥ 2 in the previous sum, and thus

|Sπ2 | ℓ′π2
(mod 2k) ≡ 2k−1a2

k−1−1(a+ 1)2
k−1−4 [by the Binomial Theorem]

≡
{
4 if k = 3 and a is odd

0 otherwise.
(14)

Combining (12), (13) and (14) gives the stated theorem.

3. Consequences of Proposition 1

Proposition 1 shows that the infinite sequence (Fn(a) : n ≥ 1), when reduced
modulo a prime power pk, is fully determined by its first pk terms. In this section,
we have a closer look at its various implications.

Henceforth we use ϕ to denote the Euler totient function. Recall that for any
positive integer n, ϕ(n) denotes the number of integers coprime to n.
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3.1. Fn(a) Modulo Integers Less Than or Equal to n

We begin by using the Chinese Remainder Theorem to show that the sequence
(Fn(a) : n ≥ 1) when reduced modulo any positive integer m, can be fully obtained
from its first m terms.

Lemma 3. If n, m and q are positive integers such that m = 2st, with s ≥ 0, t odd
and t ≥ 3, then

Fn+qm(a) (mod m) ≡

⎧
⎪⎨

⎪⎩

2sϕ(t)(n+ a)qmFn(a) if n is even or s = 0(
4ϕ(t)(n+ a)qm + (−1)aqt2

)
Fn(a) if n is odd and s = 2(

2sϕ(t)(n+ a)qm + t2
s−1)

Fn(a) otherwise.

Proof. Let t =
∏

1≤i≤r p
ki
i , where r is a positive integer, p1, p2, . . . , pr are distinct

odd primes and k1, k2, . . . , kr are positive integers. Then, from Theorem 1, for any
i ∈ {1, 2, . . . , r},

Fn+qm(a) ≡ (n+ a)p
ki
i F

n+qm−p
ki
i
(a) (mod pki

i ). (15)

Applying (15) repeatedly q times, we find for each i ∈ {1, . . . , r},

Fn+qm(a) ≡ (n+ a)qmFn(a) (mod pki
i ),

and hence from the Chinese Remainder Theorem,

Fn+qm(a) ≡ (n+ a)qmFn(a) (mod t). (16)

The case s = 0 is immediate from (16). If s ≥ 1 from Theorem 2,

Fn+qm(a) (mod 2s) ≡

⎧
⎪⎨

⎪⎩

Fn(a) if n is odd and s ̸= 2

(−1)aqFn(a) if n is odd and s = 2

0 otherwise.

(17)

The claimed result now follows from another application of the Chinese Remainder
Theorem on (16) and (17), and using Lemma 7.

The special case of Lemma 3 when m is a factor of n is worth noting separately.

Lemma 4. For positive integers n and m such that m = 2st, with s ≥ 0, t odd and
t ≥ 3, if m divides n then Fn(a) ≡ 2sϕ(t)an−1 (mod m).

Proof. From Lemma 3, we get

Fn(a) = Ft+n−t(a) ≡ an−tFt(a) (mod t). (18)
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Applying Theorem 3 to (18) gives

Fn(a) ≡ an−1 (mod t). (19)

The case s = 0 follows from (19). When s ≥ 1 we can deduce that n− 2s is even,
and thus from Theorem 2,

Fn(a) = Fn−2s+2s(a) ≡ 0 (mod 2s). (20)

The result follows using Lemma 7 and the Chinese Remainder Theorem on (19) and
(20).

3.2. Small Prime Factors of Fn(a)

We next give a complete characterization of all prime factors pk of Fn(a) such that
pk ≤ n, based on the factorization of the first pk terms of (Fn(a) : n ≥ 1).

We begin with a characterization of the small odd prime power factors of Fn(a).
The case pk = n is a special case of the next observation, which is an easy conse-
quence of Lemma 4.

Proposition 2. For an odd prime p and positive integer k, if pk divides n then pk

divides Fn(a) if and only if a ≡ 0 (mod p).

For the case pk < n, we have the following.

Proposition 3. Given an odd prime p and positive integer k, if n > pk and pk

does not divide n, then pk is a factor of Fn(a) if and only if either:

1. n ≡ −a (mod p); or

2. pk is a factor of Fr(a), where r ≡ n (mod pk) and 0 < r < pk.

Proof. Since pk does not divide n, we can write n = qpk + r for positive integers q
and r such that 0 < r < pk. Then from Lemma 3, we have

Fn(a) ≡ (n+ a)qp
k

Fr(a) (mod pk). (21)

Clearly, from (21) if either of the conditions in the claim is satisfied then pk is a
factor of Fn(a).

For the converse, suppose for a contradiction that pk is a factor of Fn(a) and
neither of the two conditions in the claim is satisfied. Then, from (21), there
exists positive integers i, j such that i + j = k and (n + a)qp

k ≡ 0 (mod pi) and
Fr(a) ≡ 0 (mod pj). However this implies n+a ≡ 0 (mod p) which contradicts our
assumptions.

Theorem 4 outlines the conditions when 2k is a factor of F2k(a). The next result
characterizes the 2k < n factors of Fn(a), and is an easy consequence of Theorem 2
along with the fact F1(a) = 1 for all a ∈ Z.
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Proposition 4. If k ≥ 1 and n > 2k then 2k divides Fn(a) if and only if n is even.

We next deduce two interesting consequences from these small factor character-
izations of Fn(a). First, from Table 3 it can be checked that for all n ≤ 30, the
number of labeled forests on n vertices, that is fn = Fn(1), does not share any odd
factors with n. More generally, we can establish the following.

Proposition 5. If a = ±2k for some k ≥ 0 then every n ≥ 2 has no common odd
factors with Fn(a).

Proof. When a = ±2k we have a ̸≡ 0 (mod p) for any odd prime p, and the result
follows from Proposition 2.

Second, we can show that every positive integer divides infinitely many terms
in the sequence (Fn(a) : n ≥ 1) for every a ∈ Z. We first need the following
observation, which is a straightforward consequence of Lemma 3.

Lemma 5. If a positive integer m divides Fn(a), then m divides Fn+qm(a) for all
integers q ≥ 1.

We are ready to prove the following result.

Proposition 6. For all a ∈ Z, every positive integer m divides infinitely many
terms in the sequence (Fn(a) : n ≥ 1).

Proof. The case m = 1 is trivial.

If m = 2s for some positive integer s, then from Proposition 4, m divides
Fm+2q(a) for all integers q ≥ 1.

Now suppose m = 2st for some s ≥ 0, t ≥ 3 and t odd. Write t =
∏ℓ

i=1 p
ki
i

where pi is an odd prime and ki is a positive integer for each i ∈ {1, . . . , ℓ}, and
also let u =

∏ℓ
i=1 pi. Then from Propositions 2, 3 and 4, we can verify that

m divides Fm+|a|u−a(a). Hence from Lemma 5, m divides Fqm+|a|u−a(a) for all
integers q ≥ 1.

3.3. Periodicity Results

In this section, we show that the sequence (Fn(a) : n ≥ 1) is ultimately periodic
modulo any positive integer m. We begin with the following lemma. Recall that a
sequence (an : n > q) is antiperiodic with period t if an+t = −an for all n > q.

Lemma 6. For any prime p and k ≥ 1, the sequence (Fn(a) : n > pk) is periodic
modulo pk with a period t that divides pk(p − 1) unless p = k = 2 and a is odd,
when the sequence is antiperiodic modulo 4 with a period t that divides 4 (and thus,
periodic modulo 4 with period 2t).
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Proof. The case p = 2 can be deduced from Theorem 2.

Suppose p ≥ 3. Then from Lemma 3,

Fn+pk(p−1)(a) ≡ (n+ a)p
k(p−1)Fn(a) (mod pk). (22)

Applying Lemma 7 to (22), we find

Fn+pk(p−1)(a) (mod pk) ≡
{
Fn(a) if n ̸≡ −a (mod p)

0 otherwise.
(23)

Also, when n > pk, from Proposition 3 we have Fn(a) ≡ 0 (mod pk) whenever
n ≡ −a (mod p). Thus, when n > pk, (23) is equivalent to

Fn+pk(p−1)(a) ≡ Fn(a) (mod pk),

and the result follows.

Fischer, Kotek, and Makowsky [6] showed that (fn = Fn(1) : n ≥ 1) is ulti-
mately periodic modulo every positive integer, a property they named MC-finite.
We extend this result to (Fn(a) : n ≥ 1) for all a ∈ Z using Lemma 6.

Theorem 5. The sequence (Fn(a) : n ≥ 1) is MC-finite for every a ∈ Z.

Proof. We need to show that the sequence is ultimately periodic modulo every
positive integer m.

The case m = 1 is trivial. When m > 1, let m =
∏ℓ

i=i p
ki
i , where pi is a prime

and ki is a positive integer for each i ∈ {1, . . . , ℓ}. Also, let ti be a period of
(Fn(a) : n > pki

i ) modulo pki
i (Lemma 6 implies such tis exist). Then it can be

readily verified that (Fn(a) : n ≥ 1) is ultimately periodic modulo m with period
lcm(t1, . . . , tℓ).

The periodic behavior of (Fn(1) : 1 ≤ n ≤ 30) modulo some small positive
integers, along with their eventual period t, is shown in Table 3.

4. Concluding Remarks

4.1. Computational Work

Our discovery of Proposition 1 was inspired by computational work for the Tutte
polynomial of the complete graph. While there exists practical software for com-
puting computing Tutte polynomials of arbitrary graphs (such as by Bjöklund,
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Husfeldt, Kaski and Koivisto [4] and Haggard, Pearce, and Royle [9]), it is more ef-
ficient to compute the Tutte polynomial of the complete graph using the recurrence
formula

Tn+1(x, y) =
n∑

i=1

(
n− 1

i− 1

)
(x+ y + y2 + · · ·+ yi−1) Ti(1, y) Tn−i+1(x, y) (24)

which was brought to our attention by Igor Pak [11], who gave credit to Ges-
sel [7] and Gessel and Sagan [8]. Using this we have verified Proposition 1 for
all a ∈ {−1000,−999, . . . , 1000}, p ∈ {2, 3, 5, 7, 11}, k ∈ {1, 2, . . . , 7} and n ∈
{0, 1, . . . , 300− pk}.

4.2. Generalizing This Work

Computational and further theoretical work both indicate that Tn(a, b) admits a
recurrence congruence for all lattice points (a, b). Attempts at proving this have
resulted in a prohibitive number of cases that need to be resolved, but it is intended
to be a future research project for the authors.

As a non-trivial example, at this stage we can prove e.g.

Tn+pk(1, b) ≡ b(p
k−pk−1)/2Tn+pk−1(1, b) (mod pk) (25)

for prime p ≥ 3 and b ̸≡ 1 (mod p) and (n, k) ̸= (0, 1) [10]. Computational work
suggests (25) is true for Tn+pk(a, b) except when both (n, k) ̸= (0, 1) and a ≡ 1
(mod p). We note the distinction between this case and Proposition 1 since (25)
relates Tn+pk(a, b) and Tn+pk−1(a, b), whereas Proposition 1 relates Tn+pk(1 + a, 1)
and Tn(1 + a, 1).
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A. Technical Lemmas

Here we list some technical lemmas that are required for the proofs in the paper.

Lemma 7 (Euler’s Theorem [2, Th. 5.2]). Let p be a prime, k a positive integer
and b an integer such that b ̸≡ 0 (mod p). Then bϕ(pk) ≡ 1 (mod pk), where
ϕ(pk) = pk−1(p− 1) is the Euler totient function.

Lemma 8. Let p a prime and k be a positive integer. If a ≡ b (mod p) then
ap

k−1 ≡ bp
k−1

(mod pk).

Proof. We use induction on k. When k = 1, the statement is true from what is given.
If the statement is true for some positive integer k, we can write ap

k−1
= tpk+bp

k−1

for some integer t. Then

ap
k

= (tpk + bp
k−1

)p =
p∑

i=0

(
p

i

)
tipikb(p−i)pk−1

≡ bp
k

(mod pk+1).

The statement now follows by induction.

Lemma 9. Let p a prime and k be a positive integer. Then for all integers a and
i ≥ k − 1, we have ap

i ≡ ap
k−1

(mod pk).

Proof. From Lemma 7, we can deduce ap
j ≡ a (mod p) for all integers j ≥ 0. Our

result then follows from this by an application of Lemma 8.

Lemma 10. Let p be a prime and 1 ≤ x ≤ pk. Then
(
pk

x

)
is divisible by pk−r where

r is the largest integer such that pr divides x.

Proof. We begin with
(
pk

x

)
=

pk

x

pk − 1

1

pk − 2

2
· · · p

k − x+ 1

x− 1
.

If pj divides i for some 1 ≤ i ≤ x−1, then pj also divides pk− i. Hence pk−r divides(pk

x

)
.
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Lemma 11. Suppose p is a prime and p ≥ 3. Let c ≥ 2, d ≥ 1 and r ≥ 1. If pr

divides cd then d(c− 1) ≥ r + 1.

Proof. Let cd = kpr for some positive integer k. Then, d(c − 1) ≥ dc/2 = kpr/2 ≥
r + 1 when r ≥ 2. That d(c− 1) ≥ r + 1 when r = 1 follows since either c or d (or
both) is divisible by p.

Lemma 12. Let c ≥ 2, d ≥ 1 and r ≥ 1. If 2r divides cd then d(c − 1) ≥ r + 1,
except when (r, c, d) ∈ {(2, 2, 2), (1, 2, 1)} when d(c− 1) = r.

Proof. Let cd = k2r for some positive integer k. Then, d(c − 1) ≥ k2r−1 ≥ r + 1
when r ≥ 3. The rest is proved by inspection.

Lemma 13. For all partitions π of pk−1, we have

|Sπ|
∏

q∈Qπ

p|q|−1 (mod pk) ≡

⎧
⎪⎨

⎪⎩

1 if π = π0

2k−1 if π ∈ {π1,π2} and p = 2

0 otherwise,

where π0, π1, π2, Sπ and Qπ are as defined in Table 1.

Proof. For any t ≥ 1, the number of set partitions of {1, 2, . . . , t} that induce the
number partition π of t is given by

|Sπ | =
t!∏

i≥1

(
i!si(π)si(π)!

) , (26)

where si(π) denotes the number of parts i in π [1, Th. 13.2].

Case I: π = π0. Then |Sπ |
∏

q∈Qπ
p|q|−1 = 1.

Case II: p = 2 and π ∈ {π1,π2}. For m ≥ 1, let ν(m) denote the greatest positive
integer such that 2ν(m) divides m!. Recall that ν(m) = m− d2(m), where d2(m) is
the number of 1s when m is written in binary. This implies

ν(|Sπ1 |) = ν

(
2k−1!

(2k−1 − 2)! 2!

)
=

for 2k−1!︷ ︸︸ ︷
2k−1 − 1−

for (2k−1−2)!
︷ ︸︸ ︷
(2k−1 − k) −1 = k − 2

and hence 2k−1 exactly divides |Sπ1 |
∏

q∈Qπ1
2|q|−1. Similarly

ν(|Sπ2 |) = ν

(
2k−1!

(2k−1 − 4)! 2!3

)
=

for 2k−1!︷ ︸︸ ︷
2k−1 − 1−

for (2k−1−4)!
︷ ︸︸ ︷
(2k−1 − k − 1)−3 = k − 3

and hence 2k−1 exactly divides |Sπ2 |
∏

q∈Qπ2
2|q|−1.
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Case III: p ≥ 3 and π ̸= π0. By considering the integer partition consisting of b
copies of a, we can deduce from (26) that a!bb! divides (ab)! for all a ≥ 1 and b ≥ 1.
Let t = pk−1.

Now suppose π contains exactly b copies of a ≥ 2. Construct π′ from π by
replacing those b copies of a, with ba copies of 1. By (26),

|Sπ | = |Sπ′ | s1(π′)!

s1(π)!a!bb!
= |Sπ′ | (s1(π) + ab)!

s1(π)!a!bb!
.

Since (s1(π)+ab)! is divisible by s1(π)!(ab)! and a!bb! divides (ab)!, we can conclude
that |Sπ′ | divides |Sπ |. By applying this type of replacement repeatedly, we can
find a partition

π′′ = {1, 1, . . . , 1,
d≥1 copies︷ ︸︸ ︷
c, c, . . . , c}

with c ≥ 2 for which |Sπ′′ | divides |Sπ|. In fact, |Sπ′′ | = pk−1!
c!dd!(pk−1−cd)! by (26), which

is divisible by pk−1!
(cd)!(pk−1−cd)! =

(pk−1

cd

)
(since c!dd! divides (cd)!). Lemma 10 implies

that
(pk−1

cd

)
is divisible by pk−1−r where r is the largest integer such that pr divides

cd. Hence pk−1−r divides |Sπ|. Since there are d copies of c in π, we find
∏

q∈Q p|q|−1

is divisible by pd(c−1). Hence |Sπ |
∏

q∈Q p|q|−1 is divisible by pk−1−r+d(c−1) and the
result follows from Lemma 11, since d(c− 1) > r.

Case IV: p = 2 and π ̸∈ {π0,π1,π2}. We repeat the argument used in Case III, but
use Lemma 12 instead of Lemma 11.

B. Small Values

n Fn(x)
1 1
2 x+ 1
3 x2 + 3x+ 3
4 x3 + 6x2 + 15x+ 16
5 x4 + 10x3 + 45x2 + 110x+ 125
6 x5 + 15x4 + 105x3 + 435x2 + 1080x+ 1296
7 x6 + 21x5 + 210x4 + 1295x3 + 5250x2 + 13377x+ 16807
8 x7 + 28x6 + 378x5 + 3220x4 + 18865x3 + 76608x2 + 200704x+ 262144
9 x8 + 36x7 + 630x6 + 7056x5 + 55755x4 + 320544x3 + 1316574x2 + 3542940x+ 4782969
10 x9 + 45x8 + 990x7 + 14070x6 + 143325x5 + 1092105x4 + 6258000x3 + 26100000x2 + 72000000x+ 100000000

Table 2: The forest polynomial Fn(x) for small n.
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n number of n-vertex labeled forests Fn(1) mod 3 mod 4 mod 5 mod 6
(period t = 6) (t = 8) (t = 20) (t = 6)

1 1 1 1 1 1
2 2 2 2 2 2
3 7 1 3 2 1
4 38 2 2 3 2
5 291 0 3 1 3
6 2932 1 0 2 4
7 36961 1 1 1 1
8 561948 0 0 3 0
9 10026505 1 −3 0 1
10 205608536 2 0 1 2
11 4767440679 0 −1 4 3
12 123373203208 1 0 3 4
13 3525630110107 1 3 2 1
14 110284283006640 0 0 0 0
15 3748357699560961 1 1 1 1
16 137557910094840848 2 0 3 2
17 5421179050350334929 0 −3 4 3
18 228359487335194570528 1 0 3 4
19 10239206473040881277575 1 −1 0 1
20 486909744862576654283616 0 0 1 0
21 24476697610849074911900371 1 3 1 1
22 1296922170326967017021456192 2 0 2 2
23 72242343946250474765375216097 0 1 2 3
24 4220408604052795050630693937600 1 0 0 4
25 258025823948690959340164992423001 1 −3 1 1
26 16476325133131206856388531345000832 0 0 2 0
27 1096881543024898799690775415474876711 1 −1 1 1
28 76004217718178366542848556101866327168 2 0 3 2
29 5473008907162709455528258930972402876875 0 3 0 3
30 408984076814029731704350471276025925634816 1 0 1 4

Table 3: The number of labeled forests Fn(1) on n vertices (from Sloane [12]).


