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Abstract
Let s be even and greater than 2. We explain a “curious symmetry” for maximal (s−
1, s+1)-core partitions first observed by T. Amdeberhan and E. Leven. Specifically,
using the s-abacus, we show such partitions have empty s-core and that their s-
quotient is comprised of 2-cores. These conditions impose strong conditions on the
partition structure, and imply both the Amdeberhan-Leven result and additional
symmetry. We conclude by finding the most general family of partitions that exhibit
these symmetries, and obtain some new results on maximal (s − 1, s, s + 1)-core
partitions.

1. Introduction

The study of simultaneous core partitions, which began fifteen years ago, has seen
recent interest due mainly to a conjecture of Armstrong on the average size of an
(s, t)-core when gcd(s, t) = 1. R. Stanley and F. Zanello [19] verified the Arm-
strong conjecture when t = s+1; they employ a certain partially ordered set Ps,s+1

associated to the set of simultaneous (s, s+1)-cores which (in this case) exhibits well-
understood symmetry. However this poset approach appears difficult to generalize,
and P. Johnson [14] recently settled the general case of the Armstrong conjecture
using methods from Erhart theory. Amdeberhan and Leven [5] deviate slightly to
examine (s− 1, s+1)-cores in the case where s is even and greater than 2. They do
not prove the Armstrong conjecture in this case; they do however explore a“curious
symmetry” for the poset Ps−1,s+1. Our Theorem 6 states their result.

Hidden by the Amdeberhan-Leven proof (which involves integral and fractional
parts of a real number) is a connection with the s-core and s-quotient structure
viewed on an s-abacus. From this vantage point, the Amdeberhan-Leven theo-
rem is a consequence of symmetry in each runner of the s-abaci of the maximal
(s − 1, s + 1)-core; it also reveals additional symmetry in each row not picked up
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Figure 1: The 8-abacus of κ7,9
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by the Amdeberhan-Leven formulation. The s-abaci of maximal (s− 1, s+1)-cores
also provide a convenient link to the study of maximal (s−1, s, s+1)-cores, objects
of recent interest.

We introduce some notation to state the main theorem. Given a partition λ, let
λ0 be its s-core and (λ(0),λ(1), · · · ,λ(s−1)) be its s-quotient. Let κs±1 be the unique
maximal simultaneous (s − 1, s + 1)-core partition and τℓ = (ℓ, ℓ − 1, ℓ − 2, · · · , 1)
be the ℓ-th 2-core partition.

Theorem 1. Let s = 2k > 2. Then κs±1 has the following s-core and s-quotient
structure:

1. (κs±1)0 = ∅.

2. κs±1(i) = κs±1(s−1−i) = τk−1−i where 0 < i < k − 1.

Example 2. The 8-abacus of κ7,9 and the associated 8-quotient are shown in
Figure 1 and Figure 2 respectively. Note: the 8-quotient consists of a sequence
of 2-core partitions encoded in the runners of the 8-abacus.

The basic definitions are covered in Section 2. In Section 3.1 we describe the
s-abacus of κs±1, which we use to prove Theorem 1. We provide an alternate proof
of the Amdeberhan-Leven result in Section 3.2. In Section 4.1 we demonstrate
an additional symmetry in the rows of the s-abacus of κs−1,s+1 and describe the
most general family of partitions which satisfy the symmetries exhibited by κs±1 in
Section 4.2. In Section 5.1 we offer a characterization of the s-abacus of a maximal
(s − 1, s, s + 1)-core and examine the relationship between maximal (s − 1, s + 1)
and (s − 1, s, s + 1)-cores, when s is even and greater than 2. We conclude with
some questions in Section 5.2.
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Figure 2: 8-quotient of κ7,9
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2. Preliminaries

2.1. Basic Definitions

Let N = {0, 1, · · · } and n ∈ N. A partition λ of n is defined as a finite, non-increasing
sequence of positive integers (λ1,λ2, · · · ,λk) that sums to n. Each λα is known as
a component of λ. Then

∑
α λα = n, and λ is said to have size n, denoted |λ| = n.

The Young diagram [λ] is a graphic representation of λ in which rows of boxes
corresponding to the integer values in the partition sequence are left-aligned. Then
λ∗ is the conjugate partition of λ obtained by exchanging rows and columns of the
Young diagram of λ; λ is self-conjugate if λ = λ∗. Using matrix notation, a hook
hιγ of [λ] with corner (ι, γ) is the set of boxes to the right of (ι, γ) in the same row,
below (ι, γ) in the same column, and (ι, γ) itself. Given hιγ , its length |hιγ | is the
number of boxes in the hook. The set {hι1} are the first-column hooks of λ.

One can remove a hook h of λ by deleting boxes in [λ] which comprise h and
migrating any remaining detached boxes up and to the left. In this way a new
partition λ′ of size n− |hιγ | is obtained. An s-hook is a hook of length s. An s-core
partition λ is one in which no hook of length s appears in the Young diagram.

Example 3. Let λ = (4, 3, 2). Then the Young diagram of λ is shown in Figure 3.
Note that h2,1 is of length 4.

2.2. Simultaneous (s, t)-core Partitions

Let s and t be positive integers. A simultaneous (s,t)-core partition is one in which
no hook of length s or t appears. In 1999, J. Anderson [6] proved when gcd(s, t) = 1,
there are exactly

(s+t
t

)
/(s+ t) simultaneous (s, t)-cores.

Subsequent work by B. Kane [1], J. Olsson and D. Stanton [18], and J. Vandehey

[21] confirmed the existence of a unique maximal (s, t)-core of size (s2−1)(t2−1)
24 ,

denoted by κs,t, which contains all others. Here maximal is meant in terms of size;
containment is being able to fit the Young diagram of one partition inside another.

Theorem 4. (Olsson-Stanton, Theorem 4.1, [18]) Let gcd(s, t) = 1. There is a

unique maximal simultaneous (s, t)-core κs,t of size
(s2−1)(t2−1)

24 . In particular, κs,t

is self-conjugate.
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Figure 3: Young diagram (with hook lengths) of κ3,5 = (4, 2, 1, 1)

Theorem 5. (Vandehey, [21]) Let gcd(s, t) = 1. Then κs,t contains all other (s, t)-
cores.

We note that A. Tripathi [20] and M. Fayers [9] obtained some of the above
results using different methods.

A paper of D. Armstrong, C. Hanusa and B. Jones [7] includes a conjecture (the
Armstrong conjecture) that the average size of an (s, t)-core is (s+t+1)(s−1)(t−1)

24 .
Stanley and Zanello [19] resolved this conjecture for the case t = s+1 by employing
a bijection between lower ideals in the poset Ps,s+1 and simultaneous (s, s+1)-cores.
We outline this bijection for general s and t. Let Ps,t be the partially ordered set
whose elements are all positive integers not contained in the numerical semigroup
generated by s, t. The partial order requires z1 ∈ Ps,t to cover z2 ∈ Ps,t if z1 − z2 is
either s or t. Under this map, a lower ideal I of Ps,t corresponds to an (s, t)-core
partition whose first-column hook lengths are exactly the values in I. Then Ps,t

itself corresponds to κs,t.

The Armstrong conjecture was verified for self-conjugate partitions by W. Chen,
H. Huang, and L. Wang [8] and for (s,ms+1)-cores by A. Aggarwal [2] before a full
proof was given by P. Johnson [14] using Erhart theory. Since then, V. Wang [22],
using an approach of M. Fayers [10], has found a proof of the Armstrong conjec-
ture that avoids Erhart theory; Wang also settles a generalization of the Armstrong
conjecture due to M. Fayers [11].

Simultaneous core partitions have also generated interest outside of the Arm-
strong conjecture. For example, Aggarwal has also proved a partial converse to a
theorem of Vandehey on the containment of simultaneous (r, s, t)-cores [3] for dis-
tinct r, s, t. In another direction, Amdeberhan [4] proposed several conjectures on
maximal (s− 1, s, s+ 1)-cores; these have been proved, first by J. Yang, M. Zhong
and R. Zhou [24] and later by H. Xiong [23]. We discuss these developments in
Section 5.
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Figure 4: Amdeberhan-Leven rectangle R for P7,9

2.3. A “Curious Symmetry”

For s even, Amdeberhan and Leven examine Ps−1,s+1 via a rectangle R with s− 2
rows and s columns, constructed as follows: the bottom-left corner is labelled by 1,
the numbers increase from left-to-right and bottom-to-top, and the largest position,
in the upper-right corner, is labeled by (s− 2)(s). If x ∈ Ps−1,s+1 then x is entered
into this rectangle; otherwise, the position is left blank. Positions are labeled by
pairs (i, j), where i enumerates columns from left-to-right (1 ≤ i ≤ s), and j rows
from bottom-to-top (1 ≤ j ≤ s − 2). They then prove the following result, which
they call a “curious symmetry.”

Theorem 6. (Amdeberhan-Leven, Theorem 2.2, [5]) For s ≥ 4 and even, the
(i, j) entry of R is an element of Ps−1,s−1 if and only if (i, s − 2 − j) is not.
Equivalently, for 1 ≤ i ≤ s and 1 ≤ j ≤ s− 2, i+ s(j − 1) ∈ Ps−1,s+1 if and only if
i+ s(s− 2− j) ̸∈ Ps−1,s+1.

There is a precedent for the case Amdeberhan-Leven consider. For s = 2k > 1,
the maximal simultaneous (s − 1, s + 1)-core is self-conjugate, by Theorem 4. In
[12] C. Hanusa and the author showed that it is more natural to think about self-
conjugate (s−1, s+1)-core partitions than self-conjugate (s, s+1)-cores (the latter
of which are better behaved in the non-self-conjugate case).

We now review the s-abacus, s-core, and s-quotient constructions.

2.4. Bead-sets

The first column hook lengths uniquely determine a partition λ. We can generalize
the set of first column hooks using the notation of a bead set X corresponding
to λ, where X = {0, · · · , k − 1, |h11| + k, |h21| + k, |h31| + k, · · · } for some non-
negative integer k. It can also be seen as a finite set of non-negative integers,
represented by beads at integral points of the x-axis, i.e. a bead at position x
for each x in X and spacers at positions not in X . Then |X | is the number of



INTEGERS: 15 (2015) 6

Figure 5: The minimal bead set for λ = (4, 3, 2)
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Figure 6: The bead set X ′ = {0, 3, 5, 7} for λ = (4, 3, 2)

0 1 2 3 4 5 6 7

beads that occur after the zero position, wherever that may fall. We say X =
{0, · · · , k − 1, |h11| + k, |h21| + k, |h31| + k, · · · } is normalized with respect to s if k
is the minimal integer such that |X | ≡ 0 (mod s). The minimal bead-set X of λ
is one where 0 labels the first spacer, and is equal to the set of first column hook
lengths.

Example 7. Suppose λ = (4, 3, 2). Then {hι1} = {2, 4, 6} is the set of first column
hook lengths, and a minimal bead set. Then X ′ = {0, 2+1, 4+1, 6+1}= {0, 3, 5, 7}
and X ′′ = {0, 1, 2, 3, 2+ 4, 4 + 4, 6 + 4} = {0, 1, 2, 3, 6, 8, 10} are two bead sets that
also correspond to λ. X ′ and X ′′ are normalized with respect to 4 and 7 respectively,
since X ′ ≡ 0 (mod 4) and X ′′ ≡ 0 (mod 7).

2.5. 2-cores and Staircase Partitions

The results in this section are stated without proof; for more details see Section
2 in [17]. The set of hooks {hιγ} of λ correspond bijectively to pairs (x, y) where
x ∈ X , y ̸∈ X and x > y; that is, a bead in a bead-set X of λ and a spacer to the
left of it. Hooks of length s are those such that x− y = s.

Bead x in the minimal bead-set X are in bijection with components of λ =
(λ1,λ2, · · · ,λk). The following result, which appears as in Lemma 2.4 in [17],
allows us to recover the size of the component from its corresponding bead.

Lemma 1. Let X be a bead set of a partition λ. The size of the component λα of
λ corresponding to the bead x′ ∈ X is the number of spacers to the left of the bead,
that is, λα = |y ̸∈ X : y < x′|.

Let τℓ = (ℓ, ℓ−1, ℓ−2, · · · , 1) be the ℓth staircase partition. Then |τℓ| = tℓ where
tℓ =

(
ℓ+1
2

)
(the ℓth triangular number). The following two lemmas are well-known.

Lemma 2. The 2-core partitions are exactly the staircase partitions.



INTEGERS: 15 (2015) 7

Lemma 3. The minimal bead set X for the 2-core τℓ is {1, 3, 5, · · · , 2ℓ− 3, 2ℓ− 1}.
In other words, the 2-core partitions are a sequence of alternating spacers-and-beads
of length 2ℓ− 1.

2.6. The s-abacus

Given a fixed integer s, we can arrange the nonnegative integers in an array of
columns and consider the columns as runners:

ms ms+ 1 (m+ 1)s− 1
(m− 1)s ms− 1

...
. . .

s s+ 1 2s− 1
0 1 · · · s− 1

The column containing i for 0 ≤ i ≤ s− 1 will be called runner i. The positions
0, 1, 2, · · · on the ith runner corresponding to i, i + s, i + 2s, · · · will be called row
positions on runner i. Consider a bead set X . Placing a bead at position x for
each x ∈ X gives the s-abacus diagram of X . Positions not occupied by beads are
spacers. A normalized abacus will be one whose bead set X is normalized, and
the minimal abacus one in which X is minimal (or, the first spacer labels the zero
position). Note that a bead x in runner i with a spacer y one row below, but also
in runner i, corresponds to an s-hook of λ. The following is immediate.

Lemma 4. An s-abacus in which no spacer appears directly below a bead on the
same runner corresponds to an s-core partition.

2.7. The s-core and s-quotient

By removing a sequence of s-hooks from λ until no s-hooks remain, one obtains
its s-core λ0. The s-abacus of λ0 can be found from the s-abacus of λ by pushing
beads in each runner down as low as they can go (see Theorem 2.7.16, [13], with
changed orientation). Hence λ0 is unique since it is independent of the way the
s-hooks are removed. For 0 ≤ i ≤ s− 1 let Xi = {j : i + js ∈ X} and let λ(i) be
the partition represented by the bead-set Xi. The s-quotient of λ is the sequence
(λ(0), · · · ,λ(s−1)) obtained from X . The next lemma is Proposition 3.5 in [17].

Lemma 5. Let λ be a partition with s-core λ0 and s-quotient (λ(i)), 0 ≤ i ≤ s− 1.
Then

1. Every 1-hook in λ(i) corresponds to an s-hook in λ for 0 ≤ i ≤ s− 1.

2. n = |λ0|+ s ·
∑

i |λ(i)|.
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We note that Xi could consist of an interval [0,m] and thus λ(i) would be empty
(as is the case with λ(3) and λ(4) in Example 1.2). Lemma 5 implies that there
exists a bijection between a partition λ and its s-core and s-quotient, such that
each node in some λ(i) corresponds to an s-hook in λ. The situation is strengthened
when λ is self-conjugate.

Lemma 6. Suppose |X | = 0 (mod s). Let λ∗ be the conjugate of λ, (λ∗)0 its s-core
and let (λ∗

(i)) be the s-quotient of λ∗, 0 ≤ i ≤ s− 1. Then

1. (λ∗)0 = (λ0)∗

2. (λ(i))
∗ = λ(s−1−i).

In particular, λ = λ∗ if and only if λ0 = (λ0)∗ and (λ(i))
∗ = (λ∗)(i).

2.8. The Axis θ(X) of a Bead Set of λ

The following results and their proofs can be found in Section 4, [15].

Proposition 1. Suppose λ is a partition of n and let X be a bead-set for λ. Then
there exists a half-integer θ(X) (that is, an element of Z+ 1

2) such that the number
of beads to the right of θ(X) equals the number of spaces to its left. Conversely,
given a bead-spacer sequence and a half-integer such that the number of beads to the
right equals the number of spaces to the left, one can recover a partition λ.

Although the number of beads to the right of θ(X) and the number of spacers
of the left of θ(X) remain unchanged on any bead-spacer sequence associated to λ,
the half-integer value assigned to θ(X) will depend on X .

Example 8. Consider λ = (4, 3, 2). Then θ(X) = 2.5 and θ(X ′) = 3.5 for X =
{2, 4, 6} and X ′ = {0, 3, 5, 7} respectively. See Figure 6 and Figure 7.

We call θ(X) the axis of a bead set X of λ. Each Xi has an axis θ(Xi); when
λ0 = ∅, the value does not change as i runs from 0 to s− 1.

Lemma 7. Suppose X is normalized with respect to s and |X | = ms. Then the
following are equivalent:

1. λ0 = ∅

2. each runner has exactly m beads

3. θ(Xi) = m− 1
2 for all 0 ≤ i ≤ s− 1.

Example 9. The maximal (5, 7)-core κ5,7 has empty 8-core. In the normalized
(minimal) 8-abacus in Figure 1, |X | = 3 · 8, whereas each runner has 3 beads, and
Xi has axis θ(Xi) =

5
2 for 0 ≤ i ≤ 7.
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Figure 7: The minimal bead set X for κ3,5.

0 1 2 3 4 5 6 7

If λ is self-conjugate we say X has an axis of symmetry.

Corollary 1. Let X be a bead-set for λ. Then λ is a self-conjugate partition if and
only if there exists a half-integer θ(X) such that beads and spacers in X to the right
of θ(X) are reflected respectively to spacers and beads in X to its left.

Example 10. The maximal (3, 5)-core κ3,5 is self-conjugate, with minimal bead
set X = {1, 2, 4, 7}, and θ(X) = 3.5. Then beads and spacers to the right of 3.5 are
reflected to spacers and beads to the left of it. See Figure 8.

Note that when a bead set is not minimal, the sequence of beads in positions
[0, 1, · · · , k] will be reflected onto spacers in positions greater than the last bead.

3. The Structure of κs±1

3.1. The s-abacus α(s)

To recover the Amdeberhan-Leven result we first construct the s-abacus of κs±1.

Definition 11. Let s = 2k > 2, and consider s runners, indexed from left-to-right
by 0 ≤ i ≤ s− 1 and s− 2 rows, indexed from bottom-to-top by 0 ≤ j ≤ s− 3. We
construct the s-abacus α(s) as follows: for each i ∈ [0, k− 2], runners i and s− i− 1
are composed of beads in the first i rows; spacers-and-beads alternate in rows j > i
until the total number of beads in each runner is k − 1. Spacers fill the remainder
of the rows.

Example 12. Consider the 8-abacus α(8). It has three beads in each runner.
Runners 3 and 4 consist of three beads below three spacers; runners 2 and 5 have
two beads followed by a spacer-and-bead, then two spacers; runners 1 and 6 have
one bead followed by spacer-bead-spacer-bead-spacer; and runners 0 and 7 have an
alternating sequence of spacers-and-beads. [See Figure 1.]

Lemma 8. The s-abacus α(s) is normalized with respect to s.

Proof. The total number of beads in α(s) is 2k(k − 1) = s( s−2
2 ).

Lemma 9. The following holds for the s-abacus α(s)
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1. There is a bead in row j of runner 0 if and only if there is a bead in row j− 1
of runner 1.

2. There is a bead in row j of runner 2k− 1 if and only if there is a bead in row
j − 1 of runner 2k − 2.

3. There is a spacer in row j of runner 0 if and only if there is a spacer in row
j + 1 of runner 1.

4. There is a spacer in row j of runner 2k − 1 if and only if there is a spacer in
row j + 1 of runner 2k − 2.

Proof. By Definition 11, runner i = 0 begins in row j = 0 with a spacer, and
continues upwards with alternating beads-and-spacers. Runner i = 1 begins with a
bead in row 1, and continues upwards, alternating spacers-and-beads. Since both
columns have 2k − 2 rows, (1) and (3) follow. For (2) and (4), a similar argument
holds.

Lemma 10. The (s + 2)-abacus α(s + 2) can be obtained from the s-abacus α(s)
using the following procedure:

1. Append a new row of 2k beads below α(s).

2. Append a new row of 2k spacers above α(s).

3. Append a new runner of length 2k − 2 consisting of alternating beads-and-
spacers to the left, and an identical column to the right, of α(s). [Both of
these columns start with a bead in the bottom row.]

4. Append a single spacer to the bottom, and a single bead at the top of, both new
runners in step (3). [The total number of beads in all runners, both the two
new runners, as well as the s = 2k previous runners, will now be k.]

5. Renumber the runners with i′ so 0 ≤ i′ ≤ 2k + 1 and the rows with j′ so
that 0 ≤ j′ ≤ 2k − 1. Renumber the abacus positions, with 0 in the bottom
left-most corner, increasing from left-to-right and bottom-to-top, with final
position (2k + 1)(2k − 1) in the upper-right-hand corner.

Proof. It is enough to see that the result of these five steps satisfies Definition 11
for α(s+ 2).

Example 13. To see how Lemma 10 is used to obtain α(10) from α(8), see Ap-
pendix A, Figure 12 and Figure 13.
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Recall λ0 and (λ(i)) for 0 ≤ i ≤ s − 1 are the s-core and s-quotient of λ re-
spectively, and that τℓ is the ℓth 2-core partition. For the following two lemmas
we abuse notation and let α(s) refer to both the s-abacus and its corresponding
partition.

Lemma 11. Suppose s = 2k > 2. Then

1. α(s)0 = ∅

2. α(s)(i) = α(s)(s−i−1) = τk−i+1.

Proof. We prove each condition separately.

1. Since each runner α(s)i has k − 1 beads and k − 1 spacers, the removal of all
s-hooks throughout all the runs will result in an s-abacus with each runners
having k − 1 beads beneath k − 1 spacers. This arrangement corresponds to
the empty partition.

2. We use induction on k. For k = 2 it is true. Assume it is for k. We obtain
the α(s + 2) from α(s) by Lemma 11. By construction, for 1 ≤ i′ ≤ 2k we
have |α(s)(i′−1)| = |α(s+2)(i′)|; hence, by the inductive hypothesis and since
i + 1 = i′, |α(s + 2)(i′)| = τ(k+1)−i′−1. It only remains to check i′ = 0 and
2k + 1. The proof is finished using Lemma 3, and (3) and (4) of Lemma 10.

Example 14. α(8) has 8-quotient (λ(0), · · · ,λ(s−1)) =

((3, 2, 1), (2, 1), (1), ∅, ∅, (1), (2, 1), (3, 2, 1)).

[See Appendix A, Figure 12 and Appendix B, Figure 16.]

Recall that when τℓ is the ℓth 2-core partition, we let tℓ = |τℓ|.

Lemma 12. Let s = 2k > 2. Then α(s) is the minimal s-abacus for κs−1,s+1.

Proof. By construction, α(s) is minimal, since zero labels the first spacer. We must
show:

1. |α(s)| = ((2k−1)2−1)((2k+1)2−1)
24 ,

2. α(s) contains no (2k − 1)-hooks or (2k + 1)-hooks.

Then by the uniqueness implied by Theorem 4, α(s) = κs±1. We use the structure
of α(s) and induction on k.

By Lemma 5, |λ| = |λ0|+ s ·
∑

|λ(i)|. Since α(s)0 = ∅, to prove (1), it is enough

to calculate 2k ·
∑

i |α(s)(i)|, which equals 2k · 2
∑k−1

i=1 ti = (4k) (k−1)(k)(k+1)
6 . In
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particular 4k (k)(k2−1)
6 = 16k4−16k2

24 = (4k2−4k)(4k2+4k)
24 . Finally, after completing-

the-square, one obtains

((2k − 1)2 − 1)((2k + 1)2 − 1)

24
.

To prove (2), we use induction on k > 2. For the basic case, s=4, it holds: α(4)
has no 3-hooks or 5-hooks. [See Appendix A, Figure 10.] By the inductive hypoth-
esis we know the 2k-abacus of κ2k±1 contains no (2k − 1)-hooks or (2k + 1)-hooks.
More specifically, no bead in α(s) has a spacer either 2k + 1 or 2k − 1 positions
below it. Apply Lemma 10 to obtain α(s + 2); this adds two additional positions
between the beads and spacers arising from α(s). Hence there are no (2k+1)-hooks
or (2k + 3)-hooks arising from bead-spacer pairs (x, y) where both x and y are in
runners 1 < i′ < 2k − 2. It remains to examine the beads and spacers introduced
by runners i′ = 0, 2k + 1.

If a bead in row j′ of runner i′ = 0 were to add a new (2k + 3)-hook, a spacer
would have to appear in row j′ − 2 of the runner i′ = 2k+1. By construction, such
positions are occupied by beads, since runners 0 and 2k+1 are identical. If a bead
in row j′ of i′ = 0 were to add a new (2k+ 1)-hook, a spacer would have to appear
in row j′ − 1 of runner i′ = 1; by the Lemma 9(1), this position is always occupied
by a bead.

If a bead in row j′ on runner i′ = 2k + 1 were to add a new (2k + 3)-hook, a
spacer would appear in row j′ − 1 of runner i′ = 2k; by Lemma 9(2) this position
is always occupied by a bead. If a bead in row j′ of runner i′ = 2k+ 1 were to add
a new (2k + 1)-hook, a spacer would have to appear in the same row in the runner
i′ = 0. By construction, the two runners are identical, so a bead in one implies a
bead in the other.

If a spacer in row j′ of runner i′ = 0 were to add a new (2k + 3)-hook, a bead
would have to appear in row j′+1 of runner i′ = 1; by Lemma 9(3), this position is
always occupied by a spacer. If a spacer in row j′ of i′ = 0 were to add (2k+1)-hook,
a bead would have to appear in the same row of runner i′ = 2k+1. By construction,
the two runners are identical, so a spacer in one implies a spacer in the other.

If a spacer in row j′ of runner i′ = 2k + 1 were to add a new (2k + 3)-hook, a
bead would have to appear in row j′ + 2 in runner i′ = 0; by construction, since
both runners are identical alternating sequences of spacer-and-beads, such positions
are occupied by spacers. If a spacer in row j′ of runner i′ = 2k + 1 were to add a
new (2k+1)-hook, a bead would have to appear in row j′ +1 of runner i′ = 2k; by
Lemma 9(4) this position is occupied by a spacer.
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3.2. An Alternative Proof of Amdeberhan-Leven

Using the results of the previous section, and a few lemmas, we can provide an
alternative proof to Theorem 6. We begin with a classical result of Sylvester.

Lemma 13. The largest integer in Ps,t is st− s− t.

Let R be the rectangle described in Section 2.3.

Corollary 2. R does not contain 0 or s2 − 2s.

Proof. R does not contain 0 by construction. By Lemma 13, s2 − 2s − 1 is the
largest integer in Ps−1,s+1, hence also in R.

Definition 15. We say (i, j) ∈ α(s) if i + js ∈ Ps−1,s+1 where 0 ≤ i ≤ s − 1 and
0 ≤ j ≤ s− 3.

Lemma 14. Let 0 ≤ i ≤ s− 1 and 0 ≤ j ≤ s− 3. Then (i, j) ∈ α(s) if and only if
i+ js ∈ R.

Proof. By Lemma 12 α(s) is the minimal s-abacus for κs±1. By the discussion in
Section 2.7, it contains exactly the same values as Ps±1. Since R has the same
values as Ps±1 by construction, we are done.

Proof of Theorem 6. By Lemma 14 the contents of R and α(s) are identical; in par-
ticular by Corollary 2 we do not lose anything by inserting 0 and removing s2 − 2s
from the diagram. This has the effect of shifting the rightmost column of R to the
first column of α(s) and up one row. Hence it is enough to prove the following condi-
tion: (i, j) ∈ α(s) if and only if (i, s−3−j) ∈ α(s) for 0 ≤ i ≤ s−1 and 0 ≤ j ≤ s−3.

By induction on k. For k = 2 it is clear. Suppose (i, j) ∈ α(s) if and only if
(i, s − 3 − j) ̸∈ α(s) holds for s = 2k. Consider now s = 2(k + 1). The inductive
hypothesis and Lemma 10 imply that (i′, j′) ∈ α(s) if and only if (i′, s−1−j′) ̸∈ α(s)
for 1 ≤ i′ ≤ s and 1 ≤ j′ ≤ s − 2. It remains to show the property holds for (i, j)
when j′ = 0 or s− 1 and when i = 0 or s+1. However by construction when j′ = 0
and 1 ≤ i′ ≤ s, (i′, 0) ∈ α(s) and (i′, s− 1) ̸∈ α(s). When i = 0 or s+1, the runner
consists of alternating sequence of spacers-and-beads, hence the property holds.

4. Generalizations

4.1. Additional Symmetry for Maximal (s − 1, s + 1)-cores

Using Theorem 1 we can strengthen the Amdeberhan-Leven result to include addi-
tional symmetry.
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Figure 8: The minimal 4-abacus of λ = (8, 6, 6, 6, 6, 6, 1, 1)
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Theorem 16. Let s = 2k > 2 and let α(s) be the s-abacus of κs±1. Let 0 ≤ i ≤ s−1
and 0 ≤ j ≤ s− 3. Then the following are equivalent:

1. (i, j) ∈ α(s)

2. (i, s− 3− j) ̸∈ α(s)

3. (s− 1− i, j) ∈ α(s).

Proof. By Theorem 6 it is sufficient to prove (1) ⇐⇒ (3). This follows from
Lemmas 9, 11, and 12, and an induction argument similar to the proof Theorem
6.

4.2. (UD,−) and (RL,+) Symmetry

The symmetries exhibited by the s-abacus of κs±1 can be formalized and generalized
to a larger family of partitions. For the remainder of this section we assume that
the bead-set X of λ is normalized with respect to s. Let 0 ≤ i ≤ s−1. Suppose that
the s-abacus of λ has maximum value i + (q − 1)s. In particular, the normalized
s-abacus of λ has s columns and q rows, indexed by pairs (i, j) where 0 ≤ j ≤ q−1.

Definition 17. We say the s-abacus of λ exhibits (UD,−) symmetry if a there
is a bead in the (i, j) position if and only if there is a spacer in the (i, q − 1 − j)
position. [UD here refers to up-down.]

Lemma 15. The s-abacus of λ exhibits (UD,−) symmetry if and only if q is even,
λ(i) = λ∗

(i) for all 0 ≤ i ≤ s− 1, and λ0 = ∅.

Proof. Suppose the s-abacus π of λ exhibits (UD,−) symmetry. Then if (i, j) ∈ π
if and only if (i, q − 1 − j) ̸∈ π. This is equivalent to each runner i having axis
θ(Xi) = q−1

2 such that beads and spacers less than θ(Xi) are reflected across to
spacers and beads. Hence q must be even, so beads and spacers can be paired. By
Corollary 1, this also implies that λ(i) = λ∗

(i) for each 0 ≤ i ≤ s − 1. Finally, by

Lemma 7, λ0 = ∅. The proof in the other direction is clear.
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Definition 18. We say the s-abacus of λ exhibits (RL,+) symmetry if there is a
bead in the (i, j) position if and only if there is a bead in the (s− 1− i, j) position.
[RL here refers to right-left.]

Lemma 16. The s-abacus of λ exhibits (RL,+) symmetry if and only if runner
i and runner s − i − 1 have the same number of beads, and λ(i) = λ(s−1−i) for
0 ≤ i ≤ s− 1.

Proof. Suppose the s-abacus of λ exhibits (RL,+) symmetry. Then each runner i
and s− i− 1 must be identical. This means runners i and s− i− 1 have the same
number of beads and λ(i) = λ(s−i−1) for each 0 ≤ i ≤ s− 1. The proof in the other
direction is clear.

Theorem 19. λ exhibits both (UD,−) and (RL,+) symmetry with respect to s if
and only if q is even and the following three conditions hold for all 0 ≤ i ≤ s− 1:

1. λ0 = ∅

2. λ(i) = λ∗
(i)

3. λ(i) = λ(s−i−1).

Proof. This follows from Lemma 7, Lemma 15, and Lemma 16.

Example 20. The minimal 4-abacus of λ = (8, 6, 6, 6, 6, 6, 1, 1) exhibits (UD,−)
and (RL,+) symmetry, but is neither a 3-core nor a 5-core. See Figure 5.

The following corollary is immediate.

Corollary 3. Let s = 2k > 1. The s-abacus of κs±1 exhibits (UD,−) and (RL,+)
symmetry.

Corollary 4. If the s-abacus of λ exhibits both (UD,−) and (RL,+) then λ is
self-conjugate and has empty s-core.

Proof. By Theorem 19, since λ(i) = λ(s−i−1) and λ(i) = λ∗
(i), we have λ(i) =

λ∗
(s−i−1). Since λ0 = ∅, and by assumption |X | = 0 (mod s), we have λ = λ∗

by Lemma 6.

5. Simultaneous (s − 1, s, s + 1)-cores

5.1. An s-abacus Characterization of the Longest (2k−1, 2k, 2k+1)-core

A conjecture of Amdeberhan [5] on the size of a maximal (s − 1, s, s+ 1)-core has
recently been verified.
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Theorem 21. (Yang-Zhong-Zhou, [24]; Xiong, [23]) The size of the largest (s −
1, s, s+ 1)−core is

1. k
(k+1

3

)
if s = 2k > 2

2. (k + 1)
(
k+1
3

)
+
(
k+2
3

)
if s = 2k + 1 > 2.

The result is proved in two different ways: Yang, Zhong and Zhou extend the
ideas of Stanley and Zanello to examine a poset Ps−1,s,s+1 associated to (s−1, s, s+
1)-cores; for Xiong it is a consequence of numerical properties of bead sets associated
to (s−1, s, s+1, s+2, · · · , s+k)-cores. Here we find a characterization of the longest
s-abacus, that is, the one corresponding the the (s− 1, s, s+ 1)-core with the most
components, and show that it corresponds to a maximal (s− 1, s, s+ 1)-core.

We say that an s-abacus α′(s) is a sub-abacus of α(s) if they have the same
number of runners and (i, j) ∈ α′(s) implies that (i, j) ∈ α(s). Let ᾱ(s) be the sub-
abacus of α(s) obtained by deleting any bead in α(s) which has a spacer directly
below it on the same runner.

Lemma 17. The s-abacus ᾱ(s) corresponds to an s-core partition.

Proof. This follows from Lemma 4, since, by construction, there is no bead in any
runner with a spacer below it.

Lemma 18. Let 0 ≤ i ≤ k − 1. The s-abacus ᾱ(s) consists of consecutive beads in
the rows j = 0, 1, · · · , i of the i and s− 1− i runners.

Proof. This follows from the construction of α(s) in Definition 11, where the i and
s− i− 1 runners have beads in the rows 0, 1, · · · , i, followed by alternating spacer-
bead sequences.

Example 22. Consider the 10-abacus ᾱ(10) in Appendix C, Figure 21. Runners
0 and 9 have no beads, runners 1 and 8 have one bead, runners 2 and 7 have two
beads and so on.

Lemma 19. Let 0 ≤ j ≤ k − 2. Reading from left-to-right, row j of the s-abacus
ᾱ(s) consists o j+1 spacers, followed by s−2(j+1) beads, followed by j+1 spacers.

Proof. This follows from Lemma 18.

Example 23. Consider the 10-abacus ᾱ(10) in Appendix C, Figure 21. Row 0
has a spacer followed by eight beads, followed by a spacer. Row 1 has two spacers
followed by six beads, followed by two spacers, and so on.

Lemma 20. Let j > 0. If (i, j) ∈ ᾱ(s), then (i− 1, j− 1) ∈ ᾱ(s) and (i+1, j− 1) ∈
ᾱ(s).
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Proof. This is equivalent to saying that each bead in the second row of α(s) or
above has a bead one row below and one column to the right, and one row below
to the left, which follows from Lemma 19.

Example 24. Consider the 10-abacus ᾱ(10) in Appendix C, Figure 21. The bead
in position (2,1) (with bead-value 12) is flanked by beads in positions (1,0) and
(3,0) (with bead-values 1 and 3 respectively).

Let κs−1,s,s+1 be the (s−1, s, s+1)-core with the largest number of components.

Lemma 21. The s-abacus ᾱ(s) corresponds to the κs−1,s,s+1, that is, the one with
the most components.

Proof. By Remark 1 of [6], the s-abacus of any (s − 1, s + 1)-core partition must
be a sub-abacus of α(s). Then ᾱ(s) must be the s-abacus of κs−1,s,s+1 since it is
obtained by deleting any bead in α(s) with a spacer immediately below it. It also
must be the sub-abacus with the most beads, since including another bead would
mean an s-hook is introduced.

Since α(s) was a minimal bead set, so too is ᾱ(s); since each bead corresponds to a
component, this means ᾱ(s) is the (s−1, s, s+1)-core with the most components.

We denote the (s− 1, s, s+ 1)-core corresponding to ᾱ(s) by κs−1,s,s+1.

Lemma 22. Each bead in row j of ᾱ(s) corresponds to a size (j + 1)2 component
of κs−1,s,s+1.

Proof. By Lemma 1, a bead x corresponds to a partition component whose size is
the number of spacers less than x. We use induction on j. It is clear that each bead
in the row 0 corresponds to a component of size 1 = (0+ 1)2. Suppose it is true for
j− 1. Then, by the inductive hypothesis, there are j2 spacers less than any bead in
row j − 1. By Lemma 19, the number of spacers between a bead in row j − 1 and
a bead in row j is j + (j + 1). Since the number of spacers less than a bead in row
j is j2 + j + (j + 1) = (j + 1)2 we are done.

The next corollary follows from Lemma 22. [See Theorem 2.5 in [16] for more
details.]

Corollary 5. Let s = 2k > 2. Then κs−1,s,s+1 =

(((k − 1)2)2, ((k − 2)2)4, ..., 162k−8, 92k−6, 42k−4, 12k−2).

We are now in a position to prove that κs−1,s,s+1 the longest (s− 1, s, s+1)-core
is a maximal one.

Theorem 25. Let s = 2k > 2. Then κs−1,s,s+1 is a maximal (s− 1, s, s+ 1)-core.
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Proof. By Lemma 22, each bead in row j corresponds to a size (j + 1)2 component
of κs−1,s,s+1. By Lemma 19, there are are (s− 2(j + 1)) beads in row j. Hence

|κs−1,s,s+1| =
k−1∑

j=0

(s− 2(j + 1))(j + 1)2.

Since

k−1∑

j=0

(s− 2(j + 1))(j + 1)2 = 2k
k−1∑

j=0

(j + 1)2 − 2
k−1∑

j=0

(j + 1)3

= 2k
k∑

j=1

j2 − 2
k∑

j=1

j3

=
2k(k)(k + 1)(2k + 1)

6
− 3k2(k + 1)2

6

=
k2(k2 − 1)

6

= k

(
k + 1

3

)
,

we are done.

5.2. Further Directions

Theorem 21 allows us to compare |κs±1| with |κs−1,s,s+1| when s = 2k > 2.

Proposition 2. Let s = 2k > 2. Then |κs±1| > |κs−1,s,s+1|. In particular, |κs±1| =
4|κs−1,s,s+1|

Proof. Since s is even, by Theorem 21(1) above |κs−1,s,s+1| = k4−k2

6 . However by

Theorem 4, |κs±1| = ((s−1)2−1)((s+1)2−1)
24 . This simplifies to 4(k4−k2)

6 . The result
follows.

Corollary 6. κ(s−1,s+1) is never an s-core.

Corollary 6 also follows from Theorem 1: since κs±1 is expressed only in its s-
quotient (its s-core is empty), and each 1-hook in the s-quotient corresponds to an
s-hook of κs±1, the maximal (s− 1, s+ 1)-core is comprised completely of s-hooks.

Several questions arise from the analysis in this section. Firstly, is there interpre-
tation of the factor of 4 that appears in Proposition 2, either in the geometry of the
s-abacus or in the manipulation of Young diagrams? A cursory comparison between
ᾱ(s) and α(s) does not suggest an obvious one (compare Appendix A and Appendix
C, for example). Secondly, Aggarwal, Yang-Zhong-Zhou and Xiong all note that
when s = 2k > 2, there are two maximal (s − 1, s, s+ 1)-cores, and in particular,
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κs−1,s,s+1 is not self-conjugate. What then is the size of maximal self-conjugate
(s− 1, s, s+ 1)-core in this case?

Finally, Yang-Zhong-Zhou spend several pages establishing that the longest (s−
1, s, s+ 1)-core is of maximal size. Is there a shorter abacus proof that this is the
case? If so, then our characterization of ᾱ(s) could be employed to develop a new
proof of Theorem 21. Aggarwal has commented that it is not known for general,
distinct, s, t, u when the longest (s, t, u)-core is a maximal one.

These questions are beyond the scope of this paper; we leave their investigation
to other venues.

Note: since these results first appeared, a combinatorial explanation for the factor
of 4 that appears in Proposition 2 has been found by the author and J. Sellers [16].
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APPENDIX A

The s-abaci α(s) of κs±1

Figure 9: s = 4
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Figure 10: s = 6
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Figure 11: s = 8
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Figure 12: s = 10
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APPENDIX B

The s-quotients of κs±1
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APPENDIX C

The s-abaci ᾱ(s) of κs−1,s,s+1


